|
a |
|
b/graph_algorithm/GraphGenerator.java |
|
|
1 |
package GraphAlgorithm; |
|
|
2 |
|
|
|
3 |
import java.util.HashSet; |
|
|
4 |
import java.util.Set; |
|
|
5 |
|
|
|
6 |
import org.apache.commons.math3.distribution.BinomialDistribution; |
|
|
7 |
import org.apache.commons.math3.distribution.UniformIntegerDistribution; |
|
|
8 |
|
|
|
9 |
import network.DisGraph; |
|
|
10 |
import util.StdRandom; |
|
|
11 |
|
|
|
12 |
/****************************************************************************** |
|
|
13 |
* Compilation: javac GraphGenerator.java |
|
|
14 |
* Execution: java GraphGenerator V E |
|
|
15 |
* Dependencies: Graph.java |
|
|
16 |
* |
|
|
17 |
* A graph generator. |
|
|
18 |
* |
|
|
19 |
* For many more graph generators, see |
|
|
20 |
* http://networkx.github.io/documentation/latest/reference/generators.html |
|
|
21 |
* |
|
|
22 |
******************************************************************************/ |
|
|
23 |
|
|
|
24 |
/** |
|
|
25 |
* The {@code GraphGenerator} class provides static methods for creating |
|
|
26 |
* various graphs, including Erdos-Renyi random graphs, random bipartite |
|
|
27 |
* graphs, random k-regular graphs, and random rooted trees. |
|
|
28 |
* <p> |
|
|
29 |
* For additional documentation, see <a href="https://algs4.cs.princeton.edu/41graph">Section 4.1</a> of |
|
|
30 |
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne. |
|
|
31 |
* |
|
|
32 |
* @author Robert Sedgewick |
|
|
33 |
* @author Kevin Wayne |
|
|
34 |
*/ |
|
|
35 |
public class GraphGenerator { |
|
|
36 |
private static final class Edge implements Comparable<Edge> { |
|
|
37 |
private int v; |
|
|
38 |
private int w; |
|
|
39 |
|
|
|
40 |
private Edge(int v, int w) { |
|
|
41 |
if (v < w) { |
|
|
42 |
this.v = v; |
|
|
43 |
this.w = w; |
|
|
44 |
} |
|
|
45 |
else { |
|
|
46 |
this.v = w; |
|
|
47 |
this.w = v; |
|
|
48 |
} |
|
|
49 |
} |
|
|
50 |
|
|
|
51 |
public int compareTo(Edge that) { |
|
|
52 |
if (this.v < that.v) return -1; |
|
|
53 |
if (this.v > that.v) return +1; |
|
|
54 |
if (this.w < that.w) return -1; |
|
|
55 |
if (this.w > that.w) return +1; |
|
|
56 |
return 0; |
|
|
57 |
} |
|
|
58 |
} |
|
|
59 |
|
|
|
60 |
// this class cannot be instantiated |
|
|
61 |
private GraphGenerator() { } |
|
|
62 |
|
|
|
63 |
/** |
|
|
64 |
* Returns a random simple graph containing {@code V} vertices and {@code E} edges. |
|
|
65 |
* @param V the number of vertices |
|
|
66 |
* @param E the number of vertices |
|
|
67 |
* @return a random simple graph on {@code V} vertices, containing a total |
|
|
68 |
* of {@code E} edges |
|
|
69 |
* @throws IllegalArgumentException if no such simple graph exists |
|
|
70 |
*/ |
|
|
71 |
public static DisGraph simple(int V, int E) { |
|
|
72 |
if (E > (long) V*(V-1)/2) throw new IllegalArgumentException("Too many edges"); |
|
|
73 |
if (E < 0) throw new IllegalArgumentException("Too few edges"); |
|
|
74 |
DisGraph G = new DisGraph(V); |
|
|
75 |
Set<Edge> set = new HashSet<Edge>(); |
|
|
76 |
while (G.getEdges() < E) { |
|
|
77 |
int v = StdRandom.uniform(V); |
|
|
78 |
int w = StdRandom.uniform(V); |
|
|
79 |
Edge e = new Edge(v, w); |
|
|
80 |
if ((v != w) && !set.contains(e)) { |
|
|
81 |
set.add(e); |
|
|
82 |
G.addEdge(v, w); |
|
|
83 |
} |
|
|
84 |
} |
|
|
85 |
return G; |
|
|
86 |
} |
|
|
87 |
|
|
|
88 |
/** |
|
|
89 |
* Returns a random simple graph on {@code V} vertices, with an |
|
|
90 |
* edge between any two vertices with probability {@code p}. This is sometimes |
|
|
91 |
* referred to as the Erdos-Renyi random graph model. |
|
|
92 |
* @param V the number of vertices |
|
|
93 |
* @param p the probability of choosing an edge |
|
|
94 |
* @return a random simple graph on {@code V} vertices, with an edge between |
|
|
95 |
* any two vertices with probability {@code p} |
|
|
96 |
* @throws IllegalArgumentException if probability is not between 0 and 1 |
|
|
97 |
*/ |
|
|
98 |
public static DisGraph simple(int V, double p) { |
|
|
99 |
if (p < 0.0 || p > 1.0) |
|
|
100 |
throw new IllegalArgumentException("Probability must be between 0 and 1"); |
|
|
101 |
DisGraph G = new DisGraph(V); |
|
|
102 |
for (int v = 0; v < V; v++) |
|
|
103 |
for (int w = v+1; w < V; w++) |
|
|
104 |
if (StdRandom.bernoulli(p)) |
|
|
105 |
G.addEdge(v, w); |
|
|
106 |
return G; |
|
|
107 |
} |
|
|
108 |
|
|
|
109 |
/** |
|
|
110 |
* Returns the complete graph on {@code V} vertices. |
|
|
111 |
* @param V the number of vertices |
|
|
112 |
* @return the complete graph on {@code V} vertices |
|
|
113 |
*/ |
|
|
114 |
public static DisGraph complete(int V) { |
|
|
115 |
return simple(V, 1.0); |
|
|
116 |
} |
|
|
117 |
|
|
|
118 |
/** |
|
|
119 |
* Returns a complete bipartite graph on {@code V1} and {@code V2} vertices. |
|
|
120 |
* @param V1 the number of vertices in one partition |
|
|
121 |
* @param V2 the number of vertices in the other partition |
|
|
122 |
* @return a complete bipartite graph on {@code V1} and {@code V2} vertices |
|
|
123 |
* @throws IllegalArgumentException if probability is not between 0 and 1 |
|
|
124 |
*/ |
|
|
125 |
// public static DisGraph completeBipartite(int V1, int V2) { |
|
|
126 |
// return bipartite(V1, V2, V1*V2); |
|
|
127 |
// } |
|
|
128 |
|
|
|
129 |
/** |
|
|
130 |
* Returns a random simple bipartite graph on {@code V1} and {@code V2} vertices |
|
|
131 |
* with {@code E} edges. |
|
|
132 |
* @param V1 the number of vertices in one partition |
|
|
133 |
* @param V2 the number of vertices in the other partition |
|
|
134 |
* @param E the number of edges |
|
|
135 |
* @return a random simple bipartite graph on {@code V1} and {@code V2} vertices, |
|
|
136 |
* containing a total of {@code E} edges |
|
|
137 |
* @throws IllegalArgumentException if no such simple bipartite graph exists |
|
|
138 |
*/ |
|
|
139 |
// public static DisGraph bipartite(int V1, int V2, int E) { |
|
|
140 |
// if (E > (long) V1*V2) throw new IllegalArgumentException("Too many edges"); |
|
|
141 |
// if (E < 0) throw new IllegalArgumentException("Too few edges"); |
|
|
142 |
// DisGraph G = new Graph(V1 + V2); |
|
|
143 |
// |
|
|
144 |
// int[] vertices = new int[V1 + V2]; |
|
|
145 |
// for (int i = 0; i < V1 + V2; i++) |
|
|
146 |
// vertices[i] = i; |
|
|
147 |
// StdRandom.shuffle(vertices); |
|
|
148 |
// |
|
|
149 |
// SET<Edge> set = new SET<Edge>(); |
|
|
150 |
// while (G.E() < E) { |
|
|
151 |
// int i = StdRandom.uniform(V1); |
|
|
152 |
// int j = V1 + StdRandom.uniform(V2); |
|
|
153 |
// Edge e = new Edge(vertices[i], vertices[j]); |
|
|
154 |
// if (!set.contains(e)) { |
|
|
155 |
// set.add(e); |
|
|
156 |
// G.addEdge(vertices[i], vertices[j]); |
|
|
157 |
// } |
|
|
158 |
// } |
|
|
159 |
// return G; |
|
|
160 |
// } |
|
|
161 |
// |
|
|
162 |
// /** |
|
|
163 |
// * Returns a random simple bipartite graph on {@code V1} and {@code V2} vertices, |
|
|
164 |
// * containing each possible edge with probability {@code p}. |
|
|
165 |
// * @param V1 the number of vertices in one partition |
|
|
166 |
// * @param V2 the number of vertices in the other partition |
|
|
167 |
// * @param p the probability that the graph contains an edge with one endpoint in either side |
|
|
168 |
// * @return a random simple bipartite graph on {@code V1} and {@code V2} vertices, |
|
|
169 |
// * containing each possible edge with probability {@code p} |
|
|
170 |
// * @throws IllegalArgumentException if probability is not between 0 and 1 |
|
|
171 |
// */ |
|
|
172 |
// public static Graph bipartite(int V1, int V2, double p) { |
|
|
173 |
// if (p < 0.0 || p > 1.0) |
|
|
174 |
// throw new IllegalArgumentException("Probability must be between 0 and 1"); |
|
|
175 |
// int[] vertices = new int[V1 + V2]; |
|
|
176 |
// for (int i = 0; i < V1 + V2; i++) |
|
|
177 |
// vertices[i] = i; |
|
|
178 |
// StdRandom.shuffle(vertices); |
|
|
179 |
// Graph G = new Graph(V1 + V2); |
|
|
180 |
// for (int i = 0; i < V1; i++) |
|
|
181 |
// for (int j = 0; j < V2; j++) |
|
|
182 |
// if (StdRandom.bernoulli(p)) |
|
|
183 |
// G.addEdge(vertices[i], vertices[V1+j]); |
|
|
184 |
// return G; |
|
|
185 |
// } |
|
|
186 |
// |
|
|
187 |
// /** |
|
|
188 |
// * Returns a path graph on {@code V} vertices. |
|
|
189 |
// * @param V the number of vertices in the path |
|
|
190 |
// * @return a path graph on {@code V} vertices |
|
|
191 |
// */ |
|
|
192 |
// public static Graph path(int V) { |
|
|
193 |
// Graph G = new Graph(V); |
|
|
194 |
// int[] vertices = new int[V]; |
|
|
195 |
// for (int i = 0; i < V; i++) |
|
|
196 |
// vertices[i] = i; |
|
|
197 |
// StdRandom.shuffle(vertices); |
|
|
198 |
// for (int i = 0; i < V-1; i++) { |
|
|
199 |
// G.addEdge(vertices[i], vertices[i+1]); |
|
|
200 |
// } |
|
|
201 |
// return G; |
|
|
202 |
// } |
|
|
203 |
// |
|
|
204 |
// /** |
|
|
205 |
// * Returns a complete binary tree graph on {@code V} vertices. |
|
|
206 |
// * @param V the number of vertices in the binary tree |
|
|
207 |
// * @return a complete binary tree graph on {@code V} vertices |
|
|
208 |
// */ |
|
|
209 |
// public static Graph binaryTree(int V) { |
|
|
210 |
// Graph G = new Graph(V); |
|
|
211 |
// int[] vertices = new int[V]; |
|
|
212 |
// for (int i = 0; i < V; i++) |
|
|
213 |
// vertices[i] = i; |
|
|
214 |
// StdRandom.shuffle(vertices); |
|
|
215 |
// for (int i = 1; i < V; i++) { |
|
|
216 |
// G.addEdge(vertices[i], vertices[(i-1)/2]); |
|
|
217 |
// } |
|
|
218 |
// return G; |
|
|
219 |
// } |
|
|
220 |
// |
|
|
221 |
// /** |
|
|
222 |
// * Returns a cycle graph on {@code V} vertices. |
|
|
223 |
// * @param V the number of vertices in the cycle |
|
|
224 |
// * @return a cycle graph on {@code V} vertices |
|
|
225 |
// */ |
|
|
226 |
// public static Graph cycle(int V) { |
|
|
227 |
// Graph G = new Graph(V); |
|
|
228 |
// int[] vertices = new int[V]; |
|
|
229 |
// for (int i = 0; i < V; i++) |
|
|
230 |
// vertices[i] = i; |
|
|
231 |
// StdRandom.shuffle(vertices); |
|
|
232 |
// for (int i = 0; i < V-1; i++) { |
|
|
233 |
// G.addEdge(vertices[i], vertices[i+1]); |
|
|
234 |
// } |
|
|
235 |
// G.addEdge(vertices[V-1], vertices[0]); |
|
|
236 |
// return G; |
|
|
237 |
// } |
|
|
238 |
// |
|
|
239 |
// /** |
|
|
240 |
// * Returns an Eulerian cycle graph on {@code V} vertices. |
|
|
241 |
// * |
|
|
242 |
// * @param V the number of vertices in the cycle |
|
|
243 |
// * @param E the number of edges in the cycle |
|
|
244 |
// * @return a graph that is an Eulerian cycle on {@code V} vertices |
|
|
245 |
// * and {@code E} edges |
|
|
246 |
// * @throws IllegalArgumentException if either {@code V <= 0} or {@code E <= 0} |
|
|
247 |
// */ |
|
|
248 |
// public static Graph eulerianCycle(int V, int E) { |
|
|
249 |
// if (E <= 0) |
|
|
250 |
// throw new IllegalArgumentException("An Eulerian cycle must have at least one edge"); |
|
|
251 |
// if (V <= 0) |
|
|
252 |
// throw new IllegalArgumentException("An Eulerian cycle must have at least one vertex"); |
|
|
253 |
// Graph G = new Graph(V); |
|
|
254 |
// int[] vertices = new int[E]; |
|
|
255 |
// for (int i = 0; i < E; i++) |
|
|
256 |
// vertices[i] = StdRandom.uniform(V); |
|
|
257 |
// for (int i = 0; i < E-1; i++) { |
|
|
258 |
// G.addEdge(vertices[i], vertices[i+1]); |
|
|
259 |
// } |
|
|
260 |
// G.addEdge(vertices[E-1], vertices[0]); |
|
|
261 |
// return G; |
|
|
262 |
// } |
|
|
263 |
// |
|
|
264 |
// /** |
|
|
265 |
// * Returns an Eulerian path graph on {@code V} vertices. |
|
|
266 |
// * |
|
|
267 |
// * @param V the number of vertices in the path |
|
|
268 |
// * @param E the number of edges in the path |
|
|
269 |
// * @return a graph that is an Eulerian path on {@code V} vertices |
|
|
270 |
// * and {@code E} edges |
|
|
271 |
// * @throws IllegalArgumentException if either {@code V <= 0} or {@code E < 0} |
|
|
272 |
// */ |
|
|
273 |
// public static Graph eulerianPath(int V, int E) { |
|
|
274 |
// if (E < 0) |
|
|
275 |
// throw new IllegalArgumentException("negative number of edges"); |
|
|
276 |
// if (V <= 0) |
|
|
277 |
// throw new IllegalArgumentException("An Eulerian path must have at least one vertex"); |
|
|
278 |
// Graph G = new Graph(V); |
|
|
279 |
// int[] vertices = new int[E+1]; |
|
|
280 |
// for (int i = 0; i < E+1; i++) |
|
|
281 |
// vertices[i] = StdRandom.uniform(V); |
|
|
282 |
// for (int i = 0; i < E; i++) { |
|
|
283 |
// G.addEdge(vertices[i], vertices[i+1]); |
|
|
284 |
// } |
|
|
285 |
// return G; |
|
|
286 |
// } |
|
|
287 |
// |
|
|
288 |
// /** |
|
|
289 |
// * Returns a wheel graph on {@code V} vertices. |
|
|
290 |
// * @param V the number of vertices in the wheel |
|
|
291 |
// * @return a wheel graph on {@code V} vertices: a single vertex connected to |
|
|
292 |
// * every vertex in a cycle on {@code V-1} vertices |
|
|
293 |
// */ |
|
|
294 |
// public static Graph wheel(int V) { |
|
|
295 |
// if (V <= 1) throw new IllegalArgumentException("Number of vertices must be at least 2"); |
|
|
296 |
// Graph G = new Graph(V); |
|
|
297 |
// int[] vertices = new int[V]; |
|
|
298 |
// for (int i = 0; i < V; i++) |
|
|
299 |
// vertices[i] = i; |
|
|
300 |
// StdRandom.shuffle(vertices); |
|
|
301 |
// |
|
|
302 |
// // simple cycle on V-1 vertices |
|
|
303 |
// for (int i = 1; i < V-1; i++) { |
|
|
304 |
// G.addEdge(vertices[i], vertices[i+1]); |
|
|
305 |
// } |
|
|
306 |
// G.addEdge(vertices[V-1], vertices[1]); |
|
|
307 |
// |
|
|
308 |
// // connect vertices[0] to every vertex on cycle |
|
|
309 |
// for (int i = 1; i < V; i++) { |
|
|
310 |
// G.addEdge(vertices[0], vertices[i]); |
|
|
311 |
// } |
|
|
312 |
// |
|
|
313 |
// return G; |
|
|
314 |
// } |
|
|
315 |
// |
|
|
316 |
// /** |
|
|
317 |
// * Returns a star graph on {@code V} vertices. |
|
|
318 |
// * @param V the number of vertices in the star |
|
|
319 |
// * @return a star graph on {@code V} vertices: a single vertex connected to |
|
|
320 |
// * every other vertex |
|
|
321 |
// */ |
|
|
322 |
// public static Graph star(int V) { |
|
|
323 |
// if (V <= 0) throw new IllegalArgumentException("Number of vertices must be at least 1"); |
|
|
324 |
// Graph G = new Graph(V); |
|
|
325 |
// int[] vertices = new int[V]; |
|
|
326 |
// for (int i = 0; i < V; i++) |
|
|
327 |
// vertices[i] = i; |
|
|
328 |
// StdRandom.shuffle(vertices); |
|
|
329 |
// |
|
|
330 |
// // connect vertices[0] to every other vertex |
|
|
331 |
// for (int i = 1; i < V; i++) { |
|
|
332 |
// G.addEdge(vertices[0], vertices[i]); |
|
|
333 |
// } |
|
|
334 |
// |
|
|
335 |
// return G; |
|
|
336 |
// } |
|
|
337 |
// |
|
|
338 |
// /** |
|
|
339 |
// * Returns a uniformly random {@code k}-regular graph on {@code V} vertices |
|
|
340 |
// * (not necessarily simple). The graph is simple with probability only about e^(-k^2/4), |
|
|
341 |
// * which is tiny when k = 14. |
|
|
342 |
// * |
|
|
343 |
// * @param V the number of vertices in the graph |
|
|
344 |
// * @param k degree of each vertex |
|
|
345 |
// * @return a uniformly random {@code k}-regular graph on {@code V} vertices. |
|
|
346 |
// */ |
|
|
347 |
// public static Graph regular(int V, int k) { |
|
|
348 |
// if (V*k % 2 != 0) throw new IllegalArgumentException("Number of vertices * k must be even"); |
|
|
349 |
// Graph G = new Graph(V); |
|
|
350 |
// |
|
|
351 |
// // create k copies of each vertex |
|
|
352 |
// int[] vertices = new int[V*k]; |
|
|
353 |
// for (int v = 0; v < V; v++) { |
|
|
354 |
// for (int j = 0; j < k; j++) { |
|
|
355 |
// vertices[v + V*j] = v; |
|
|
356 |
// } |
|
|
357 |
// } |
|
|
358 |
// |
|
|
359 |
// // pick a random perfect matching |
|
|
360 |
// StdRandom.shuffle(vertices); |
|
|
361 |
// for (int i = 0; i < V*k/2; i++) { |
|
|
362 |
// G.addEdge(vertices[2*i], vertices[2*i + 1]); |
|
|
363 |
// } |
|
|
364 |
// return G; |
|
|
365 |
// } |
|
|
366 |
// |
|
|
367 |
// // http://www.proofwiki.org/wiki/Labeled_Tree_from_Prüfer_Sequence |
|
|
368 |
// // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.6484&rep=rep1&type=pdf |
|
|
369 |
// /** |
|
|
370 |
// * Returns a uniformly random tree on {@code V} vertices. |
|
|
371 |
// * This algorithm uses a Prufer sequence and takes time proportional to <em>V log V</em>. |
|
|
372 |
// * @param V the number of vertices in the tree |
|
|
373 |
// * @return a uniformly random tree on {@code V} vertices |
|
|
374 |
// */ |
|
|
375 |
// public static Graph tree(int V) { |
|
|
376 |
// Graph G = new Graph(V); |
|
|
377 |
// |
|
|
378 |
// // special case |
|
|
379 |
// if (V == 1) return G; |
|
|
380 |
// |
|
|
381 |
// // Cayley's theorem: there are V^(V-2) labeled trees on V vertices |
|
|
382 |
// // Prufer sequence: sequence of V-2 values between 0 and V-1 |
|
|
383 |
// // Prufer's proof of Cayley's theorem: Prufer sequences are in 1-1 |
|
|
384 |
// // with labeled trees on V vertices |
|
|
385 |
// int[] prufer = new int[V-2]; |
|
|
386 |
// for (int i = 0; i < V-2; i++) |
|
|
387 |
// prufer[i] = StdRandom.uniform(V); |
|
|
388 |
// |
|
|
389 |
// // degree of vertex v = 1 + number of times it appers in Prufer sequence |
|
|
390 |
// int[] degree = new int[V]; |
|
|
391 |
// for (int v = 0; v < V; v++) |
|
|
392 |
// degree[v] = 1; |
|
|
393 |
// for (int i = 0; i < V-2; i++) |
|
|
394 |
// degree[prufer[i]]++; |
|
|
395 |
// |
|
|
396 |
// // pq contains all vertices of degree 1 |
|
|
397 |
// MinPQ<Integer> pq = new MinPQ<Integer>(); |
|
|
398 |
// for (int v = 0; v < V; v++) |
|
|
399 |
// if (degree[v] == 1) pq.insert(v); |
|
|
400 |
// |
|
|
401 |
// // repeatedly delMin() degree 1 vertex that has the minimum index |
|
|
402 |
// for (int i = 0; i < V-2; i++) { |
|
|
403 |
// int v = pq.delMin(); |
|
|
404 |
// G.addEdge(v, prufer[i]); |
|
|
405 |
// degree[v]--; |
|
|
406 |
// degree[prufer[i]]--; |
|
|
407 |
// if (degree[prufer[i]] == 1) pq.insert(prufer[i]); |
|
|
408 |
// } |
|
|
409 |
// G.addEdge(pq.delMin(), pq.delMin()); |
|
|
410 |
// return G; |
|
|
411 |
// } |
|
|
412 |
// |
|
|
413 |
// /** |
|
|
414 |
// * Unit tests the {@code GraphGenerator} library. |
|
|
415 |
// * |
|
|
416 |
// * @param args the command-line arguments |
|
|
417 |
// */ |
|
|
418 |
// public static void main(String[] args) { |
|
|
419 |
// int V = Integer.parseInt(args[0]); |
|
|
420 |
// int E = Integer.parseInt(args[1]); |
|
|
421 |
// int V1 = V/2; |
|
|
422 |
// int V2 = V - V1; |
|
|
423 |
// |
|
|
424 |
// StdOut.println("complete graph"); |
|
|
425 |
// StdOut.println(complete(V)); |
|
|
426 |
// StdOut.println(); |
|
|
427 |
// |
|
|
428 |
// StdOut.println("simple"); |
|
|
429 |
// StdOut.println(simple(V, E)); |
|
|
430 |
// StdOut.println(); |
|
|
431 |
// |
|
|
432 |
// StdOut.println("Erdos-Renyi"); |
|
|
433 |
// double p = (double) E / (V*(V-1)/2.0); |
|
|
434 |
// StdOut.println(simple(V, p)); |
|
|
435 |
// StdOut.println(); |
|
|
436 |
// |
|
|
437 |
// StdOut.println("complete bipartite"); |
|
|
438 |
// StdOut.println(completeBipartite(V1, V2)); |
|
|
439 |
// StdOut.println(); |
|
|
440 |
// |
|
|
441 |
// StdOut.println("bipartite"); |
|
|
442 |
// StdOut.println(bipartite(V1, V2, E)); |
|
|
443 |
// StdOut.println(); |
|
|
444 |
// |
|
|
445 |
// StdOut.println("Erdos Renyi bipartite"); |
|
|
446 |
// double q = (double) E / (V1*V2); |
|
|
447 |
// StdOut.println(bipartite(V1, V2, q)); |
|
|
448 |
// StdOut.println(); |
|
|
449 |
// |
|
|
450 |
// StdOut.println("path"); |
|
|
451 |
// StdOut.println(path(V)); |
|
|
452 |
// StdOut.println(); |
|
|
453 |
// |
|
|
454 |
// StdOut.println("cycle"); |
|
|
455 |
// StdOut.println(cycle(V)); |
|
|
456 |
// StdOut.println(); |
|
|
457 |
// |
|
|
458 |
// StdOut.println("binary tree"); |
|
|
459 |
// StdOut.println(binaryTree(V)); |
|
|
460 |
// StdOut.println(); |
|
|
461 |
// |
|
|
462 |
// StdOut.println("tree"); |
|
|
463 |
// StdOut.println(tree(V)); |
|
|
464 |
// StdOut.println(); |
|
|
465 |
// |
|
|
466 |
// StdOut.println("4-regular"); |
|
|
467 |
// StdOut.println(regular(V, 4)); |
|
|
468 |
// StdOut.println(); |
|
|
469 |
// |
|
|
470 |
// StdOut.println("star"); |
|
|
471 |
// StdOut.println(star(V)); |
|
|
472 |
// StdOut.println(); |
|
|
473 |
// |
|
|
474 |
// StdOut.println("wheel"); |
|
|
475 |
// StdOut.println(wheel(V)); |
|
|
476 |
// StdOut.println(); |
|
|
477 |
// } |
|
|
478 |
|
|
|
479 |
} |
|
|
480 |
|