##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## Email: zhanghang0704@gmail.com
## Copyright (c) 2020
##
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
"""ResNets, implemented in Gluon."""
# pylint: disable=arguments-differ,unused-argument,missing-docstring
from __future__ import division
import os
import math
from mxnet.context import cpu
from mxnet.gluon.block import HybridBlock
from mxnet.gluon import nn
from mxnet.gluon.nn import BatchNorm
from .dropblock import DropBlock
from .splat import SplitAttentionConv
__all__ = ['ResNet', 'Bottleneck']
def _update_input_size(input_size, stride):
sh, sw = (stride, stride) if isinstance(stride, int) else stride
ih, iw = (input_size, input_size) if isinstance(input_size, int) else input_size
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
input_size = (oh, ow)
return input_size
class Bottleneck(HybridBlock):
"""ResNet Bottleneck
"""
# pylint: disable=unused-argument
expansion = 4
def __init__(self, channels, cardinality=1, bottleneck_width=64, strides=1, dilation=1,
downsample=None, previous_dilation=1, norm_layer=None,
norm_kwargs=None, last_gamma=False,
dropblock_prob=0, input_size=None, use_splat=False,
radix=2, avd=False, avd_first=False, in_channels=None,
split_drop_ratio=0, **kwargs):
super(Bottleneck, self).__init__()
group_width = int(channels * (bottleneck_width / 64.)) * cardinality
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
self.dropblock_prob = dropblock_prob
self.use_splat = use_splat
self.avd = avd and (strides > 1 or previous_dilation != dilation)
self.avd_first = avd_first
if self.dropblock_prob > 0:
self.dropblock1 = DropBlock(dropblock_prob, 3, group_width, *input_size)
if self.avd:
if avd_first:
input_size = _update_input_size(input_size, strides)
self.dropblock2 = DropBlock(dropblock_prob, 3, group_width, *input_size)
if not avd_first:
input_size = _update_input_size(input_size, strides)
else:
input_size = _update_input_size(input_size, strides)
self.dropblock2 = DropBlock(dropblock_prob, 3, group_width, *input_size)
self.dropblock3 = DropBlock(dropblock_prob, 3, channels*4, *input_size)
self.conv1 = nn.Conv1D(channels=group_width, kernel_size=1,
use_bias=False, in_channels=in_channels)
self.bn1 = norm_layer(in_channels=group_width, **norm_kwargs)
self.relu1 = nn.Activation('relu')
if self.use_splat:
self.conv2 = SplitAttentionConv(channels=group_width, kernel_size=3, strides = 1 if self.avd else strides,
padding=dilation, dilation=dilation, groups=cardinality, use_bias=False,
in_channels=group_width, norm_layer=norm_layer, norm_kwargs=norm_kwargs,
radix=radix, drop_ratio=split_drop_ratio, **kwargs)
else:
self.conv2 = nn.Conv1D(channels=group_width, kernel_size=3, strides = 1 if self.avd else strides,
padding=dilation, dilation=dilation, groups=cardinality, use_bias=False,
in_channels=group_width, **kwargs)
self.bn2 = norm_layer(in_channels=group_width, **norm_kwargs)
self.relu2 = nn.Activation('relu')
self.conv3 = nn.Conv1D(channels=channels*4, kernel_size=1, use_bias=False, in_channels=group_width)
if not last_gamma:
self.bn3 = norm_layer(in_channels=channels*4, **norm_kwargs)
else:
self.bn3 = norm_layer(in_channels=channels*4, gamma_initializer='zeros',
**norm_kwargs)
if self.avd:
self.avd_layer = nn.AvgPool1D(3, strides, padding=1)
self.relu3 = nn.Activation('relu')
self.downsample = downsample
self.dilation = dilation
self.strides = strides
def hybrid_forward(self, F, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
if self.dropblock_prob > 0:
out = self.dropblock1(out)
out = self.relu1(out)
if self.avd and self.avd_first:
out = self.avd_layer(out)
if self.use_splat:
out = self.conv2(out)
if self.dropblock_prob > 0:
out = self.dropblock2(out)
else:
out = self.conv2(out)
out = self.bn2(out)
if self.dropblock_prob > 0:
out = self.dropblock2(out)
out = self.relu2(out)
if self.avd and not self.avd_first:
out = self.avd_layer(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
if self.dropblock_prob > 0:
out = self.dropblock3(out)
out = out + residual
out = self.relu3(out)
return out
class ResNet(HybridBlock):
""" ResNet Variants Definations
Parameters
----------
block : Block
Class for the residual block. Options are BasicBlockV1, BottleneckV1.
layers : list of int
Numbers of layers in each block
classes : int, default 1000
Number of classification classes.
dilated : bool, default False
Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
typically used in Semantic Segmentation.
norm_layer : object
Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
last_gamma : bool, default False
Whether to initialize the gamma of the last BatchNorm layer in each bottleneck to zero.
deep_stem : bool, default False
Whether to replace the 7x7 conv1 with 3 3x3 convolution layers.
avg_down : bool, default False
Whether to use average pooling for projection skip connection between stages/downsample.
final_drop : float, default 0.0
Dropout ratio before the final classification layer.
use_global_stats : bool, default False
Whether forcing BatchNorm to use global statistics instead of minibatch statistics;
optionally set to True if finetuning using ImageNet classification pretrained models.
Reference:
- He, Kaiming, et al. "Deep residual learning for image recognition."
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
"""
# pylint: disable=unused-variable
def __init__(self, block, layers, cardinality=1, bottleneck_width=64,
classes=1000, dilated=False, dilation=1, norm_layer=BatchNorm,
norm_kwargs=None, last_gamma=False, deep_stem=False, stem_width=32,
avg_down=False, final_drop=0.0, use_global_stats=False,
name_prefix='', dropblock_prob=0, input_size=224,
use_splat=False, radix=2, avd=False, avd_first=False, split_drop_ratio=0, in_channels=3):
self.cardinality = cardinality
self.bottleneck_width = bottleneck_width
self.inplanes = stem_width*2 if deep_stem else 64
self.radix = radix
self.split_drop_ratio = split_drop_ratio
self.avd_first = avd_first
super(ResNet, self).__init__(prefix=name_prefix)
norm_kwargs = norm_kwargs if norm_kwargs is not None else {}
if use_global_stats:
norm_kwargs['use_global_stats'] = True
self.norm_kwargs = norm_kwargs
with self.name_scope():
if not deep_stem:
self.conv1 = nn.Conv1D(channels=64, kernel_size=7, strides=2,
padding=3, use_bias=False, in_channels=in_channels)
else:
self.conv1 = nn.HybridSequential(prefix='conv1')
self.conv1.add(nn.Conv1D(channels=stem_width, kernel_size=3, strides=2,
padding=1, use_bias=False, in_channels=in_channels))
self.conv1.add(norm_layer(in_channels=stem_width, **norm_kwargs))
self.conv1.add(nn.Activation('relu'))
self.conv1.add(nn.Conv1D(channels=stem_width, kernel_size=3, strides=1,
padding=1, use_bias=False, in_channels=stem_width))
self.conv1.add(norm_layer(in_channels=stem_width, **norm_kwargs))
self.conv1.add(nn.Activation('relu'))
self.conv1.add(nn.Conv1D(channels=stem_width*2, kernel_size=3, strides=1,
padding=1, use_bias=False, in_channels=stem_width))
input_size = _update_input_size(input_size, 2)
self.bn1 = norm_layer(in_channels=64 if not deep_stem else stem_width*2,
**norm_kwargs)
self.relu = nn.Activation('relu')
self.maxpool = nn.MaxPool1D(pool_size=3, strides=2, padding=1)
input_size = _update_input_size(input_size, 2)
self.layer1 = self._make_layer(1, block, 64, layers[0], avg_down=avg_down,
norm_layer=norm_layer, last_gamma=last_gamma, use_splat=use_splat,
avd=avd)
self.layer2 = self._make_layer(2, block, 128, layers[1], strides=2, avg_down=avg_down,
norm_layer=norm_layer, last_gamma=last_gamma, use_splat=use_splat,
avd=avd)
input_size = _update_input_size(input_size, 2)
if dilated or dilation==4:
self.layer3 = self._make_layer(3, block, 256, layers[2], strides=1, dilation=2,
avg_down=avg_down, norm_layer=norm_layer,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd)
self.layer4 = self._make_layer(4, block, 512, layers[3], strides=1, dilation=4, pre_dilation=2,
avg_down=avg_down, norm_layer=norm_layer,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd)
elif dilation==3:
# special
self.layer3 = self._make_layer(3, block, 256, layers[2], strides=1, dilation=2,
avg_down=avg_down, norm_layer=norm_layer,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd)
self.layer4 = self._make_layer(4, block, 512, layers[3], strides=2, dilation=2, pre_dilation=2,
avg_down=avg_down, norm_layer=norm_layer,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd)
elif dilation==2:
self.layer3 = self._make_layer(3, block, 256, layers[2], strides=2,
avg_down=avg_down, norm_layer=norm_layer,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd)
self.layer4 = self._make_layer(4, block, 512, layers[3], strides=1, dilation=2,
avg_down=avg_down, norm_layer=norm_layer,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd)
else:
self.layer3 = self._make_layer(3, block, 256, layers[2], strides=2,
avg_down=avg_down, norm_layer=norm_layer,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd)
input_size = _update_input_size(input_size, 2)
self.layer4 = self._make_layer(4, block, 512, layers[3], strides=2,
avg_down=avg_down, norm_layer=norm_layer,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd)
input_size = _update_input_size(input_size, 2)
self.avgpool = nn.GlobalAvgPool1D()
self.flat = nn.Flatten()
self.drop = None
if final_drop > 0.0:
self.drop = nn.Dropout(final_drop)
self.fc = nn.Dense(in_units=512 * block.expansion, units=classes)
def _make_layer(self, stage_index, block, planes, blocks, strides=1, dilation=1,
pre_dilation=1, avg_down=False, norm_layer=None,
last_gamma=False,
dropblock_prob=0, input_size=224, use_splat=False, avd=False):
downsample = None
if strides != 1 or self.inplanes != planes * block.expansion:
downsample = nn.HybridSequential(prefix='down%d_'%stage_index)
with downsample.name_scope():
if avg_down:
if pre_dilation == 1:
downsample.add(nn.AvgPool1D(pool_size=strides, strides=strides,
ceil_mode=True, count_include_pad=False))
elif strides==1:
downsample.add(nn.AvgPool1D(pool_size=1, strides=1,
ceil_mode=True, count_include_pad=False))
else:
downsample.add(nn.AvgPool1D(pool_size=pre_dilation*strides, strides=strides, padding=1,
ceil_mode=True, count_include_pad=False))
downsample.add(nn.Conv1D(channels=planes * block.expansion, kernel_size=1,
strides=1, use_bias=False, in_channels=self.inplanes))
downsample.add(norm_layer(in_channels=planes * block.expansion,
**self.norm_kwargs))
else:
downsample.add(nn.Conv1D(channels=planes * block.expansion,
kernel_size=1, strides=strides, use_bias=False,
in_channels=self.inplanes))
downsample.add(norm_layer(in_channels=planes * block.expansion,
**self.norm_kwargs))
layers = nn.HybridSequential(prefix='layers%d_'%stage_index)
with layers.name_scope():
if dilation in (1, 2):
layers.add(block(planes, cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
strides=strides, dilation=pre_dilation,
downsample=downsample, previous_dilation=dilation,
norm_layer=norm_layer, norm_kwargs=self.norm_kwargs,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd, avd_first=self.avd_first,
radix=self.radix, in_channels=self.inplanes,
split_drop_ratio=self.split_drop_ratio))
elif dilation == 4:
layers.add(block(planes, cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width,
strides=strides, dilation=pre_dilation,
downsample=downsample, previous_dilation=dilation,
norm_layer=norm_layer, norm_kwargs=self.norm_kwargs,
last_gamma=last_gamma, dropblock_prob=dropblock_prob,
input_size=input_size, use_splat=use_splat, avd=avd, avd_first=self.avd_first,
radix=self.radix, in_channels=self.inplanes,
split_drop_ratio=self.split_drop_ratio))
else:
raise RuntimeError("=> unknown dilation size: {}".format(dilation))
input_size = _update_input_size(input_size, strides)
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.add(block(planes, cardinality=self.cardinality,
bottleneck_width=self.bottleneck_width, dilation=dilation,
previous_dilation=dilation, norm_layer=norm_layer,
norm_kwargs=self.norm_kwargs, last_gamma=last_gamma,
dropblock_prob=dropblock_prob, input_size=input_size,
use_splat=use_splat, avd=avd, avd_first=self.avd_first,
radix=self.radix, in_channels=self.inplanes,
split_drop_ratio=self.split_drop_ratio))
return layers
def hybrid_forward(self, F, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = self.flat(x)
if self.drop is not None:
x = self.drop(x)
x = self.fc(x)
return x