|
a |
|
b/BioSeqNet/resnest/gluon/ablation.py |
|
|
1 |
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|
|
2 |
## Created by: Hang Zhang |
|
|
3 |
## Email: zhanghang0704@gmail.com |
|
|
4 |
## Copyright (c) 2020 |
|
|
5 |
## |
|
|
6 |
## LICENSE file in the root directory of this source tree |
|
|
7 |
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
|
|
8 |
|
|
|
9 |
"""Ablation Study Models for ResNeSt""" |
|
|
10 |
from .resnet import ResNet, Bottleneck |
|
|
11 |
from mxnet import cpu |
|
|
12 |
|
|
|
13 |
__all__ = ['resnest50_fast_1s1x64d', 'resnest50_fast_2s1x64d', 'resnest50_fast_4s1x64d', |
|
|
14 |
'resnest50_fast_1s2x40d', 'resnest50_fast_2s2x40d', 'resnest50_fast_4s2x40d', |
|
|
15 |
'resnest50_fast_1s4x24d'] |
|
|
16 |
|
|
|
17 |
def resnest50_fast_1s1x64d(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
18 |
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
|
19 |
radix=1, cardinality=1, bottleneck_width=64, |
|
|
20 |
deep_stem=True, avg_down=True, |
|
|
21 |
avd=True, avd_first=True, |
|
|
22 |
use_splat=True, dropblock_prob=0.1, |
|
|
23 |
name_prefix='resnetv1f_', **kwargs) |
|
|
24 |
if pretrained: |
|
|
25 |
from .model_store import get_model_file |
|
|
26 |
model.load_parameters(get_model_file('resnest50_fast_1s1x64d', |
|
|
27 |
root=root), ctx=ctx) |
|
|
28 |
return model |
|
|
29 |
|
|
|
30 |
def resnest50_fast_2s1x64d(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
31 |
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
|
32 |
radix=2, cardinality=1, bottleneck_width=64, |
|
|
33 |
deep_stem=True, avg_down=True, |
|
|
34 |
avd=True, avd_first=True, |
|
|
35 |
use_splat=True, dropblock_prob=0.1, |
|
|
36 |
name_prefix='resnetv1f_', **kwargs) |
|
|
37 |
if pretrained: |
|
|
38 |
from .model_store import get_model_file |
|
|
39 |
model.load_parameters(get_model_file('resnest50_fast_2s1x64d', |
|
|
40 |
root=root), ctx=ctx) |
|
|
41 |
return model |
|
|
42 |
|
|
|
43 |
def resnest50_fast_4s1x64d(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
44 |
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
|
45 |
radix=4, cardinality=1, bottleneck_width=64, |
|
|
46 |
deep_stem=True, avg_down=True, |
|
|
47 |
avd=True, avd_first=True, |
|
|
48 |
use_splat=True, dropblock_prob=0.1, |
|
|
49 |
name_prefix='resnetv1f_', **kwargs) |
|
|
50 |
if pretrained: |
|
|
51 |
from .model_store import get_model_file |
|
|
52 |
model.load_parameters(get_model_file('resnest50_fast_4s1x64d', |
|
|
53 |
root=root), ctx=ctx) |
|
|
54 |
return model |
|
|
55 |
|
|
|
56 |
def resnest50_fast_1s2x40d(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
57 |
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
|
58 |
radix=1, cardinality=2, bottleneck_width=40, |
|
|
59 |
deep_stem=True, avg_down=True, |
|
|
60 |
avd=True, avd_first=True, |
|
|
61 |
use_splat=True, dropblock_prob=0.1, |
|
|
62 |
name_prefix='resnetv1f_', **kwargs) |
|
|
63 |
if pretrained: |
|
|
64 |
from .model_store import get_model_file |
|
|
65 |
model.load_parameters(get_model_file('resnest50_fast_1s2x40d', |
|
|
66 |
root=root), ctx=ctx) |
|
|
67 |
return model |
|
|
68 |
|
|
|
69 |
def resnest50_fast_2s2x40d(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
70 |
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
|
71 |
radix=2, cardinality=2, bottleneck_width=40, |
|
|
72 |
deep_stem=True, avg_down=True, |
|
|
73 |
avd=True, avd_first=True, |
|
|
74 |
use_splat=True, dropblock_prob=0.1, |
|
|
75 |
name_prefix='resnetv1f_', **kwargs) |
|
|
76 |
if pretrained: |
|
|
77 |
from .model_store import get_model_file |
|
|
78 |
model.load_parameters(get_model_file('resnest50_fast_2s2x40d', |
|
|
79 |
root=root), ctx=ctx) |
|
|
80 |
return model |
|
|
81 |
|
|
|
82 |
def resnest50_fast_4s2x40d(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
83 |
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
|
84 |
radix=4, cardinality=2, bottleneck_width=40, |
|
|
85 |
deep_stem=True, avg_down=True, |
|
|
86 |
avd=True, avd_first=True, |
|
|
87 |
use_splat=True, dropblock_prob=0.1, |
|
|
88 |
name_prefix='resnetv1f_', **kwargs) |
|
|
89 |
if pretrained: |
|
|
90 |
from .model_store import get_model_file |
|
|
91 |
model.load_parameters(get_model_file('resnest50_fast_4s2x40d', |
|
|
92 |
root=root), ctx=ctx) |
|
|
93 |
return model |
|
|
94 |
|
|
|
95 |
def resnest50_fast_1s4x24d(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): |
|
|
96 |
model = ResNet(Bottleneck, [3, 4, 6, 3], |
|
|
97 |
radix=1, cardinality=4, bottleneck_width=24, |
|
|
98 |
deep_stem=True, avg_down=True, |
|
|
99 |
avd=True, avd_first=True, |
|
|
100 |
use_splat=True, dropblock_prob=0.1, |
|
|
101 |
name_prefix='resnetv1f_', **kwargs) |
|
|
102 |
if pretrained: |
|
|
103 |
from .model_store import get_model_file |
|
|
104 |
model.load_parameters(get_model_file('resnest50_fast_1s4x24d', |
|
|
105 |
root=root), ctx=ctx) |
|
|
106 |
return model |
|
|
107 |
|