|
a |
|
b/BioSeqNet/resnest/torch/resnest.py |
|
|
1 |
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|
|
2 |
## Created by: Hang Zhang |
|
|
3 |
## Email: zhanghang0704@gmail.com |
|
|
4 |
## Copyright (c) 2020 |
|
|
5 |
## |
|
|
6 |
## LICENSE file in the root directory of this source tree |
|
|
7 |
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|
|
8 |
"""ResNeSt models""" |
|
|
9 |
|
|
|
10 |
import torch |
|
|
11 |
from .resnet import ResNet, Bottleneck |
|
|
12 |
|
|
|
13 |
__all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269', 'resnest14', 'resnest26'] |
|
|
14 |
|
|
|
15 |
_url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth' |
|
|
16 |
|
|
|
17 |
_model_sha256 = {name: checksum for checksum, name in [ |
|
|
18 |
('528c19ca', 'resnest50'), |
|
|
19 |
('22405ba7', 'resnest101'), |
|
|
20 |
('75117900', 'resnest200'), |
|
|
21 |
('0cc87c48', 'resnest269'), |
|
|
22 |
]} |
|
|
23 |
|
|
|
24 |
def short_hash(name): |
|
|
25 |
if name not in _model_sha256: |
|
|
26 |
raise ValueError('Pretrained model for {name} is not available.'.format(name=name)) |
|
|
27 |
return _model_sha256[name][:8] |
|
|
28 |
|
|
|
29 |
resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for |
|
|
30 |
name in _model_sha256.keys() |
|
|
31 |
} |
|
|
32 |
|
|
|
33 |
def resnest14(pretrained=False, root='~/.encoding/models', **kwargs): |
|
|
34 |
model = ResNet(Bottleneck, [1, 1, 1, 1], |
|
|
35 |
radix=2, groups=1, bottleneck_width=64, |
|
|
36 |
deep_stem=True, stem_width=32, avg_down=True, |
|
|
37 |
avd=True, avd_first=False, **kwargs) |
|
|
38 |
if pretrained: |
|
|
39 |
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
|
40 |
resnest_model_urls['resnest14'], progress=True, check_hash=True)) |
|
|
41 |
return model |
|
|
42 |
|
|
|
43 |
def resnest26(pretrained=False, root='~/.encoding/models', **kwargs): |
|
|
44 |
model = ResNet(Bottleneck, [2, 2, 2, 2], |
|
|
45 |
radix=2, groups=1, bottleneck_width=64, |
|
|
46 |
deep_stem=True, stem_width=32, avg_down=True, |
|
|
47 |
avd=True, avd_first=False, **kwargs) |
|
|
48 |
if pretrained: |
|
|
49 |
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
|
50 |
resnest_model_urls['resnest26'], progress=True, check_hash=True)) |
|
|
51 |
return model |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
|
55 |
def resnest50(pretrained=False, root='~/.encoding/models', **kwargs): |
|
|
56 |
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
|
57 |
radix=2, groups=1, bottleneck_width=64, |
|
|
58 |
deep_stem=True, stem_width=32, avg_down=True, |
|
|
59 |
avd=True, avd_first=False, **kwargs) |
|
|
60 |
if pretrained: |
|
|
61 |
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
|
62 |
resnest_model_urls['resnest50'], progress=True, check_hash=True)) |
|
|
63 |
return model |
|
|
64 |
|
|
|
65 |
def resnest101(pretrained=False, root='~/.encoding/models', **kwargs): |
|
|
66 |
model = ResNet(Bottleneck, [3, 4, 23, 3], |
|
|
67 |
radix=2, groups=1, bottleneck_width=64, |
|
|
68 |
deep_stem=True, stem_width=64, avg_down=True, |
|
|
69 |
avd=True, avd_first=False, **kwargs) |
|
|
70 |
if pretrained: |
|
|
71 |
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
|
72 |
resnest_model_urls['resnest101'], progress=True, check_hash=True)) |
|
|
73 |
return model |
|
|
74 |
|
|
|
75 |
def resnest200(pretrained=False, root='~/.encoding/models', **kwargs): |
|
|
76 |
model = ResNet(Bottleneck, [3, 24, 36, 3], |
|
|
77 |
radix=2, groups=1, bottleneck_width=64, |
|
|
78 |
deep_stem=True, stem_width=64, avg_down=True, |
|
|
79 |
avd=True, avd_first=False, **kwargs) |
|
|
80 |
if pretrained: |
|
|
81 |
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
|
82 |
resnest_model_urls['resnest200'], progress=True, check_hash=True)) |
|
|
83 |
return model |
|
|
84 |
|
|
|
85 |
def resnest269(pretrained=False, root='~/.encoding/models', **kwargs): |
|
|
86 |
model = ResNet(Bottleneck, [3, 30, 48, 8], |
|
|
87 |
radix=2, groups=1, bottleneck_width=64, |
|
|
88 |
deep_stem=True, stem_width=64, avg_down=True, |
|
|
89 |
avd=True, avd_first=False, **kwargs) |
|
|
90 |
if pretrained: |
|
|
91 |
model.load_state_dict(torch.hub.load_state_dict_from_url( |
|
|
92 |
resnest_model_urls['resnest269'], progress=True, check_hash=True)) |
|
|
93 |
return model |