|
a |
|
b/network/SparseMatrix.java |
|
|
1 |
/****************************************************************************** |
|
|
2 |
* Compilation: javac SparseMatrix.java |
|
|
3 |
* Execution: java SparseMatrix |
|
|
4 |
* |
|
|
5 |
* A sparse, square matrix, implementing using two arrays of sparse |
|
|
6 |
* vectors, one representation for the rows and one for the columns. |
|
|
7 |
* |
|
|
8 |
* For matrix-matrix product, we might also want to store the |
|
|
9 |
* column representation. |
|
|
10 |
* |
|
|
11 |
******************************************************************************/ |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
package network; |
|
|
15 |
|
|
|
16 |
import java.util.HashSet; |
|
|
17 |
import java.util.Set; |
|
|
18 |
|
|
|
19 |
public class SparseMatrix { |
|
|
20 |
private final int N; // N-by-N matrix |
|
|
21 |
private SparseVector[] rows; // the rows, each row is a sparse vector |
|
|
22 |
|
|
|
23 |
// initialize an N-by-N matrix of all 0s |
|
|
24 |
public SparseMatrix(int N) { |
|
|
25 |
this.N = N; |
|
|
26 |
rows = new SparseVector[N]; |
|
|
27 |
for (int i = 0; i < N; i++) |
|
|
28 |
rows[i] = new SparseVector(N); |
|
|
29 |
} |
|
|
30 |
|
|
|
31 |
public Set<Integer> getKey(int a) { |
|
|
32 |
return rows[a].getKeys(); |
|
|
33 |
} |
|
|
34 |
|
|
|
35 |
public SparseVector getNeibor(int a) { |
|
|
36 |
return rows[a]; |
|
|
37 |
} |
|
|
38 |
|
|
|
39 |
// put A[i][j] = value |
|
|
40 |
public void put(int i, int j, double value) { |
|
|
41 |
if (i < 0 || i >= N) throw new RuntimeException("Illegal index"); |
|
|
42 |
if (j < 0 || j >= N) throw new RuntimeException("Illegal index"); |
|
|
43 |
rows[i].put(j, value); |
|
|
44 |
} |
|
|
45 |
|
|
|
46 |
// return A[i][j] |
|
|
47 |
public double get(int i, int j) { |
|
|
48 |
if (i < 0 || i >= N) throw new RuntimeException("Illegal index"); |
|
|
49 |
if (j < 0 || j >= N) throw new RuntimeException("Illegal index"); |
|
|
50 |
return rows[i].get(j); |
|
|
51 |
} |
|
|
52 |
|
|
|
53 |
// return the number of nonzero entries (not the most efficient implementation) |
|
|
54 |
public int nnz() { |
|
|
55 |
int sum = 0; |
|
|
56 |
for (int i = 0; i < N; i++) |
|
|
57 |
sum += rows[i].nnz(); |
|
|
58 |
return sum; |
|
|
59 |
} |
|
|
60 |
|
|
|
61 |
public int size() { |
|
|
62 |
return N; |
|
|
63 |
} |
|
|
64 |
|
|
|
65 |
// return the matrix-vector product b = Ax |
|
|
66 |
public SparseVector times(SparseVector x) { |
|
|
67 |
SparseMatrix A = this; |
|
|
68 |
if (N != x.size()) throw new RuntimeException("Dimensions disagree"); |
|
|
69 |
SparseVector b = new SparseVector(N); |
|
|
70 |
for (int i = 0; i < N; i++) |
|
|
71 |
b.put(i, A.rows[i].dot(x)); |
|
|
72 |
return b; |
|
|
73 |
} |
|
|
74 |
|
|
|
75 |
// return C = A + B |
|
|
76 |
public SparseMatrix plus(SparseMatrix B) { |
|
|
77 |
SparseMatrix A = this; |
|
|
78 |
if (A.N != B.N) throw new RuntimeException("Dimensions disagree"); |
|
|
79 |
SparseMatrix C = new SparseMatrix(N); |
|
|
80 |
for (int i = 0; i < N; i++) |
|
|
81 |
C.rows[i] = A.rows[i].plus(B.rows[i]); |
|
|
82 |
return C; |
|
|
83 |
} |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
// return a string representation |
|
|
87 |
public String toString() { |
|
|
88 |
StringBuilder s = new StringBuilder(); |
|
|
89 |
s.append("N = " + N + ", nonzeros = " + nnz() + "\n"); |
|
|
90 |
for (int i = 0; i < N; i++) { |
|
|
91 |
s.append(i + ": " + rows[i] + "\n"); |
|
|
92 |
} |
|
|
93 |
return s.toString(); |
|
|
94 |
} |
|
|
95 |
|
|
|
96 |
|
|
|
97 |
// test client |
|
|
98 |
public static void main(String[] args) { |
|
|
99 |
SparseMatrix A = new SparseMatrix(5); |
|
|
100 |
SparseVector x = new SparseVector(5); |
|
|
101 |
A.put(0, 0, 1.0); |
|
|
102 |
A.put(1, 1, 1.0); |
|
|
103 |
A.put(2, 2, 1.0); |
|
|
104 |
A.put(3, 3, 1.0); |
|
|
105 |
A.put(4, 4, 1.0); |
|
|
106 |
A.put(2, 4, 0.3); |
|
|
107 |
x.put(0, 0.75); |
|
|
108 |
x.put(2, 0.11); |
|
|
109 |
System.out.println("x : " + x); |
|
|
110 |
System.out.println("A : " + A); |
|
|
111 |
System.out.println("Ax : " + A.times(x)); |
|
|
112 |
System.out.println("A + A : " + A.plus(A)); |
|
|
113 |
} |
|
|
114 |
|
|
|
115 |
} |