
Representation learning
Deep learning overview, representation learning methods in detail (sammons map, t-sne),
the backprop algorithm in detail, and regularization and its impact on optimization.

Dimensionality reduction
Word2vec
PCA
Sammon's map
Regularization
t-SNE
Factorized Embeddings
Latent variable models
ALI/BiGAN

Slides by Joseph Paul Cohen 2020

Dim reduction overview
We would like a mapping from R100 (or anything) to R2 to
visualize it: aka: encoding, code, embedding, representation

Invertible vs non-invertible:
If we allow for the loss of information we cannot have a lossless reconstruction.
Some methods just preserve distances, no mapping learned.

PCA for dim reduction (quick recap)

In 2d data this vector captures the most variance

A is the eigenvectors of X such that
x=AATx, A's columns are orthogonal,
and the columns of A form a basis
which encodes the most variance.

word2vec
Presented at NeurIPS 2013

Strategy to learn representations for word tokens given their context.

Relevant to problems where context defines concepts (with redundancy)

4

Tomas Mikolov

What to do with word embeddings?

● We can compose them to create paragraph embeddings (bag of embeddings).
● Use in place of words for an RNN
● Augment learned representations on small datasets

● `

[Cultural Shift or Linguistic Drift, Hamilton, 2016]

Study how the meaning between two
texts varies (or hospitals, or doctors)?

[Pennington, 2014][Mikolov, 2013]

Study the compositionality of the
learned latent space

Token representations
One-hot encoding: binary vector per token

Example:
cat = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 … 0]
dog = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 … 0]
house = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 … 0]

Note!

If x is one hot
The dot product of Wx
= a Single column of W M x N N x 1

=

M x 1

word2vec
Target wordContext wordContext word Context word

involving respiratory system and other chest symptoms
Context word

involving

respiratory

doctor

chest

Mikolov, Efficient Estimation of Word Representations in Vector Space, 2013

1. Each word is a training example
2. Each word is used in many contexts
3. The context defines each word

system

1

1

0

1

0

0

0

0

0

1
-1

5.1

involving

respiratory

doctor

chest

system

Context window = 2

Learning in progress

king + (woman - man) = ?

The point that is
closest is queen!

Try it yourself!
https://colab.research.google.com/drive/1VU4mm_DThBaQc9t0Cf6ajjHQDEw-Q1H2

https://colab.research.google.com/drive/1VU4mm_DThBaQc9t0Cf6ajjHQDEw-Q1H2

Sammon's map
Described by John W. Sammon in 1969

Method of non-linear dim reduction based on gradient descent.

Basic method of preserving distances in a low dim space.

11

John W. Sammon

Colab Notebook
https://colab.research.google.com/drive/1FDJ2FlVfN5PYYrNKEW2w48_BuSknhKif

http://www.youtube.com/watch?v=HSsrJC_KCKk
https://colab.research.google.com/drive/1FDJ2FlVfN5PYYrNKEW2w48_BuSknhKif

= distance computed between
each learned representation

= distance function (or matrix)
that you want to represent

First: a basic non-linear dimensionality
reduction

Learn a representation that maintains pairwise
distances.

= distance computed between
each learned representation

= distance function (or matrix)
that you want to represent

Constant!

Scale discrepancy
by true distance.
Small distance =
more important

= distance computed between
each learned representation

= distance function (or matrix)
that you want to represent

source_d = torch.pdist(source)
target_d = torch.pdist(target)

stress = (((target_d - source_d)**2)/(source_d+1)).sum()

Output is a non-square (non redundant) distance matrix between vectors

source = torch.Tensor(data.values)
target = torch.randn(source.shape[0],2, requires_grad=True)

optimizer = torch.optim.SGD([target], lr=0.5)
optimizer.zero_grad() # get ready for new gradients

source_d = torch.pdist(source) # compute distances
target_d = torch.pdist(target) # compute distances

stress = (((target_d - source_d)**2)/(source_d+1)).sum()

stress.backward() # compute gradients for target

optimizer.step() # adjust the target tensor

This paper calls the learning rate the "magic factor" !

Exercise (regularization)

How to control the representation learned?

Adjust the objective function so that the minimum has
the property you want.

dloss += 0.01*torch.pdist(target[label==6]).mean()

Discussion
Simple cases? hard cases?

What does a learning rate over 1 mean?

What are the drawbacks of this sammon's map?

What does regularization change about training?

t-SNE
TL;DR: Sammon's map but distances delay exponentially

= conditional probability that xi is next to xj given a Gaussian centered at xi

data space embedding space

Ratio between distances
weighted by source data
distance.
Drives p and q to be equal but
only for nearby points.

Setting the σ (perplexity)
t-SNE performs a binary search for the value of σi that produces a Pi with a fixed
perplexity.

Data space
(but in 2d)

Small σ

Image from: https://www.dataminingapps.com/2019/11/a-refresher-on-t-sne/

Perp=30
-> H = ~4.9

Large σ

Discussion
How does t-SNE differ from sammon's map?

Which distances are meaningful?

Factorized Embeddings
TL;DR: two spaces of non-linear embeddings.

Conditioned on each other to predict data.

GTEx Dataset: 8,910 samples,
56,000 genes

[Trofimov et al. ICML WCB 2017]

Tissue

Color represents
expression predicted
when conditioned on

a gene

Evaluating sample space

Value predicted
for entire space

Latent variable models
We learn a mapping from a latent

variable z to a complicated x = Something simple
 like a Gaussian

where

The conditional prob is modeled by a
neural network and the latent space

is a distribution we understand.

Image from Ward, A. D, 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation

ALI/BiGAN
ICLR 2017. Two papers, same idea.

Matches joint distribution p(x,z).

Trains an encoder and decoder.

27

Vincent Dumoulin Jeff Donahue

ALI/BiGAN
Matches the joint distribution p(z,x) with q(z,x) using an adversarial loss.

p(z,x)

q(z,x)

Classifier learns to tell
the difference between
inputs. Update E and G
so D cannot distinguish.

Typically a
Gaussian generates

points here.

The generator learns
to match the target

distribution to fool the
discriminator

G
enerator

Fake
Image

Discriminator

Real or Fake?

Fake Real

Noise

Quick intro to adversarial distribution matching

29

Homework
1) Find a single/multi cell RNA-seq dataset compute a PCA, Sammon's Map,

and t-SNE. Color points by some relevant value.

2) What are the challenges for representation learning?

