|
a |
|
b/README.md |
|
|
1 |
# AI_Genomics Project |
|
|
2 |
|
|
|
3 |
This repository contains the implementation and integration of two powerful genomics models: GET (Gene Expression Transformer) and AlphaFold. |
|
|
4 |
|
|
|
5 |
## Project Structure |
|
|
6 |
|
|
|
7 |
``` |
|
|
8 |
AI_Genomics/ |
|
|
9 |
├── models/ |
|
|
10 |
│ ├── get_model/ # GET model implementation (175MB) |
|
|
11 |
│ │ ├── tutorials/ # Jupyter notebooks for data processing and model usage |
|
|
12 |
│ │ │ ├── prepare_pbmc.ipynb # Data processing tutorial |
|
|
13 |
│ │ │ ├── finetune_pbmc.ipynb # Model fine-tuning tutorial |
|
|
14 |
│ │ │ ├── predict_atac.ipynb # ATAC prediction demo |
|
|
15 |
│ │ │ └── pretrain_pbmc.ipynb # Pre-training tutorial |
|
|
16 |
│ │ ├── get_model/ # Core model implementation |
|
|
17 |
│ │ └── env.yml # Conda environment specification |
|
|
18 |
│ └── alphafold/ # AlphaFold implementation (34MB) |
|
|
19 |
│ ├── data/ # Symbolic link to alphafold_data |
|
|
20 |
│ ├── configs/ # Model configurations |
|
|
21 |
│ └── checkpoints/ # Model checkpoints |
|
|
22 |
├── experiments/ |
|
|
23 |
│ ├── get_experiments/ # GET experiment scripts and results |
|
|
24 |
│ └── af_experiments/ # AlphaFold experiment scripts and results |
|
|
25 |
├── utils/ # Shared utility functions |
|
|
26 |
├── notebooks/ # Jupyter notebooks for analysis |
|
|
27 |
└── docs/ # Documentation and model mindmaps |
|
|
28 |
``` |
|
|
29 |
|
|
|
30 |
## Model Data Locations |
|
|
31 |
|
|
|
32 |
### AlphaFold Data |
|
|
33 |
Required data includes: |
|
|
34 |
- Sequence databases (UniRef90, BFD, MGnify) |
|
|
35 |
- Structure templates (PDB70) |
|
|
36 |
- Parameter files |
|
|
37 |
- Model weights |
|
|
38 |
|
|
|
39 |
Note: AlphaFold data setup will be done separately following the official installation guide. |
|
|
40 |
|
|
|
41 |
### GET Model Data |
|
|
42 |
The GET model requires the following data preparation steps: |
|
|
43 |
1. PBMC Data Processing: |
|
|
44 |
- Follow the tutorial in `models/get_model/tutorials/prepare_pbmc.ipynb` |
|
|
45 |
- Data processing pipeline includes: |
|
|
46 |
- Peak sorting (chr1, chr2, chr3 order) |
|
|
47 |
- Count matrix preparation |
|
|
48 |
- Quality checks (>3M depth recommended) |
|
|
49 |
|
|
|
50 |
2. Model Training Data: |
|
|
51 |
- Fine-tuning data: Follow `models/get_model/tutorials/finetune_pbmc.ipynb` |
|
|
52 |
- ATAC prediction: Use `models/get_model/tutorials/predict_atac.ipynb` |
|
|
53 |
- Pre-training: Reference `models/get_model/tutorials/pretrain_pbmc.ipynb` |
|
|
54 |
|
|
|
55 |
## Setup and Installation |
|
|
56 |
|
|
|
57 |
1. Clone the repository: |
|
|
58 |
```bash |
|
|
59 |
git clone https://github.com/[your-username]/AI_Genomics.git /home/caom/AI_Genomics |
|
|
60 |
cd /home/caom/AI_Genomics |
|
|
61 |
``` |
|
|
62 |
|
|
|
63 |
2. Create and activate a conda environment: |
|
|
64 |
```bash |
|
|
65 |
conda create -n ai_genomics python=3.8 |
|
|
66 |
conda activate ai_genomics |
|
|
67 |
``` |
|
|
68 |
|
|
|
69 |
3. Install dependencies: |
|
|
70 |
```bash |
|
|
71 |
pip install -r requirements.txt |
|
|
72 |
``` |
|
|
73 |
|
|
|
74 |
4. Set up model-specific requirements: |
|
|
75 |
- GET Model: |
|
|
76 |
```bash |
|
|
77 |
cd models/get_model |
|
|
78 |
conda env create -f env.yml |
|
|
79 |
conda activate get |
|
|
80 |
``` |
|
|
81 |
- AlphaFold: |
|
|
82 |
```bash |
|
|
83 |
# Create AlphaFold conda environment |
|
|
84 |
cd models/alphafold |
|
|
85 |
conda create -n alphafold python=3.10 |
|
|
86 |
conda activate alphafold |
|
|
87 |
|
|
|
88 |
# Install JAX with CUDA support |
|
|
89 |
pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html |
|
|
90 |
|
|
|
91 |
# Install other dependencies |
|
|
92 |
conda install -y -c conda-forge openmm=7.5.1 pdbfixer |
|
|
93 |
conda install -y -c bioconda hmmer hhsuite kalign2 |
|
|
94 |
pip install -r docker/requirements.txt |
|
|
95 |
|
|
|
96 |
# Download genetic databases and model parameters |
|
|
97 |
# (This will be done separately following cluster-specific storage guidelines) |
|
|
98 |
``` |
|
|
99 |
|
|
|
100 |
Note: We use conda environment instead of Docker in the cluster environment for: |
|
|
101 |
- Better integration with SLURM job scheduler |
|
|
102 |
- Direct access to cluster's optimized CUDA libraries |
|
|
103 |
- Improved performance without Docker virtualization |
|
|
104 |
- Better resource management |
|
|
105 |
- Direct access to cluster storage |
|
|
106 |
|
|
|
107 |
## Computational Resources |
|
|
108 |
|
|
|
109 |
### GPU Access |
|
|
110 |
To access GPU resources for model training and inference, use the following SLURM command: |
|
|
111 |
|
|
|
112 |
```bash |
|
|
113 |
srun -p general --pty -t 120:00 --cpus-per-task=32 --mem=64G --gres=gpu:a100:2 /bin/bash |
|
|
114 |
``` |
|
|
115 |
|
|
|
116 |
This command requests: |
|
|
117 |
- Partition: general |
|
|
118 |
- Time limit: 120 hours |
|
|
119 |
- CPUs: 32 cores |
|
|
120 |
- Memory: 64GB |
|
|
121 |
- GPUs: 2 NVIDIA A100 GPUs |
|
|
122 |
- Interactive bash session |
|
|
123 |
|
|
|
124 |
Note: Adjust the resources (time, CPU, memory, GPU) based on your specific needs. |
|
|
125 |
|
|
|
126 |
## Version Control |
|
|
127 |
|
|
|
128 |
This repository uses Git for version control. Important files: |
|
|
129 |
- `.gitignore`: Excludes large data files, model checkpoints, and environment-specific files |
|
|
130 |
- `.gitattributes`: Handles large file storage using Git LFS |
|
|
131 |
- `requirements.txt`: Lists all Python dependencies |
|
|
132 |
|
|
|
133 |
## Contributing |
|
|
134 |
|
|
|
135 |
1. Create a new branch for your feature |
|
|
136 |
2. Make your changes |
|
|
137 |
3. Submit a pull request |
|
|
138 |
|
|
|
139 |
## License |
|
|
140 |
|
|
|
141 |
Please refer to the original licenses of [AlphaFold](https://github.com/google-deepmind/alphafold) and [GET](https://github.com/GET-Foundation/get_model) models. |