--- a +++ b/BioSeqNet/resnest/torch/resnest.py @@ -0,0 +1,93 @@ +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +## Created by: Hang Zhang +## Email: zhanghang0704@gmail.com +## Copyright (c) 2020 +## +## LICENSE file in the root directory of this source tree +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +"""ResNeSt models""" + +import torch +from .resnet import ResNet, Bottleneck + +__all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269', 'resnest14', 'resnest26'] + +_url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth' + +_model_sha256 = {name: checksum for checksum, name in [ + ('528c19ca', 'resnest50'), + ('22405ba7', 'resnest101'), + ('75117900', 'resnest200'), + ('0cc87c48', 'resnest269'), + ]} + +def short_hash(name): + if name not in _model_sha256: + raise ValueError('Pretrained model for {name} is not available.'.format(name=name)) + return _model_sha256[name][:8] + +resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for + name in _model_sha256.keys() +} + +def resnest14(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [1, 1, 1, 1], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=False, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest14'], progress=True, check_hash=True)) + return model + +def resnest26(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [2, 2, 2, 2], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=False, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest26'], progress=True, check_hash=True)) + return model + + + +def resnest50(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=False, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50'], progress=True, check_hash=True)) + return model + +def resnest101(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 23, 3], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=64, avg_down=True, + avd=True, avd_first=False, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest101'], progress=True, check_hash=True)) + return model + +def resnest200(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 24, 36, 3], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=64, avg_down=True, + avd=True, avd_first=False, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest200'], progress=True, check_hash=True)) + return model + +def resnest269(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 30, 48, 8], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=64, avg_down=True, + avd=True, avd_first=False, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest269'], progress=True, check_hash=True)) + return model