Switch to side-by-side view

--- a
+++ b/HTNet/multi-modality/resnet.py
@@ -0,0 +1,363 @@
+import torch
+import torch.nn as nn
+from collections import OrderedDict
+#from .utils import load_state_dict_from_url
+
+
+__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'Bottleneck',
+           'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
+           'wide_resnet50_2', 'wide_resnet101_2']
+
+
+model_urls = {
+    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
+    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
+    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
+    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
+    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
+    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
+    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
+    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
+    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
+}
+
+
+def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
+    """3x3 convolution with padding"""
+    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
+                     padding=dilation, groups=groups, bias=False, dilation=dilation)
+
+
+def conv1x1(in_planes, out_planes, stride=1):
+    """1x1 convolution"""
+    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
+
+
+class BasicBlock(nn.Module):
+    expansion = 1
+
+    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
+                 base_width=64, dilation=1, norm_layer=None):
+        super(BasicBlock, self).__init__()
+        if norm_layer is None:
+            norm_layer = nn.BatchNorm2d
+        if groups != 1 or base_width != 64:
+            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
+        if dilation > 1:
+            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
+        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
+        self.conv1 = conv3x3(inplanes, planes, stride)
+        self.bn1 = norm_layer(planes)
+        self.relu = nn.ReLU(inplace=True)
+        self.conv2 = conv3x3(planes, planes)
+        self.bn2 = norm_layer(planes)
+        self.downsample = downsample
+        self.stride = stride
+
+    def forward(self, x):
+        identity = x
+
+        out = self.conv1(x)
+        out = self.bn1(out)
+        out = self.relu(out)
+
+        out = self.conv2(out)
+        out = self.bn2(out)
+
+        if self.downsample is not None:
+            identity = self.downsample(x)
+
+        out += identity
+        out = self.relu(out)
+
+        return out
+
+
+class Bottleneck(nn.Module):
+    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
+    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
+    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
+    # This variant is also known as ResNet V1.5 and improves accuracy according to
+    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
+
+    expansion = 4
+
+    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
+                 base_width=64, dilation=1, norm_layer=None):
+        super(Bottleneck, self).__init__()
+        if norm_layer is None:
+            norm_layer = nn.BatchNorm2d
+        width = int(planes * (base_width / 64.)) * groups
+        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
+        self.conv1 = conv1x1(inplanes, width)
+        self.bn1 = norm_layer(width)
+        self.conv2 = conv3x3(width, width, stride, groups, dilation)
+        self.bn2 = norm_layer(width)
+        self.conv3 = conv1x1(width, planes * self.expansion)
+        self.bn3 = norm_layer(planes * self.expansion)
+        self.relu = nn.ReLU(inplace=True)
+        self.downsample = downsample
+        self.stride = stride
+
+    def forward(self, x):
+        identity = x
+
+        out = self.conv1(x)
+        out = self.bn1(out)
+        out = self.relu(out)
+
+        out = self.conv2(out)
+        out = self.bn2(out)
+        out = self.relu(out)
+
+        out = self.conv3(out)
+        out = self.bn3(out)
+
+        if self.downsample is not None:
+            identity = self.downsample(x)
+
+        out += identity
+        out = self.relu(out)
+
+        return out
+
+
+class ResNet(nn.Module):
+
+    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
+                 groups=1, width_per_group=64, replace_stride_with_dilation=None,
+                 norm_layer=None, antibody_nums=6):
+        super(ResNet, self).__init__()
+        if norm_layer is None:
+            norm_layer = nn.BatchNorm2d
+        self._norm_layer = norm_layer
+
+        self.inplanes = 64
+        self.dilation = 1
+        if replace_stride_with_dilation is None:
+            # each element in the tuple indicates if we should replace
+            # the 2x2 stride with a dilated convolution instead
+            replace_stride_with_dilation = [False, False, False]
+        if len(replace_stride_with_dilation) != 3:
+            raise ValueError("replace_stride_with_dilation should be None "
+                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
+        self.groups = groups
+        self.base_width = width_per_group
+        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
+                               bias=False)
+        self.bn1 = norm_layer(self.inplanes)
+        self.relu = nn.ReLU(inplace=True)
+        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
+        self.layer1 = self._make_layer(block, 64, layers[0])
+        self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
+                                       dilate=replace_stride_with_dilation[0])
+        self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
+                                       dilate=replace_stride_with_dilation[1])
+        self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
+                                       dilate=replace_stride_with_dilation[2])
+        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
+        self.fc = nn.Linear(512 * block.expansion, num_classes)
+
+        for m in self.modules():
+            if isinstance(m, nn.Conv2d):
+                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
+                nn.init.constant_(m.weight, 1)
+                nn.init.constant_(m.bias, 0)
+
+        # Zero-initialize the last BN in each residual branch,
+        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
+        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
+        if zero_init_residual:
+            for m in self.modules():
+                if isinstance(m, Bottleneck):
+                    nn.init.constant_(m.bn3.weight, 0)
+                elif isinstance(m, BasicBlock):
+                    nn.init.constant_(m.bn2.weight, 0)
+                
+        self.antibody_net = nn.Sequential(OrderedDict([
+            ('Ab_fc0'  , nn.Linear(antibody_nums, 1024, bias=True)),
+            ('Ab_norm0', nn.GroupNorm(1, 1024)),
+            ('Ab_relu0', nn.ReLU(inplace=True)),
+            ('Ab_fc1'  , nn.Linear(1024, 2048, bias=True))
+        ]))
+
+    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
+        norm_layer = self._norm_layer
+        downsample = None
+        previous_dilation = self.dilation
+        if dilate:
+            self.dilation *= stride
+            stride = 1
+        if stride != 1 or self.inplanes != planes * block.expansion:
+            downsample = nn.Sequential(
+                conv1x1(self.inplanes, planes * block.expansion, stride),
+                norm_layer(planes * block.expansion),
+            )
+
+        layers = []
+        layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
+                            self.base_width, previous_dilation, norm_layer))
+        self.inplanes = planes * block.expansion
+        for _ in range(1, blocks):
+            layers.append(block(self.inplanes, planes, groups=self.groups,
+                                base_width=self.base_width, dilation=self.dilation,
+                                norm_layer=norm_layer))
+
+        return nn.Sequential(*layers)
+
+    def _forward_impl(self, x, x1):
+        # See note [TorchScript super()]
+        x = self.conv1(x)
+        x = self.bn1(x)
+        x = self.relu(x)
+        x = self.maxpool(x)
+
+        x = self.layer1(x)
+        x = self.layer2(x)
+        x = self.layer3(x)
+        x = self.layer4(x)
+
+        x = self.avgpool(x)
+        x = torch.flatten(x, 1)
+        x1 = self.antibody_net(x1)
+        
+        x = self.fc(x + x1)
+
+        return x
+
+    def forward(self, x, x1):
+        return self._forward_impl(x, x1)
+
+
+def _resnet(arch, block, layers, pretrained, progress, **kwargs):
+    model = ResNet(block, layers, **kwargs)
+    if pretrained:
+        state_dict = load_state_dict_from_url(model_urls[arch],
+                                              progress=progress)
+        model.load_state_dict(state_dict)
+    return model
+
+
+def resnet18(pretrained=False, progress=True, **kwargs):
+    r"""ResNet-18 model from
+    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
+
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+        progress (bool): If True, displays a progress bar of the download to stderr
+    """
+    return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
+                   **kwargs)
+
+
+def resnet34(pretrained=False, progress=True, **kwargs):
+    r"""ResNet-34 model from
+    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
+
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+        progress (bool): If True, displays a progress bar of the download to stderr
+    """
+    return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
+                   **kwargs)
+
+
+def resnet50(pretrained=False, progress=True, **kwargs):
+    r"""ResNet-50 model from
+    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
+
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+        progress (bool): If True, displays a progress bar of the download to stderr
+    """
+    return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
+                   **kwargs)
+
+
+def resnet101(pretrained=False, progress=True, **kwargs):
+    r"""ResNet-101 model from
+    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
+
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+        progress (bool): If True, displays a progress bar of the download to stderr
+    """
+    return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
+                   **kwargs)
+
+
+def resnet152(pretrained=False, progress=True, **kwargs):
+    r"""ResNet-152 model from
+    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
+
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+        progress (bool): If True, displays a progress bar of the download to stderr
+    """
+    return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
+                   **kwargs)
+
+
+def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
+    r"""ResNeXt-50 32x4d model from
+    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
+
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+        progress (bool): If True, displays a progress bar of the download to stderr
+    """
+    kwargs['groups'] = 32
+    kwargs['width_per_group'] = 4
+    return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
+                   pretrained, progress, **kwargs)
+
+
+def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
+    r"""ResNeXt-101 32x8d model from
+    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
+
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+        progress (bool): If True, displays a progress bar of the download to stderr
+    """
+    kwargs['groups'] = 32
+    kwargs['width_per_group'] = 8
+    return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
+                   pretrained, progress, **kwargs)
+
+
+def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
+    r"""Wide ResNet-50-2 model from
+    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
+
+    The model is the same as ResNet except for the bottleneck number of channels
+    which is twice larger in every block. The number of channels in outer 1x1
+    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
+    channels, and in Wide ResNet-50-2 has 2048-1024-2048.
+
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+        progress (bool): If True, displays a progress bar of the download to stderr
+    """
+    kwargs['width_per_group'] = 64 * 2
+    return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
+                   pretrained, progress, **kwargs)
+
+
+def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
+    r"""Wide ResNet-101-2 model from
+    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
+
+    The model is the same as ResNet except for the bottleneck number of channels
+    which is twice larger in every block. The number of channels in outer 1x1
+    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
+    channels, and in Wide ResNet-50-2 has 2048-1024-2048.
+
+    Args:
+        pretrained (bool): If True, returns a model pre-trained on ImageNet
+        progress (bool): If True, displays a progress bar of the download to stderr
+    """
+    kwargs['width_per_group'] = 64 * 2
+    return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
+                   pretrained, progress, **kwargs)