--- a +++ b/BioSeqNet/resnest/torch/ablation.py @@ -0,0 +1,106 @@ +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +## Created by: Hang Zhang +## Email: zhanghang0704@gmail.com +## Copyright (c) 2020 +## +## LICENSE file in the root directory of this source tree +##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +"""ResNeSt ablation study models""" + +import torch +from .resnet import ResNet, Bottleneck + +__all__ = ['resnest50_fast_1s1x64d', 'resnest50_fast_2s1x64d', 'resnest50_fast_4s1x64d', + 'resnest50_fast_1s2x40d', 'resnest50_fast_2s2x40d', 'resnest50_fast_4s2x40d', + 'resnest50_fast_1s4x24d'] + +_url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth' + +_model_sha256 = {name: checksum for checksum, name in [ + ('d8fbf808', 'resnest50_fast_1s1x64d'), + ('44938639', 'resnest50_fast_2s1x64d'), + ('f74f3fc3', 'resnest50_fast_4s1x64d'), + ('32830b84', 'resnest50_fast_1s2x40d'), + ('9d126481', 'resnest50_fast_2s2x40d'), + ('41d14ed0', 'resnest50_fast_4s2x40d'), + ('d4a4f76f', 'resnest50_fast_1s4x24d'), + ]} + +def short_hash(name): + if name not in _model_sha256: + raise ValueError('Pretrained model for {name} is not available.'.format(name=name)) + return _model_sha256[name][:8] + +resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for + name in _model_sha256.keys() +} + +def resnest50_fast_1s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=1, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_1s1x64d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_2s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=2, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_2s1x64d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_4s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=4, groups=1, bottleneck_width=64, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_4s1x64d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_1s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=1, groups=2, bottleneck_width=40, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_1s2x40d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_2s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=2, groups=2, bottleneck_width=40, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_2s2x40d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_4s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=4, groups=2, bottleneck_width=40, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_4s2x40d'], progress=True, check_hash=True)) + return model + +def resnest50_fast_1s4x24d(pretrained=False, root='~/.encoding/models', **kwargs): + model = ResNet(Bottleneck, [3, 4, 6, 3], + radix=1, groups=4, bottleneck_width=24, + deep_stem=True, stem_width=32, avg_down=True, + avd=True, avd_first=True, **kwargs) + if pretrained: + model.load_state_dict(torch.hub.load_state_dict_from_url( + resnest_model_urls['resnest50_fast_1s4x24d'], progress=True, check_hash=True)) + return model