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Overview

e Unsupervised Learning

e Generative Models

o Variational Autoencoders (VAE)
o Generative Adversarial Networks (GAN)
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Generative Adversarial Nets in Genomics

Generating and designing DNA with deep generative

models
Nathan Killoran Leo J. Lee X 5 - el = = 3
2 Universily_ofToronlo / Univers?ly of Toronto
™ s b b S b) TGAGAGTGATGTATT AATT ATGCCTCACCTCTGCTTGCAGACTGTCA
Andrgw Delong Qaﬁq Du\(enaud Byen{ian .l Frey TGGGGAGACAGGCCCAGAI ¢ AATT AGAAAGTAATGAGCAC
B . e A Wi (s W e 1, Siorinios W  TTTTAAGAAATACTGTTGCATCAGGGCAAATGTAAGATTTTG
TTTTGTTTGAGATCTGTGGGGTATGCT  AATTAAAGTCTGGACTACCAC
Abstract CTGATACTGAATGCAGATTTGAAGAACAAAG  TATTAAAACACATGCTT
‘We propose generative neural network methods to generate DNA sequences and GATCCCCAAGTGT 3 AATT AGAAGGAAGCTGGAGAATCCCCAAACTCTG
une them to have desired properties. We present three approaches: creatin, P =
.:ymh:alic _D;‘IA sequences Ps'iyngpa l;e:r!era_tive sdversz[\r:al nemﬁi’k (GAN): a D;\IAg- CAGCCACATCAGCTTACCTAA AACTCATGTGTTTTAAAACCAGCTTTG
it oo ek bl sy i gt Wil st TAGAATTTTTCTT " TATTAATGATGATCTAGGCTTACACAGGGACATCA
ools capture im structures of the data and, when applied to designing probes
Ifor prolsi[n bindil:](;nr:[ilén:am:ys (PBM:). al‘low us to geene';zl:le ne:\' s:qugcncegsguhose GACATTGCTTAGTCTGAGGGATACAGTGGGGAGT TATTA :\,AATCTCC
properties are estimated to be superior to those f_ound in the lrain_ing data. We e .
believe that these results open the door for applying deep generative models to ACATGCCTGAGACATTCCTGCTCTTGAATCTGAI D\-\TTATK;CTTPAI\II‘CC

advance genomics research. . . . . . )
Figure 7: Motif-matching experiment: a) Sequence logo for the PWM detected by the predictor.

T s Letter heights reflect their relative frequency at each position. Sequences which have a strong match
ntroduction with this motif will score highly. b) Sample sequences tuned to have a high predictor score. The

A major trend in deep learning is the development of new generative methods, with the goal of boxes indicate strong motif matches for each sequence.

creating synthetic data with desired structures and properties. This trend includes generative models
such as generative adversarial networks (GANSs) [1], variational autoencoders (VAEs) [2], and deep
autoregressive models [3, 4], as well as generative design procedures like activation maximization
(popularly known as “deep dream”) [5-7] and style transfer [8]. These powerful generative tools
bring many new opportunities. When data is costly, we can use a generative method to inexpensively
simulate data. We can also use generative tools to explore the space of possible data configurations,
tuning the generated data to have specific target properties, or to invent novel, unseen configurations

arXiv:1712.06148v1 [cs.LG] 17 Dec 2017
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning The breast cancer histology image dataset

Positive Negative

Data: (x, y)
X is data, y is label

Examples: Classification,

regression, object detection, Classification
semantic segmentation, image

captioning, etc.

This image is CCO public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Lung nodule detection with several levels of malignancy
(LIDC dataset)

Data: (x, y)
X is data, y is label
Goal: Learn a function to map x ->y ¥ 6.‘

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Object Detection
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

BraTs-Segmentation-Challenge
(Brain MRI)

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,

regression, object detection, Semantic Segmentation
semantic segmentation, image

captioning, etc.
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Supervised vs Unsupervised Learning

Medical Report Captioning

Supervised Learning

E Findings:
‘ EThe cardiac silhouette is

f enlarged and has a globular
§ appearance. Mild bibasilar

f dependent atelectasis. No
i pneumothorax or large
i pleural effusion. No acute

Data: (x, y)
X is data, y is label

E bone abnormality.

f

[ Impression:

| Cardiomegaly with

: globular appearance of the
| cardiac silhouette.

| Considerations would

i include pericardial effusion
; or dilated cardiomyopathy.

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

neuraltalk2
Image i CCO Public domain
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https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.
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Supervised vs Unsupervised Learning

Unsupervised Learning

K-means clustering of gliomas by signature- deﬂnlng protelns

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature

_ _ , ! K-means or t-SNE clustering
learning, density estimation, etc.

This image is CCO public domain
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https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Scores of PCA

100

Unsupervised Learning

Data: x
Just data, no labels!

Population
* Finland
° ltaly

PC2

* Netherlands
* UKA1
» UK2

Goal: Learn some underlying
hidden structure of the data

-100 -50 0 50
PC1

E_XamP!eS: Qlustering, Principal Component Analysis
dimensionality reduction, feature (Dimensionality reduction)

learning, density estimation, etc.

This image from Matthias Scholz
is CCO public domain
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http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

U nsu perViSEd Learn | ng Re(-:onstrqcted data
L2 Loss function: !ihuﬂ

||£L'—ii‘||2 < ’3“@

Data: x T S A
Just data, no labels! Reconstructed | z | -Hf H&
input data T Encoder: 4-layer conv
Decoder Decoder: 4-layer upconv
Goal: Learn some underlying Features | 2 | gt
hidden structure of the data - il"ﬁ
Input data | T — ‘

Examples: Clustering, _
dimensionality reduction, feature Autoencoders

learning, density estimation, etc. (Feature learning/representation)
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Supervised vs Unsupervised Learning

Unsupervised Learning

e ’/.\\
Data: x

Just data, no labels! 1-d density estimation

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature

: : : : 2-d density estimation
learning, density estimation, etc.

left right
CCQ public domain
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https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X is data, y is label Just data, no labels!

Goal: Learn a functionto map x->y  Goal: Learn some underlying
hidden structure of the data
Examples: Classification,

regression, object detection, Examples: Clustering,
semantic segmentation, image dimensionality reduction, feature
captioning, etc. learning, density estimation, etc.
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Generative Models

Given training data, generate new samples from same distribution

B »:"4

Training data ~ p,.(x) Generated samples ~

model

Want to learn p__ () similar to p Olata(x)
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Generative Models

Given training data, generate new samples from same distribution

B

Training data ~p,.(x) Generated samples ~p_ . (x)

Want to learn p__ . (x) similar to p _. (X)

Addresses density estimation, a core problem in unsupervised learning
Several flavors:
- Explicit density estimation: explicitly define and solve for p_ ()

- Implicit density estimation: learn model that can sample from p (x) w/o explicitly defining it

model
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Taxonomy of Generative Models Fiea

GAN
Generative models
Explicit density Implicit density

Tractable density Approximate density Markov Chain

. : GSN

Fully Visible Belief Nets \

- NADE : / :
- MADE Variational Markov Chain
- PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models Direct

Today: discuss 2 most GAN
popular types of generative Generative models
models today /\
Explicit density Implicit density
Tractable density Approximate density Markov Chain

Fully Visible Belief Nets / \ =sn

- NADE — :

- MADE Variational Markov Chain

- PixelRNN/CNN

Variational Autoencoder| Boltzmann Machine

Change of variables models
(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Variational
Autoencoders (VAE)
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Some background first:
&%grgs@cga pgogcrf§or learning a lower-dimensional feature representation

from unlabeled training data

Features YA
I Encoder
Input data T
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Some background first:
&%grgs@cpa pgogcrf§or learning a lower-dimensional feature representation

from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN

Features 2 / ﬁﬁg =
I Encoder .’ﬁ ﬁ@

Input data T EE2E
SagF 7 <€ B3
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Some background first:
&%grgs@cpa pgogcrf§or learning a lower-dimensional feature representation

from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

Later: Deep, fully-connected

Q: Why dimensionality Later: ReLU CNN

reduction?
Features YA
I Encoder
Input data T
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Some background first:
&%grgs@cpa pgogcrf§or learning a lower-dimensional feature representation

from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)
Later: Deep, fully-connected

Q: Why dimensionality Later- ReLU CNN
reduction?
A: Want features to Features >
capture meaningful
factors of variation in
data I Encoder

Input data T

Julie Hussin & Ahmad Pesaranghader Part2 Feb 14, 2020



Some background first:
Hothearn ggga%ne representation?

Features z2 'iﬁ

x Encoder . Q-
Input data gng
i = a7l <GS
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Some background first:
Hothearn %@ga%ne representation?

Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed 7
input data
I Decoder
Features z
I Encoder
ZT

Input data

nlﬂ‘.ﬁ
Julie Hussin & Ahmad Pesaranghader Part2 Feb 14, 2020



Some background first:
Howtcgearn ggga%ne representation?

Train such that features can be used to reconstruct original data

“Autoencoding” - encoding itself

Originally: Linear +
nonlinearity (sigmoid)

Reponstructed T Later: Deep, fully-connected
input data / Later: ReLU CNN (upconv)
I Decoder
Features 2 ijﬁl—m .
I Encoder . ﬁ-@
Input data T a$2§
b7l « B
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Some background first: Reconstructed data

Hothearn ggga%ne representation? ’Ehn@
"‘I'raln such tlhat”features. car.1 be used to reconstruct original data ! EER

Autoencoding” - encoding itself -
-H: sy

Reconstructed
input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Decoder A
ut data

45
Features l 'i 4 .
X

Encoder .é Q-@
el RS B
Sl Ry L
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Input data




Some background first: ’Reconstr%te(ﬁi
Autaercedears li‘gfn@
can be used to L2 Loss function: [

reconstruct original data |z — 2|2 F nhs'z‘
: i < S

Reconstructed

. 5’) Encoder: 4-layer conv
input data Decoder: 4-layer upconv
[ +
ut data
Features z
A

Input data T

7 3
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Some background first: ’Reconstru[citeoﬁi
Aoengeders Doesn't use labels! E'E:H@
L2 Loss function: <

can be used to

reconstruct original data |z — 2|2 <— n,s'z‘
: i < S

Re.contszutCted 5’) Encoder: 4-layer conv
input data Decoder: 4-layer upconv
4
' Input dat
Features z ‘ﬁ x..m
A

o+ PN
Input data T E$2§
T w7l < HEE
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Some background first:
Autoencoders

Reconstructed
input data

Decoder

T
Features l T After training,
€I

throw away decoder
Encoder

Input data

Julie Hussin & Ahmad Pesaranghader Part2 Feb 14, 2020



Some background first:
Autoencoders

Loss function
(Softmax, etc) bird plane

/ \ dog deer truck

Predicted Label

Train for final task
(sometimes with
small data)

Fine-tune

Encoder can be encoder

]

I Classifier
used to initialize a Features 2 jointly with

XL

supervised model classifier
Encoder

o N

Input data
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Some background first:

Autoencoders
Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model
Reconstructed T Features capture factors of
input data variation in training data. Can we

I Decoder generate new images from an

autoencoder?
Features 2
I Encoder
ZT

Input data
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(i)}f\’zl is generated from underlying unobserved (latent)
representation z

Sample from
true conditional T

po-(z | 2%)

Sample from
true prior

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(i)}g\le is generated from underlying unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to

Sample from _ ) _
generate x: attributes, orientation, etc.

true conditional T
po- (x| 2V))

Sample from
true prior

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from
true conditional T

pe-(z | 2)

Sample from
true prior

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from
true conditional T

pe-(z | 2)

How should we represent this model?

Sample from
true prior

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from
true conditional T

How should we represent this model?

po+( | Z(i)) Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,

Sample from e.g. pose, how much smile.

true prior
po~(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from

How should we represent this model?

true conditional T
po+( | Z(i)) Choose prior p(z) to be simple, e.g.
Decoder Gaussian.
Sample from network Conditional p(x|z) is complex (generates
true prior > image) => represent with neural network
Po+(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from
true conditional T

pe-(z | 2)

How to train the model?

Decoder
network
Sample from
true prior
P E
po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from
true conditional T

pe-(z | 2)

How to train the model?

Decoder Learn model parameters to maximize
network likelihood of training data
Sample from
true prior
P Z = [ po(2)po(z|2)dz
po~(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from
true conditional T

pe-(z | 2)

How to train the model?

Decoder Learn model parameters to maximize
network likelihood of training data
Sample from
true prior
) F()ZI) 4 fpo z)pe(z|2)dz
Po ~—

Now with latent z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from
true conditional T

pe-(z | 2)

How to train the model?

Decoder Learn model parameters to maximize
network likelihood of training data
Sample from
true prior
ue pri z fpg pg SB|Z dZ
po~(2)

Q: What is the problem with this?

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters g*
of this generative model.

Sample from
true conditional T

pe-(z | 2)

How to train the model?

Decoder Learn model parameters to maximize
network likelihood of training data
Sample from
true prior
u ;()Zl) > = [ po(2)pe(z|z)dz
% Q: What is the problem with this?
Intractable!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: pg(z) = [ pe(2)pe(z|z)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

v
Data likelihood: po(z fpe z)po(z|z)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

vV Vv
Data likelihood: pg(z) = [ pe(2)pe(z|z)dz

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

r( ./ %
Data likelihood: pg(z) = [ pe(2)pe(z|z)dz

f

Intractible to compute
p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

1( v v
Data likelihood: pg(z) = [ pe(2)pe(z|z)dz

Posterior density also intractable: Dg (2|z) = po(z|2)po(2)/po(x)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

1( v v
Data likelihood: pg(z) = [ pe(2)pe(z|z)dz (

vV vV
Posterior density also intractable: pg(z|z) = po(z|2)ps(2)/pe(T)

f

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

=( v v
Data likelihood: pg(z) = [ pe(2)pe(z|z)dz
vV vV h
Posterior density also intractable: pg(z|z) = po(z|2)ps(2)/pe(T)

Solution: In addition to decoder network modeling p,(x|z), define additional
encoder network q¢(z|x) that approximates p,(z|x)

Will see that this allows us to derive a lower bound on the data likelihood that
is tractable, which we can optimize

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Since we're modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z
NTTT—— NTTT—
Hz|x Ez|m Hzx|z Za:lz
Encoder network Decoder network
9(2|2) po(z|2)
(parameters @) (parameters 6)
X Z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from z|:1: ~ :UZIM z|:z:) Sample x|z from a:|z ~ N ux|z, Zx|z)
/‘l'z|a: z|:1: “m|z cclz
Encoder network Decoder network
g9 (2|z) po(z|2)
(parameters ) (parameters 0)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample z from z|3: ~ ‘u,z|m, zlm) Sample x|z from a:|z ~ N ux|z, Zx|z)
/‘l'z|a: z|:1: “a:'z a:lz
Encoder network Decoder network
g9 (2|z) po(z|2)
(parameters ) (parameters 6)

Encoder and decoder networks also called
“recognition”/“inference” and “generation” networks Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

log pp(z(V) = E. q,(zlz) {logpg(x(i))} (po(z'?) Does not depend on z)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

logpe(x(i)) =E. g, (zl2) {logpg(x(i))} (pg(x(i)) Does not depend on z)

/

Taking expectation wrt. z
(using encoder network) will
come in handy later
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
log p (V) = E. q,(z|2®) {logpe(x(i))} (pe (D) Does not depend on z)

po(z™ | 2)po(2)
po(z | @)

= B, llog ] (Bayes’ Rule)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
log pg(z\V) = E. q,(z|2®) {logpe(x(i))} (pg(2'?) Does not depend on z)

po(z™ | 2)po(2)
po(z | ™)

po(z™) | 2)po(2) go(z | 21V)
po(z | 2)  qy(z | 2®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
log po(z(V) = E. q,(zl2) {logpg(:v(i))} (pe (') Does not depend on z)

po(z® | z)ps(2)
po(z | ™)

po(zD | 2)pa(2) qp(z | D)
po(z | 2®)  gg(z | 2®)

gp(z | V)
po(2)

=E, |log ] (Bayes’ Rule)

= E, |log ] (Multiply by constant)

gy(z | )
po(z | (™)

= E, _logpe(x(i) | z)} ~E, [log ] +E, [log } (Logarithms)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

log pe (V) = E. q,(zl2®) {logpg(:v(i))} (po () Does not depend on z)

i (4)
=E. |log po(z™ | z)pg(z)] (Bayes’ Rule)
|7 pe(z | 2W)

po (2 | 2)po(2) g (z | V)
po(z | z®)  gy(z | 2®)
gy (z | ) gg(z | &)
po(2) po(z | ()

= E. [logps(e® | 2)| ~ Drcr(a(= | 29) 1 po(2)) + Dicr (o= | 2?) || po(= | 29)

= E. |log ] (Multiply by constant)

] +E, [log ] (Logarithms)

=E, —logpg(a:(i) | z)} —E, [log
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
log pe (V) = E. q,(z|2®) {logpg(x(i))} (po () Does not depend on z)

po(z™ | 2)po(2)
po(z | ™)

po (2 | 2)po(2) g (z | V)
po(z | 2®)  gy(z | 2®)

=E, |log ] (Bayes’ Rule)

= E. |log ] (Multiply by constant)

- ; 4s(z | 2®) gy(z | 2@) |
=B [lem(=? | 2] - log 52 . a1 T | (Logaritms
= E: [logpo(2? | 2)| — Dcr(gs(z | 9) || po(2)) + Dicr(gs(z | 20) || po(z | 29))

\ /

The expectation wrt. z (using
encoder network) let us write
nice KL terms
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

log pe (V) = E. q,(zl2®) {logpg(:v(i))} (po () Does not depend on z)

I (4)
=E. |log po(z™ | z)pg(z)] (Bayes’ Rule)
po(z | =)

po(z | 2)pg(2) qp(z | V)

=E, |lo . . Multiply by constant
og ) e gy | (Ol by contam)
_ | (4) (i)
=E. |logpg(z® | z)} —-E, [log M] +E, [log M] (Logarithms)
| po(z) po(z | )
= E. [logps(c® | 2)| — Drr(as(= | 2?) [|ps(2)) + Drz(ga(z | @) || po(z | =)
4 ; 4
Decoder network gives py(x|z), can This KL term (between Gaussians  pg4(z[x) intractable (saw
compute estimate of this term through  for encoder and z prior) has nice earlier), can’t compute this KL
sampling. (Sampling differentiable closed-form solution! term :( But we know KL

through reparam. trick, see paper.) divergence always >= 0.
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

log po(z(V) = E. q,(z|z®) {logpg(:v(i))} (po(2'?) Does not depend on z)

i (4)
=E. |log po(z™ | z)pg(z)] (Bayes’ Rule)
_ po(z | )

po(z | 2)pe(2) g (2 | z)
po(z | 2®)  gy(z | 2®)

= E, |log ] (Multiply by constant)

- : (4) (2)

= E. |logpg(z | z)} — B, [log M] +E, [log 4 | @ )] (Logarithms)
A po(2) po(z | x(®)

=[E- [logpo(e® | 2)] — Drcr(ao(z | 2) l|po ()| + Dcr (o= | 2) l| po(= | =)

L(zD.0,0) >0
Tractable lower bound which we can take
gradient of and optimize! (p4(x|z) differentiable,
KL term differentiable)
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:
log po(z(V) = E. q,(z|2®) {logpg(:v(i))} (pe(z'¥) Does not depend on z)

pe(a:(i) | Z)pe(z) |
po(z | (™) ] (Bayes’ Rule)

po(z™ | 2)po(2) gs(2 | 27)

=E, |log

=E., |lo . . Multiply by constant
T (2 | 2®) q¢<z|w<@>>] (Mulstply by )
[ (i) gp(z | V) (z | 29) :
=E, _logpg(:v | z)} —E, |log @) +E, log polz | 2) (Logarithms)
= B. [logpo(a” | 2)] — Dicalas(z | #)l1po(2)) + Drcslao(z | o) ||z | 2))
L(zD,0,¢) -t
| | 0%, * = L(zD 0,
log po (2) > L(29, 0, 9) S Z 2
Variational lower bound (‘ELBO”) Training: Maxnmlze Iower bound
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Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

log po(z(V) = E. q,(zl2) {logpg(:v(i))} (pe (') Does not depend on z)

po(z® | 2)py(2)
po(z | @)

=E, |log
Reconstruct

] (Bayes’ Rule)

Make approximate
posterior distribution

the input data_ EL-log Po (w(i) | 2)po(2) e (2 | 37(2:))] (M
gp(2 | z®)

po(z | 2?)

—E, _logpg (4) | z)} —E., [log

=E, logpg(az(i) | z)} Dkr1.(qs(% | !

iply by constant) close to prior

gs(z | )
po(z | z(D)

)1 po(z )) + Drcrlgg(2 | 29) || po(z | 21))

] +E, [log } (Logarithms)

£(z,0,0)

log pp(z) > L(zD, 0, ¢)
Variational lower bound (“ELBQ”)

>0

0%, ¢* —argmaxZﬁ @) 9, ¢)

Training: Maxnmlze Iower bound

Julie Hussin & Ahmad Pesaranghader
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| = Dicr(gs(= | 2) || po(2))

N

L(zD, 0, ¢)
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logps(e® | )| — Dir(gs(= | 27| po(2))

N >

L(zD, 0, ¢)

Let’s look at computing the bound
(forward pass) for a given minibatch of
input data

Input Data I
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| = Dicr(gs(= | 2) || po(2))

N

L(zD, 0, ¢)

Hz|x Ez|:1:
Encoder network
94(2|z) \/
Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| = Dicr(gs(= | 2) || po(2))

N

L(zD, 0, ¢)

Make approximate
posterior distribution

close to prior | Zz|:1:
Encoder network \/
q4(2|2)
€I
Input Data
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(e® | )| = Dicr(gs(= | 2) || po(2))

N

L(zD, 0, ¢)

yA
Sample z from z|a: ~ N(/Lz|m, 2z|ac)

Make approximate
posterior distribution / \

close to prior | Zz|:1:
Encoder network \/
q4(2|2)
€I
Input Data
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a® | 2)] ~ Dics(as(z | 7 [|0(2)) K|z i)z

o Decoder network \/
pe(z|2)

Z

Sample z from z|a: ~ N(/Lz|m, 2z|:z:)

/ \
Hz|x Ez|:1:

Encoder network \/
q9(2|z)
I
Input Data

Julie Hussin & Ahmad Pesaranghader Part2 Feb 14, 2020
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Make approximate
posterior distribution
close to prior




A

Variational Autoencoders
T

Putting it all to maximizing the Maximize
o ' likelihood of ~ Sample x|z from |z ~ N (lg| 5, Xz)
likelihoog-1{ower bound o

original input / \

. : being
Fz [logp@(x(z) | Z)] — Drcr(ap(= | 2) Hp"(z)z reconstructed Ha|z Za’lz

Decoder network \/
po(z|2)

Z

Sample z from z|a: ~ N(/Lz|m, 2z|:z:)

T

L(zD, 0, ¢)

Make approximate
posterior distribution

close to prior | Zz|:1:
Encoder network \/
q4(2|2)
€I
Input Data
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A

Variational Autoencoders
T

Putting it all to maximizing the Maximize
o ' likelihood of ~ Sample x|z from |z ~ N (lg| 5, Xz)
likelihoog-1{ower bound o

original input / \

. : being
(i) o (2)
Fz [k’gp@(x | Z)] D 1(ge(z | z) Hp"(z)z reconstructed Ha|z 2ig)2
£ x(i‘)” 9, ) Decoder network \/
po(x|z) >

Sample z from z|a: ~ N(/Lz|m, 2z|:z:)

T

Make approximate
posterior distribution

close to prior Hz|x Ez|:1:
For every minibatch of input Encode(r nletviork \/
data: compute this forward o Z|T
pass, and then backprop! Input Data €I
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Variational Autoencoders: Generating Datal!

Use decoder network. Now sample z from prior!

A

i
Sample x|z from :I;|z ~ N(Mm|z, Zmlz)

N

M|z Zmlz

Decoder network \/
po(z|2)

Z

Sample z from z ~ N(0, 1)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Datal!

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

QO NANNANANAANANN NSNS NNNNS
QAVYN M EHELELLLLLUWN NN~
QAN LLLLVVYYY N~
QUAVVDINn iyt lo G ©YVOVVWS W -~~~
QAVDHIHINNKW W BVIVI YW W —-—
QAOODOHIHININNHOEBPBDIYOVY Y W = ——
QAQOQOIMHIMMNMMON M DIOID D W - - —
QOODOMMNMMNMNMMOO DD D " — —
OODMMM MMM WMD DD D e e —
QOMWM MMM MNP DD e e —
QOMME MM NN OO A e om om m o —
QOMME MM 0O 0000 o o o - —
QAN 0P 00000000 0 o~ 0~ 0~ o~
R N 1 I Rl e
Gl frororororrrs oo~
JaddddodocororrororrrIann~N
SAddaddadocrcrrrrrTTIIIINN
SddddgorrrrrrdFFITITIXINN
SAdddTTrTrrrrrrrrr™2r22NN
S B0 e gl it~ e <l <l el ol ol ol ol O O N NI NN N

"N

8

s

N

= N

,w\

Am.wMN N

ﬂv/

=

S

N x

< 8

o X

(o}

e 5

n M\\/
O W
c
58S

D

S &
()
(]

Sample z from z ~ N(0, 1)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Data

Data manifold for 2-d z

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

QAN ANANNANANNN SN NSNNNNNS
QAVYN M EHELELLLLLUWN NN~
QAN LLLLVVYYY N~
QUAVVDINn iyt lo G ©YVOVVWS W -~~~
QAVDHIHINNKW W BVIVI YW W —-—
QAOODOHIHININNHOEBPBDIYOVY Y W = ——
QAQOQOIMHIMMNMMON M DIOID D W - - —
QOODOMMNMMNMNMMOO DD D " — —
OODMMMN MMM M®D DD o e e —
QOMWM MMM MNP DD e e —
QOMME MMM N OO0 W e on aom e = —
QO MMM NN 0O 0000 o e e o o o —
QAN 0P 000000 00 0 o~ 0~ 0~ P o=
R N 1 I Rl e
N L G al ek ok ok R S N NN
JaddddodocororrororrrIann~N
SAddaddadocrcrrrrrTTIIIINN
SddddgorrrrrrdFFITITIXINN
SAdddTTrTrrrrrrrrr™2r22NN
S B0 e gl it~ e <l <l el ol ol ol ol O O N NI NN N

< >

Vary z,

Zmlz

N

Sample x|z from :1:|z ~ N(Mm|z, Emlz)
Hx|z

Decoder network
po(x|z)

Sample z from z ~ N(0, 1)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Vary z,
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Variational Autoencoders: Generating Data!

Y B Bl B

Diagonal prior on z

=> independent Degree of smile

latent variables

Different \

dimensions of z Vary z, C ﬁ

encode X

interpretable factors do e

of variation v P |
-

Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Datal

Diagonal prior on z J::\ SLP R e P
3135

=> independent _
D f |
latent variables egree of smile

Different \ ‘ 9

dimensions of z Vary z, C ﬁ
encode X
v

interpretable factors

of variation

\ 55
Also good feature representation that ' :‘)%:1:\:{:{1; s

can be computed using q¢(z|x)! Q FEEFEE 5"313’3 >
<3

-
Vary z
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 y 2 —
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Variational Autoencoders: Generating Data!

Labeled Faces in the Wild

32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission
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Variational Autoencoders in Genomics

Extracting a biologically relevant latent space from cancer transcriptomes with
variational autoencoders

Gregory P. Way
Genomics and Computational Biology Graduate Program,
University of Pennsylvania.
Philadelphia, PA 19104, USA

0
@ 7
2 g E-matl: grequway@mail.med.upenn.edu
¢
L 2 Casey S. Greene*
g
z Department of Systems Pharmacology and Translational Therapeutics
£ University of Pennsylvania.,
ok Philadelphia, PA 19104, USA
3% E-mail: csgreene@mail.med.upenn. edu

The Cancer Genome Atlas (TCGA) has profiled over 10,000 tumors across 33 different
cancer-types for many genomic features, including gene expression levels. Gene expression
measurements capture substantial information about the state of each tumor. Certain classes
of deep neural network models are capable of learning a meaningful latent space. Such a
latent space could be used to explore and generate hypothetical gene expression profiles
under various types of molecular and genetic perturbation. For example, one might wish
to use such a model to predict a tumor's response to specific therapies or to characterize
complex gene expression activations existing in differential proportions in different tumors.
Variational autoencoders (VAEs) are a deep neural network approach capable of generating
meaningful latent spaces for image and text data. In this work, we sought to determine
the extent to which a VAE can be trained to model cancer gene expression, and whether
or not such a VAE would capture biologically-relevant features. In the following report, we
introduce a VAE trained on TCGA pan-cancer RNA-seq data, identify specific patterns

encoding 66

enceding 85

L

encoding 82 er\oodif\g 53

Biocomputing 2018 Downloaded from www.worldscien

by 70.27.238.24 on 02/13/20. Re-use and distribution is strictly not permited,

Fig. 3. Specific examples of Tybalt features capturing biological signals. (A) Encoding 82 strati-
fied patient sex. (B) Together, encodings 53 and 66 separated melanoma tumors. Distributions of
gene coefficients contributing to each plot above for (C) patient sex and (D) melanoma. The gene
coefficients consist of the Tybalt learned weights for each feature encoding.

in the VAE encoded features, and discuss potential merits of the approach. We name our
method “Tybalt” after an instigative, cat-like character who sets a cascading chain of events
in motion in Shakespeare's “Romeo and Juliet”. From a systems biology perspective, Tybalt
could one day aid in cancer stratification or predict specific activated expression patterns
that would result from genetic changes or treatment effects.

Keywords: Deep Learning: Gene Expression; Variational Autoencoder, The Cancer Genome
Atlas
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They present a two-step VAE-based
models for drug response prediction,
which first predicts the post- from the
pre-treatment state in an unsupervised
manner, then extends it to the final
semi-supervised prediction. The model
is based on data from Genomics of
Drug Sensitivity in Cancer (GDSC;
Yang et al., 2013) and Cancer Cell
Line Encyclopedia (CCLE; Barretina et
al., 2012).

Julie Hussin & Ahmad Pesaranghader

1706.08203v2 [stat.ML] 6 Jul 2017

Variational Autoencoders in Genomics

Dr.VAE: Drug Response Variational

Autoencoder
Ladislav Rampasek*'t Daniel Hidruf* Petr Smirnov’
Benjamin Haibe-Kains$¥ Anna Goldenberg™f
Abstract

We present two deep generative models based on Variational Autoencoders to
improve the accuracy of drug response prediction. Our models, Perturbation Variational
Autoencoder and its semi-supervised extension, Drug Response Variational Autoencoder
(Dr.VAE). learn latent representation of the underlying gene states before and after
drug application that depend on: (i) drug-induced biological change of each gene and
(ii) overall treatment response outcome. Qur VAE-based models outperform the current
published benchmarks in the field by anywhere from 3 to 11% AUROC and 2 to 30%
AUPR. In addition, we found that better reconstruction accuracy does not necessarily
lead to improvement in classification accuracy and that jointly trained models perform
better than models that minimize reconstruction error independently.

1 Introduction

Despite tremendous advances in the pharmaceutical industry, many patients worldwide do
not respond to the first medication they are prescribed. Personalized medicine, an approach
that uses patients’ own genomic data, promises to tailor the treatment program to increase
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Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood

- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian
- Incorporating structure in latent variables
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Generative Adversarial
Networks (GAN)
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Generative Adversarial
Networks (GAN)

GANs don’t work with any explicit density function!
What they care the most, is the samples which are close to real data
(ie. learn to generate from training distribution through 2-player game)

Julie Hussin & Ahmad Pesaranghader Part2 Feb 14, 2020



G ene ratlve Ad versa rl a I N etWO r.kS lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to
represent this complex
transformation?
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G ene ratlve Ad versa rl a I N etWO r.kS lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to Output: Sample from
represent this complex training distribution
transformation? f
A: A neural network! Generator
Network
3
Input: Random noise Z
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lan Goodfellow et al., “Generative

Training GANs: Two-player game Adversarial Nels', NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images (or DNAs, etc)
Discriminator network: try to distinguish between real and fake images (or DNAs, etc)
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lan Goodfellow et al., “Generative

Training GANs: Two-player game Adversarial Nels', NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

f

Discriminator Network

Fake Images : Real Images
(from generator) , : (from training set)
' -

Generator Network

f

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Trammg GANS TW()-player' game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Minimax objective function:

min 10 [Expye, 108 Do, (2) + Eorpte) 1oB(1 — Do, (G, (2))
g d

Julie Hussin & Ahmad Pesaranghader
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Trammg GANS TW()-player' game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Emdiam log Dy, (z) + E,~p(z) log(1l — Dy, (Go, (Z)))]
0y 04 — \ !

Discriminator output

Discriminator output for
for real data x generated fake data G(z)

Julie Hussin & Ahmad Pesaranghader
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Trammg GANS TWO-player' game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Emdiam log Dy, (z) + E,~p(z) log(1l — Dy, (Go, (Z)))]
0, 04 — \ !

Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z2)) is close to 0 (fake)

Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)
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lan Goodfellow et al., “Generative

Training GANs: Two-player game Adversarial Nels', NIPS 2014

Minimax objective function:
min x| Egnpy,q, 108 Do, () + Eanp(e) log(1 — Do, (Go, (2))]

0, 04
Alternate between:
1. For Discriminator

I%?X [wavpdata log D9d (:E) + ]Ezwp(z) log(l - D9d (G99 (z)))]

2 . FO r G e n e rato r \Ogsf)(x)) Max! DE“ )m Wlh \log(l - l:(\G(Z)))MS(X(‘g(‘uzr)n) vingn
. (ie, X is real) (ie, G(Z) is fake)
n;m ]Ezrvp(z) log( 1 — Dy, (Geg (z) ))
g

\\\\\\\ NN

D(x ) € [(0,1] % 1 D(G(z;) €[0,1]

A
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lan Goodfellow et al., “Generative

Training GANs: Two-player game Adversarial Nels', NIPS 2014

Minimax objective function:
min 2 | Eynpy,q, 108 Do, () + Eanp(e) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:

1. For Discriminator
Gradient signal

I%?X [E:L‘diata log Dy, (z) + IB:zwp(z) log(1 — DGd(Gﬁ’g (z)))} dominated by region

where sample is
. ___already gopd
r%in E,~p(z) log(1 — Dg,(Gg,(2))) Whensample is likely | .
g fake, want to learn ||

In practice, optimizing this generator objective from it to improve /O/V :
does not work well! generator. But 7 |
gradient in this region’| | | | | -

0.0 0.2 0.4 0.6 0.8 1.0

is relatively flat! D)

2. For Generator
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lan Goodfellow et al., “Generative

Training GANs: Two-player game Adversarial Nels', NIPS 2014

Minimax objective function:
min 2 | Eynpy,q, 108 Do, () + Eanp(e) log(1 — Do, (Go, (2))]

0, 6a

Alternate between:
1. For Discriminator

I%?X [Emdiata ]'Og Ded (m) + EZNP(Z) ]'Og(]' _ Ded(Ggg (z)))]

2. For Generator

different objective
I%a'x ]EZNp(z) log(ng (Geg (Z))) 1y
p /
Instead of minimizing likelihood of discriminator being correct, now  High gradignt signal
maximize likelihood of discriminator being wrong. ::
Same objective of fooling discriminator, but now higher gradient T

signal for bad samples => works much better! Standard in practice. Low gradient signal
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lan Goodfellow et al., “Generative

Training GANs: Two-player game Adversarial Nels', NIPS 2014

Minimax objective function:
min 2 | Eynpy,q, 108 Do, () + Eanp(e) log(1 — Do, (Go, (2))]

Og 04 . . ..
Aside: Jointly training two

) networks is challenging,
Alternate between: can be unstable. Choosing

1. For Discriminator objectives with better loss
max [Em,\,pdam log Dy, (z) + E,p(z) log(1 — Dg,(Go, (z)))} landscapes helps training,

0, is an active area of

2. For Generator ) research.
different objective

max B () 10g(Do,(Go, (2))) |

” /

Instead of minimizing likelihood of discriminator being correct, now High gradi&nt signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient L.\l
signal for bad samples => works much better! Standard in practice. Low gradient signal
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lan Goodfellow et al., “Generative

Training GANs: Two-player game Adversarial Nels', NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

f

Discriminator Network

Fake Images _ Real Images
(from generator) ’ E : (from training set)
' -

Generator Network
} After training, use generator network to

generate new images

Random noise Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples

Nearest neighbor from training set | | N
Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

Stride 2 16

Project and reshape
CONV 2

Generator @)

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
amazing!

Radford et al,
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Generative Adversarial Nets: Interpretable Vector Math

Glasses man
No glasses manNo

glasses woman

. o
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Generative Adversarial Nets: Interpretable Vector Math

Glasses man Radford et al,
No glasses manNo glasses woman ICLR 2016

Woman with glasses
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Text -> Image Synthesis

this small bird has a pink this magnificent fellow is
Output x Rupit R Qutput breast and crown, and black almost all black with a red
TSR " ‘ primaries and secondaries. crest, and white cheek patch.

Better training and generation Source->Target domain transfer
_ " \f)i ;' ! f\ f; . Input

TR 2%

Reed et al. 2017.
Many GAN applications

(¢) Kitchen. (d) Conference room.

LSGAN. Mao et al. 2017.

' CycleGAN. Zhu et al. 2017. o
BEGAN. Bertholet et al. 2017. Pix2pix. Isola 2017. Many examples at

https://phillipi.github.io/pix2pix/
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Generative Adversarial Nets in Genomics

Generating and designing DNA with deep generative

models
Nathan Killoran Leo J. Lee X 5 - el = = 3
2 Universily_ofToronlo / Univers?ly of Toronto
™ s b b S b) TGAGAGTGATGTATT AATT ATGCCTCACCTCTGCTTGCAGACTGTCA
Andrgw Delong Qaﬁq Du\(enaud Byen{ian .l Frey TGGGGAGACAGGCCCAGAI ¢ AATT AGAAAGTAATGAGCAC
B . e A Wi (s W e 1, Siorinios W  TTTTAAGAAATACTGTTGCATCAGGGCAAATGTAAGATTTTG
TTTTGTTTGAGATCTGTGGGGTATGCT  AATTAAAGTCTGGACTACCAC
Abstract CTGATACTGAATGCAGATTTGAAGAACAAAG  TATTAAAACACATGCTT
‘We propose generative neural network methods to generate DNA sequences and GATCCCCAAGTGT 3 AATT AGAAGGAAGCTGGAGAATCCCCAAACTCTG
une them to have desired properties. We present three approaches: creatin, P =
.:ymh:alic _D;‘IA sequences Ps'iyngpa l;e:r!era_tive sdversz[\r:al nemﬁi’k (GAN): a D;\IAg- CAGCCACATCAGCTTACCTAA AACTCATGTGTTTTAAAACCAGCTTTG
it oo ek bl sy i gt Wil st TAGAATTTTTCTT " TATTAATGATGATCTAGGCTTACACAGGGACATCA
ools capture im structures of the data and, when applied to designing probes
Ifor prolsi[n bindil:](;nr:[ilén:am:ys (PBM:). al‘low us to geene';zl:le ne:\' s:qugcncegsguhose GACATTGCTTAGTCTGAGGGATACAGTGGGGAGT TATTA :\,AATCTCC
properties are estimated to be superior to those f_ound in the lrain_ing data. We e .
believe that these results open the door for applying deep generative models to ACATGCCTGAGACATTCCTGCTCTTGAATCTGAI D\-\TTATK;CTTPAI\II‘CC

advance genomics research. . . . . . )
Figure 7: Motif-matching experiment: a) Sequence logo for the PWM detected by the predictor.

T s Letter heights reflect their relative frequency at each position. Sequences which have a strong match
ntroduction with this motif will score highly. b) Sample sequences tuned to have a high predictor score. The

A major trend in deep learning is the development of new generative methods, with the goal of boxes indicate strong motif matches for each sequence.

creating synthetic data with desired structures and properties. This trend includes generative models
such as generative adversarial networks (GANSs) [1], variational autoencoders (VAEs) [2], and deep
autoregressive models [3, 4], as well as generative design procedures like activation maximization
(popularly known as “deep dream”) [5-7] and style transfer [8]. These powerful generative tools
bring many new opportunities. When data is costly, we can use a generative method to inexpensively
simulate data. We can also use generative tools to explore the space of possible data configurations,
tuning the generated data to have specific target properties, or to invent novel, unseen configurations

arXiv:1712.06148v1 [cs.LG] 17 Dec 2017
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Generative Adversarial

"'".'I’raining: Prediction:

x~p() |

|_|Real data
["] Generated data
> Loss term

Fig. 1. lllustration of GGAN arct and its loss fi . We use (x.y) € R"*! to denote a gene expression profile, where x € R' corresponds to the landmark
genes and y represents the target genes. Our goal is to learn a generator function G which takes x as the input and output y as the prediction of the target
gene expression. To construct an appropriate prediction function G, we consider three loss terms in our model: £..,.. L0 and £y. £,,,, measures the consist-

ency of the prediction from G when the input x is perturbed by random noise u and u'. £, measures the difference between the prediction vector y and the ground
truth y. For the term L,av, we construct a discriminator D which takes both (x.y) and (x.y) as the input. The discriminator D tries to distinguish the real’ sample
(x.y) from the ‘fake’ sample (x,y) while the G tries to predict the realistic y vector to fool the discriminator. £as, measures the adversarial loss in the game be-
tween the generator G and discriminator D

Julie Hussin & Ahmad Pesaranghader

Nets in Genomics

Bioinformatics, 34, 2018, i603-i611
doi: 10.1093/bioinformatics/bty563
ECCB 2018

Conditional generative adversarial network for
gene expression inference

Xiaogian Wang', Kamran Ghasedi Dizaji'and Heng Huang*

Department of Electrical and Computer Ei University of Pi gh, Pi gh, PA 15261, USA

“To whom correspondence should be addressed.
'The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Abstract

Motivation: The rapid progress of gene expression profiling has facilitated the prosperity of recent
biological studies in various fields, where gene expression data characterizes various cell condi-
tions and regulatory mechanisms under different experimental circumstances. Despite the wide-
spread application of gene expression profiling and advances in high-throughput technologies,
profiling in genome-wide level is still expensive and difficult. Previous studies found that high cor-
relation exists in the expression pattern of different genes, such that a small subset of genes can be
informative to approximately describe the entire transcriptome. In the Library of Integrated
Network-based Cell-Signature program, a set of ~1000 landmark genes have been identified that
contain ~80% information of the whole genome and can be used to predict the expression of
remaining genes. For a cost-effective profiling strategy, traditional methods measure the profiles
of landmark genes and then infer the expression of other target genes via linear models. However,
linear models do not have the capacity to capture the non-linear associations in gene regulatory
networks.

Results: As a flexible model with high representative power, deep learning models provide an al-
ternate to interpret the complex relation among genes. In this paper, we propose a deep learning
architecture for the inference of target gene expression profiles. We construct a novel conditional
generative adversarial network by incorporating both the adversarial and £;-norm loss terms in our
model. Unlike the smooth and blurry predictions resulted by mean squared error objective, the
coupled adversarial and ¢;,-norm loss function leads to more accurate and sharp predictions. We
validate our method under two different settings and find consistent and significant improvements
over all the comparing methods.

Contact: heng.huang@pitt.edu
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“The GAN Zoo”

* GAN - Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation

C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* 3D-GAN - Learning a Probabilistic: Latent Space of Object Shapes via 3D Generative-Adversarial Modeling * CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN - Unpaired Image-to-lmage Translation using Cycle-Consistent Adversarial Networks

¢ acGAN - Face Aging With Conditional Generative Adversarial Networks

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

* AdaGAN - AdaGAN: Boosting Generative Models

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

v 0 DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
« AffGAN - Amortised MAP Inference for Image Super-resolution g

5 .’ 5 DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
¢ AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
« ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network
+ AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery ¢ FF-GAN - Towards Large-Pose Face Frontalization in the Wild

« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN - Learning What and Where to Draw

. BLGAN - B-GAN: Urified Eramework of Genarative: Adversarial Netwarks GeneGArTl - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

~Bayesin CAN-~Despand Fsmschical inplisl Wooets GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

* BiGAN - Adversarial Feature Learning IAN - Neural Photo Editing with Introspective Adversarial Networks

« BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

" x s . " . . . + ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
* CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters 9 4 Y

. . . « Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks - 5 i -

2 : s 2 = . < InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
¢ CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
« CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

* CoGAN - Coupled Generative Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo
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Now, 1t’s time to
practice...
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