|
a |
|
b/HTNet/multi-modality/resnet.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
from collections import OrderedDict |
|
|
4 |
#from .utils import load_state_dict_from_url |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'Bottleneck', |
|
|
8 |
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', |
|
|
9 |
'wide_resnet50_2', 'wide_resnet101_2'] |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
model_urls = { |
|
|
13 |
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
|
|
14 |
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
|
|
15 |
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
|
|
16 |
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
|
|
17 |
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
|
|
18 |
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', |
|
|
19 |
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', |
|
|
20 |
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', |
|
|
21 |
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', |
|
|
22 |
} |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
|
26 |
"""3x3 convolution with padding""" |
|
|
27 |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
|
28 |
padding=dilation, groups=groups, bias=False, dilation=dilation) |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
def conv1x1(in_planes, out_planes, stride=1): |
|
|
32 |
"""1x1 convolution""" |
|
|
33 |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
class BasicBlock(nn.Module): |
|
|
37 |
expansion = 1 |
|
|
38 |
|
|
|
39 |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
|
40 |
base_width=64, dilation=1, norm_layer=None): |
|
|
41 |
super(BasicBlock, self).__init__() |
|
|
42 |
if norm_layer is None: |
|
|
43 |
norm_layer = nn.BatchNorm2d |
|
|
44 |
if groups != 1 or base_width != 64: |
|
|
45 |
raise ValueError('BasicBlock only supports groups=1 and base_width=64') |
|
|
46 |
if dilation > 1: |
|
|
47 |
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
48 |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 |
|
|
49 |
self.conv1 = conv3x3(inplanes, planes, stride) |
|
|
50 |
self.bn1 = norm_layer(planes) |
|
|
51 |
self.relu = nn.ReLU(inplace=True) |
|
|
52 |
self.conv2 = conv3x3(planes, planes) |
|
|
53 |
self.bn2 = norm_layer(planes) |
|
|
54 |
self.downsample = downsample |
|
|
55 |
self.stride = stride |
|
|
56 |
|
|
|
57 |
def forward(self, x): |
|
|
58 |
identity = x |
|
|
59 |
|
|
|
60 |
out = self.conv1(x) |
|
|
61 |
out = self.bn1(out) |
|
|
62 |
out = self.relu(out) |
|
|
63 |
|
|
|
64 |
out = self.conv2(out) |
|
|
65 |
out = self.bn2(out) |
|
|
66 |
|
|
|
67 |
if self.downsample is not None: |
|
|
68 |
identity = self.downsample(x) |
|
|
69 |
|
|
|
70 |
out += identity |
|
|
71 |
out = self.relu(out) |
|
|
72 |
|
|
|
73 |
return out |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
class Bottleneck(nn.Module): |
|
|
77 |
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) |
|
|
78 |
# while original implementation places the stride at the first 1x1 convolution(self.conv1) |
|
|
79 |
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. |
|
|
80 |
# This variant is also known as ResNet V1.5 and improves accuracy according to |
|
|
81 |
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. |
|
|
82 |
|
|
|
83 |
expansion = 4 |
|
|
84 |
|
|
|
85 |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, |
|
|
86 |
base_width=64, dilation=1, norm_layer=None): |
|
|
87 |
super(Bottleneck, self).__init__() |
|
|
88 |
if norm_layer is None: |
|
|
89 |
norm_layer = nn.BatchNorm2d |
|
|
90 |
width = int(planes * (base_width / 64.)) * groups |
|
|
91 |
# Both self.conv2 and self.downsample layers downsample the input when stride != 1 |
|
|
92 |
self.conv1 = conv1x1(inplanes, width) |
|
|
93 |
self.bn1 = norm_layer(width) |
|
|
94 |
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
|
95 |
self.bn2 = norm_layer(width) |
|
|
96 |
self.conv3 = conv1x1(width, planes * self.expansion) |
|
|
97 |
self.bn3 = norm_layer(planes * self.expansion) |
|
|
98 |
self.relu = nn.ReLU(inplace=True) |
|
|
99 |
self.downsample = downsample |
|
|
100 |
self.stride = stride |
|
|
101 |
|
|
|
102 |
def forward(self, x): |
|
|
103 |
identity = x |
|
|
104 |
|
|
|
105 |
out = self.conv1(x) |
|
|
106 |
out = self.bn1(out) |
|
|
107 |
out = self.relu(out) |
|
|
108 |
|
|
|
109 |
out = self.conv2(out) |
|
|
110 |
out = self.bn2(out) |
|
|
111 |
out = self.relu(out) |
|
|
112 |
|
|
|
113 |
out = self.conv3(out) |
|
|
114 |
out = self.bn3(out) |
|
|
115 |
|
|
|
116 |
if self.downsample is not None: |
|
|
117 |
identity = self.downsample(x) |
|
|
118 |
|
|
|
119 |
out += identity |
|
|
120 |
out = self.relu(out) |
|
|
121 |
|
|
|
122 |
return out |
|
|
123 |
|
|
|
124 |
|
|
|
125 |
class ResNet(nn.Module): |
|
|
126 |
|
|
|
127 |
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, |
|
|
128 |
groups=1, width_per_group=64, replace_stride_with_dilation=None, |
|
|
129 |
norm_layer=None, antibody_nums=6): |
|
|
130 |
super(ResNet, self).__init__() |
|
|
131 |
if norm_layer is None: |
|
|
132 |
norm_layer = nn.BatchNorm2d |
|
|
133 |
self._norm_layer = norm_layer |
|
|
134 |
|
|
|
135 |
self.inplanes = 64 |
|
|
136 |
self.dilation = 1 |
|
|
137 |
if replace_stride_with_dilation is None: |
|
|
138 |
# each element in the tuple indicates if we should replace |
|
|
139 |
# the 2x2 stride with a dilated convolution instead |
|
|
140 |
replace_stride_with_dilation = [False, False, False] |
|
|
141 |
if len(replace_stride_with_dilation) != 3: |
|
|
142 |
raise ValueError("replace_stride_with_dilation should be None " |
|
|
143 |
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) |
|
|
144 |
self.groups = groups |
|
|
145 |
self.base_width = width_per_group |
|
|
146 |
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, |
|
|
147 |
bias=False) |
|
|
148 |
self.bn1 = norm_layer(self.inplanes) |
|
|
149 |
self.relu = nn.ReLU(inplace=True) |
|
|
150 |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
151 |
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
|
152 |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, |
|
|
153 |
dilate=replace_stride_with_dilation[0]) |
|
|
154 |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, |
|
|
155 |
dilate=replace_stride_with_dilation[1]) |
|
|
156 |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, |
|
|
157 |
dilate=replace_stride_with_dilation[2]) |
|
|
158 |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
159 |
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
160 |
|
|
|
161 |
for m in self.modules(): |
|
|
162 |
if isinstance(m, nn.Conv2d): |
|
|
163 |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') |
|
|
164 |
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
|
165 |
nn.init.constant_(m.weight, 1) |
|
|
166 |
nn.init.constant_(m.bias, 0) |
|
|
167 |
|
|
|
168 |
# Zero-initialize the last BN in each residual branch, |
|
|
169 |
# so that the residual branch starts with zeros, and each residual block behaves like an identity. |
|
|
170 |
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 |
|
|
171 |
if zero_init_residual: |
|
|
172 |
for m in self.modules(): |
|
|
173 |
if isinstance(m, Bottleneck): |
|
|
174 |
nn.init.constant_(m.bn3.weight, 0) |
|
|
175 |
elif isinstance(m, BasicBlock): |
|
|
176 |
nn.init.constant_(m.bn2.weight, 0) |
|
|
177 |
|
|
|
178 |
self.antibody_net = nn.Sequential(OrderedDict([ |
|
|
179 |
('Ab_fc0' , nn.Linear(antibody_nums, 1024, bias=True)), |
|
|
180 |
('Ab_norm0', nn.GroupNorm(1, 1024)), |
|
|
181 |
('Ab_relu0', nn.ReLU(inplace=True)), |
|
|
182 |
('Ab_fc1' , nn.Linear(1024, 2048, bias=True)) |
|
|
183 |
])) |
|
|
184 |
|
|
|
185 |
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): |
|
|
186 |
norm_layer = self._norm_layer |
|
|
187 |
downsample = None |
|
|
188 |
previous_dilation = self.dilation |
|
|
189 |
if dilate: |
|
|
190 |
self.dilation *= stride |
|
|
191 |
stride = 1 |
|
|
192 |
if stride != 1 or self.inplanes != planes * block.expansion: |
|
|
193 |
downsample = nn.Sequential( |
|
|
194 |
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
|
195 |
norm_layer(planes * block.expansion), |
|
|
196 |
) |
|
|
197 |
|
|
|
198 |
layers = [] |
|
|
199 |
layers.append(block(self.inplanes, planes, stride, downsample, self.groups, |
|
|
200 |
self.base_width, previous_dilation, norm_layer)) |
|
|
201 |
self.inplanes = planes * block.expansion |
|
|
202 |
for _ in range(1, blocks): |
|
|
203 |
layers.append(block(self.inplanes, planes, groups=self.groups, |
|
|
204 |
base_width=self.base_width, dilation=self.dilation, |
|
|
205 |
norm_layer=norm_layer)) |
|
|
206 |
|
|
|
207 |
return nn.Sequential(*layers) |
|
|
208 |
|
|
|
209 |
def _forward_impl(self, x, x1): |
|
|
210 |
# See note [TorchScript super()] |
|
|
211 |
x = self.conv1(x) |
|
|
212 |
x = self.bn1(x) |
|
|
213 |
x = self.relu(x) |
|
|
214 |
x = self.maxpool(x) |
|
|
215 |
|
|
|
216 |
x = self.layer1(x) |
|
|
217 |
x = self.layer2(x) |
|
|
218 |
x = self.layer3(x) |
|
|
219 |
x = self.layer4(x) |
|
|
220 |
|
|
|
221 |
x = self.avgpool(x) |
|
|
222 |
x = torch.flatten(x, 1) |
|
|
223 |
x1 = self.antibody_net(x1) |
|
|
224 |
|
|
|
225 |
x = self.fc(x + x1) |
|
|
226 |
|
|
|
227 |
return x |
|
|
228 |
|
|
|
229 |
def forward(self, x, x1): |
|
|
230 |
return self._forward_impl(x, x1) |
|
|
231 |
|
|
|
232 |
|
|
|
233 |
def _resnet(arch, block, layers, pretrained, progress, **kwargs): |
|
|
234 |
model = ResNet(block, layers, **kwargs) |
|
|
235 |
if pretrained: |
|
|
236 |
state_dict = load_state_dict_from_url(model_urls[arch], |
|
|
237 |
progress=progress) |
|
|
238 |
model.load_state_dict(state_dict) |
|
|
239 |
return model |
|
|
240 |
|
|
|
241 |
|
|
|
242 |
def resnet18(pretrained=False, progress=True, **kwargs): |
|
|
243 |
r"""ResNet-18 model from |
|
|
244 |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
245 |
|
|
|
246 |
Args: |
|
|
247 |
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
248 |
progress (bool): If True, displays a progress bar of the download to stderr |
|
|
249 |
""" |
|
|
250 |
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, |
|
|
251 |
**kwargs) |
|
|
252 |
|
|
|
253 |
|
|
|
254 |
def resnet34(pretrained=False, progress=True, **kwargs): |
|
|
255 |
r"""ResNet-34 model from |
|
|
256 |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
257 |
|
|
|
258 |
Args: |
|
|
259 |
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
260 |
progress (bool): If True, displays a progress bar of the download to stderr |
|
|
261 |
""" |
|
|
262 |
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, |
|
|
263 |
**kwargs) |
|
|
264 |
|
|
|
265 |
|
|
|
266 |
def resnet50(pretrained=False, progress=True, **kwargs): |
|
|
267 |
r"""ResNet-50 model from |
|
|
268 |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
269 |
|
|
|
270 |
Args: |
|
|
271 |
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
272 |
progress (bool): If True, displays a progress bar of the download to stderr |
|
|
273 |
""" |
|
|
274 |
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, |
|
|
275 |
**kwargs) |
|
|
276 |
|
|
|
277 |
|
|
|
278 |
def resnet101(pretrained=False, progress=True, **kwargs): |
|
|
279 |
r"""ResNet-101 model from |
|
|
280 |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
281 |
|
|
|
282 |
Args: |
|
|
283 |
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
284 |
progress (bool): If True, displays a progress bar of the download to stderr |
|
|
285 |
""" |
|
|
286 |
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, |
|
|
287 |
**kwargs) |
|
|
288 |
|
|
|
289 |
|
|
|
290 |
def resnet152(pretrained=False, progress=True, **kwargs): |
|
|
291 |
r"""ResNet-152 model from |
|
|
292 |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ |
|
|
293 |
|
|
|
294 |
Args: |
|
|
295 |
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
296 |
progress (bool): If True, displays a progress bar of the download to stderr |
|
|
297 |
""" |
|
|
298 |
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, |
|
|
299 |
**kwargs) |
|
|
300 |
|
|
|
301 |
|
|
|
302 |
def resnext50_32x4d(pretrained=False, progress=True, **kwargs): |
|
|
303 |
r"""ResNeXt-50 32x4d model from |
|
|
304 |
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ |
|
|
305 |
|
|
|
306 |
Args: |
|
|
307 |
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
308 |
progress (bool): If True, displays a progress bar of the download to stderr |
|
|
309 |
""" |
|
|
310 |
kwargs['groups'] = 32 |
|
|
311 |
kwargs['width_per_group'] = 4 |
|
|
312 |
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], |
|
|
313 |
pretrained, progress, **kwargs) |
|
|
314 |
|
|
|
315 |
|
|
|
316 |
def resnext101_32x8d(pretrained=False, progress=True, **kwargs): |
|
|
317 |
r"""ResNeXt-101 32x8d model from |
|
|
318 |
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ |
|
|
319 |
|
|
|
320 |
Args: |
|
|
321 |
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
322 |
progress (bool): If True, displays a progress bar of the download to stderr |
|
|
323 |
""" |
|
|
324 |
kwargs['groups'] = 32 |
|
|
325 |
kwargs['width_per_group'] = 8 |
|
|
326 |
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], |
|
|
327 |
pretrained, progress, **kwargs) |
|
|
328 |
|
|
|
329 |
|
|
|
330 |
def wide_resnet50_2(pretrained=False, progress=True, **kwargs): |
|
|
331 |
r"""Wide ResNet-50-2 model from |
|
|
332 |
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ |
|
|
333 |
|
|
|
334 |
The model is the same as ResNet except for the bottleneck number of channels |
|
|
335 |
which is twice larger in every block. The number of channels in outer 1x1 |
|
|
336 |
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 |
|
|
337 |
channels, and in Wide ResNet-50-2 has 2048-1024-2048. |
|
|
338 |
|
|
|
339 |
Args: |
|
|
340 |
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
341 |
progress (bool): If True, displays a progress bar of the download to stderr |
|
|
342 |
""" |
|
|
343 |
kwargs['width_per_group'] = 64 * 2 |
|
|
344 |
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], |
|
|
345 |
pretrained, progress, **kwargs) |
|
|
346 |
|
|
|
347 |
|
|
|
348 |
def wide_resnet101_2(pretrained=False, progress=True, **kwargs): |
|
|
349 |
r"""Wide ResNet-101-2 model from |
|
|
350 |
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ |
|
|
351 |
|
|
|
352 |
The model is the same as ResNet except for the bottleneck number of channels |
|
|
353 |
which is twice larger in every block. The number of channels in outer 1x1 |
|
|
354 |
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 |
|
|
355 |
channels, and in Wide ResNet-50-2 has 2048-1024-2048. |
|
|
356 |
|
|
|
357 |
Args: |
|
|
358 |
pretrained (bool): If True, returns a model pre-trained on ImageNet |
|
|
359 |
progress (bool): If True, displays a progress bar of the download to stderr |
|
|
360 |
""" |
|
|
361 |
kwargs['width_per_group'] = 64 * 2 |
|
|
362 |
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], |
|
|
363 |
pretrained, progress, **kwargs) |