[ab7503]: / docs / mesh / createMesh.html

Download this file

514 lines (467 with data), 26.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.10.0" />
<title>pymskt.mesh.createMesh API documentation</title>
<meta name="description" content="" />
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin>
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin>
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>pymskt.mesh.createMesh</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">import os
import vtk
import SimpleITK as sitk
import pymskt.image as msktimage
import pymskt.mesh.meshTransform as meshTransform
from pymskt.utils import safely_delete_tmp_file
def discrete_marching_cubes(vtk_image_reader,
n_labels=1,
start_label=1,
end_label=1,
compute_normals_on=True,
return_polydata=True
):
&#34;&#34;&#34;
Compute dmc on segmentation image.
Creates a surface mesh (polydata) that closely covers binary (discrete) segmentations.
Parameters
----------
vtk_image_reader : vtk.Filter
VTK Filter pipeline to apply discrete marching cubes to.
n_labels : int, optional
Number of labes to create mesh for, by default 1
start_label : int, optional
Starting index of labels to mesh, by default 1
end_label : int, optional
Ending index of labels to mesh, by default 1
compute_normals_on : bool, optional
Calculate normals to surface, by default True
return_polydata : bool, optional
Whether to return a vtk.polydata or not (`vtk.Filter` pipeline instead), by default True
Returns
-------
vtk.Filter Pipeline
Returns a pipeline which more functions can be chained too - this improves performance.
OR
vtk.Polydata
Returns a polydata (surface mesh).
&#34;&#34;&#34;
dmc = vtk.vtkDiscreteMarchingCubes()
dmc.SetInputConnection(vtk_image_reader.GetOutputPort())
if compute_normals_on is True:
dmc.ComputeNormalsOn()
dmc.GenerateValues(n_labels, start_label, end_label)
dmc.Update()
if return_polydata is True:
return dmc.GetOutput()
elif return_polydata is False:
return dmc
def continuous_marching_cubes(vtk_image_reader,
threshold=0.5,
compute_normals_on=True,
compute_gradients_on=True,
return_polydata=True):
&#34;&#34;&#34;
- Compute a continuous marching cubes on a segmentation mask.
- Enables defining the surface based on a contour set to a floating point cutoff.
Parameters
----------
vtk_image_reader : vtk.Filter
This is the output of a `vtk.Filter` from a previous step. E.g., output of pymskt.image.read_nrrd().
threshold : float, optional
Floating point value to create surface mesh, by default 0.5
compute_normals_on : bool, optional
Whether or not to compute surface normals for mesh, by default True
compute_gradients_on : bool, optional
Whether or not to compute gradients over mesh surface, by default True
return_polydata : bool, optional
Whether to return a vtk.polydata or not (VTK filter pipeline instead e.g., `mc`), by default True
Returns
-------
vtk.Filter Pipeline
Returns a pipeline which more functions can be chained too - this improves performance.
OR
vtk.Polydata
Returns a polydata (surface mesh).
&#34;&#34;&#34;
mc = vtk.vtkMarchingContourFilter()
mc.SetInputConnection(vtk_image_reader.GetOutputPort())
if compute_normals_on is True:
mc.ComputeNormalsOn()
elif compute_normals_on is False:
mc.ComputeNormalsOff()
if compute_gradients_on is True:
mc.ComputeGradientsOn()
elif compute_gradients_on is False:
mc.ComputeGradientsOff()
mc.SetValue(0, threshold)
mc.Update()
if return_polydata is True:
mesh = mc.GetOutput()
return mesh
elif return_polydata is False:
return mc
def create_surface_mesh(seg_image,
label_idx,
image_smooth_var,
loc_tmp_save=&#39;/tmp&#39;,
tmp_filename=&#39;temp_smoothed_bone.nrrd&#39;,
copy_image_transform=True,
mc_threshold=0.5,
filter_binary_image=True):
&#34;&#34;&#34;
Create surface mesh.
Option to filter binary image to get smoother surface representation.
Parameters
----------
seg_image : SimpleITK.Image
Segmentation image to be filtered and meshed with marching cubes.
label_idx : int
What anatomical label to be meshed.
image_smooth_var : float
Variance to apply a gaussian smoothing function to.
loc_tmp_save : str, optional
Location to save temporary files for passing SimpleITK.Image to vtk functions, by default &#39;/tmp&#39;
tmp_filename : str, optional
Filename of saved temporary file, by default &#39;temp_smoothed_bone.nrrd&#39;
copy_image_transform : bool, optional
Whether or not to apply image transform to final mesh or to leave it at origin, by default True
mc_threshold : float, optional
What floating point value to create surface mesh at, by default 0.5
filter_binary_image : bool, optional
Should the binary image be filtered (smoothed) or not.
Returns
-------
vtk.Polydata
Surface mesh created using a continuous cutoff `mc_threshold` after applying
gaussian smoothing with variance = `image_smooth_var`.
&#34;&#34;&#34;
# Set border of segmentation to 0 so that segs are all closed.
seg_image = msktimage.set_seg_border_to_zeros(seg_image, border_size=1)
if filter_binary_image is True:
# smooth/filter the image to get a better surface.
seg_image = msktimage.smooth_image(seg_image, label_idx, image_smooth_var)
else:
seg_image = msktimage.binarize_segmentation_image(seg_image, label_idx)
# save filtered image to disk so can read it in using vtk nrrd reader
sitk.WriteImage(seg_image, os.path.join(loc_tmp_save, tmp_filename))
smoothed_nrrd_reader = msktimage.read_nrrd(os.path.join(loc_tmp_save, tmp_filename),
set_origin_zero=True)
# create the mesh using continuous marching cubes applied to the smoothed binary image.
smooth_mesh = continuous_marching_cubes(smoothed_nrrd_reader, threshold=mc_threshold)
if copy_image_transform is True:
# copy image transofrm to the image to the mesh so that when viewed (e.g. in 3D Slicer) it is aligned with image
smooth_mesh = meshTransform.copy_image_transform_to_mesh(smooth_mesh, seg_image)
# Delete tmp files
safely_delete_tmp_file(loc_tmp_save,
tmp_filename)
return smooth_mesh</code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="pymskt.mesh.createMesh.continuous_marching_cubes"><code class="name flex">
<span>def <span class="ident">continuous_marching_cubes</span></span>(<span>vtk_image_reader, threshold=0.5, compute_normals_on=True, compute_gradients_on=True, return_polydata=True)</span>
</code></dt>
<dd>
<div class="desc"><ul>
<li>Compute a continuous marching cubes on a segmentation mask. </li>
<li>Enables defining the surface based on a contour set to a floating point cutoff. </li>
</ul>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>vtk_image_reader</code></strong> :&ensp;<code>vtk.Filter</code></dt>
<dd>This is the output of a <code>vtk.Filter</code> from a previous step. E.g., output of pymskt.image.read_nrrd().</dd>
<dt><strong><code>threshold</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>Floating point value to create surface mesh, by default 0.5</dd>
<dt><strong><code>compute_normals_on</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether or not to compute surface normals for mesh, by default True</dd>
<dt><strong><code>compute_gradients_on</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether or not to compute gradients over mesh surface, by default True</dd>
<dt><strong><code>return_polydata</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether to return a vtk.polydata or not (VTK filter pipeline instead e.g., <code>mc</code>), by default True</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>vtk.Filter Pipeline</code></dt>
<dd>Returns a pipeline which more functions can be chained too - this improves performance.</dd>
<dt><code>OR</code></dt>
<dd>&nbsp;</dd>
<dt><code>vtk.Polydata</code></dt>
<dd>Returns a polydata (surface mesh).</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def continuous_marching_cubes(vtk_image_reader,
threshold=0.5,
compute_normals_on=True,
compute_gradients_on=True,
return_polydata=True):
&#34;&#34;&#34;
- Compute a continuous marching cubes on a segmentation mask.
- Enables defining the surface based on a contour set to a floating point cutoff.
Parameters
----------
vtk_image_reader : vtk.Filter
This is the output of a `vtk.Filter` from a previous step. E.g., output of pymskt.image.read_nrrd().
threshold : float, optional
Floating point value to create surface mesh, by default 0.5
compute_normals_on : bool, optional
Whether or not to compute surface normals for mesh, by default True
compute_gradients_on : bool, optional
Whether or not to compute gradients over mesh surface, by default True
return_polydata : bool, optional
Whether to return a vtk.polydata or not (VTK filter pipeline instead e.g., `mc`), by default True
Returns
-------
vtk.Filter Pipeline
Returns a pipeline which more functions can be chained too - this improves performance.
OR
vtk.Polydata
Returns a polydata (surface mesh).
&#34;&#34;&#34;
mc = vtk.vtkMarchingContourFilter()
mc.SetInputConnection(vtk_image_reader.GetOutputPort())
if compute_normals_on is True:
mc.ComputeNormalsOn()
elif compute_normals_on is False:
mc.ComputeNormalsOff()
if compute_gradients_on is True:
mc.ComputeGradientsOn()
elif compute_gradients_on is False:
mc.ComputeGradientsOff()
mc.SetValue(0, threshold)
mc.Update()
if return_polydata is True:
mesh = mc.GetOutput()
return mesh
elif return_polydata is False:
return mc</code></pre>
</details>
</dd>
<dt id="pymskt.mesh.createMesh.create_surface_mesh"><code class="name flex">
<span>def <span class="ident">create_surface_mesh</span></span>(<span>seg_image, label_idx, image_smooth_var, loc_tmp_save='/tmp', tmp_filename='temp_smoothed_bone.nrrd', copy_image_transform=True, mc_threshold=0.5, filter_binary_image=True)</span>
</code></dt>
<dd>
<div class="desc"><p>Create surface mesh.
Option to filter binary image to get smoother surface representation.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>seg_image</code></strong> :&ensp;<code>SimpleITK.Image</code></dt>
<dd>Segmentation image to be filtered and meshed with marching cubes.</dd>
<dt><strong><code>label_idx</code></strong> :&ensp;<code>int</code></dt>
<dd>What anatomical label to be meshed.</dd>
<dt><strong><code>image_smooth_var</code></strong> :&ensp;<code>float</code></dt>
<dd>Variance to apply a gaussian smoothing function to.</dd>
<dt><strong><code>loc_tmp_save</code></strong> :&ensp;<code>str</code>, optional</dt>
<dd>Location to save temporary files for passing SimpleITK.Image to vtk functions, by default '/tmp'</dd>
<dt><strong><code>tmp_filename</code></strong> :&ensp;<code>str</code>, optional</dt>
<dd>Filename of saved temporary file, by default 'temp_smoothed_bone.nrrd'</dd>
<dt><strong><code>copy_image_transform</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether or not to apply image transform to final mesh or to leave it at origin, by default True</dd>
<dt><strong><code>mc_threshold</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>What floating point value to create surface mesh at, by default 0.5</dd>
<dt><strong><code>filter_binary_image</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Should the binary image be filtered (smoothed) or not.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>vtk.Polydata</code></dt>
<dd>Surface mesh created using a continuous cutoff <code>mc_threshold</code> after applying
gaussian smoothing with variance = <code>image_smooth_var</code>.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def create_surface_mesh(seg_image,
label_idx,
image_smooth_var,
loc_tmp_save=&#39;/tmp&#39;,
tmp_filename=&#39;temp_smoothed_bone.nrrd&#39;,
copy_image_transform=True,
mc_threshold=0.5,
filter_binary_image=True):
&#34;&#34;&#34;
Create surface mesh.
Option to filter binary image to get smoother surface representation.
Parameters
----------
seg_image : SimpleITK.Image
Segmentation image to be filtered and meshed with marching cubes.
label_idx : int
What anatomical label to be meshed.
image_smooth_var : float
Variance to apply a gaussian smoothing function to.
loc_tmp_save : str, optional
Location to save temporary files for passing SimpleITK.Image to vtk functions, by default &#39;/tmp&#39;
tmp_filename : str, optional
Filename of saved temporary file, by default &#39;temp_smoothed_bone.nrrd&#39;
copy_image_transform : bool, optional
Whether or not to apply image transform to final mesh or to leave it at origin, by default True
mc_threshold : float, optional
What floating point value to create surface mesh at, by default 0.5
filter_binary_image : bool, optional
Should the binary image be filtered (smoothed) or not.
Returns
-------
vtk.Polydata
Surface mesh created using a continuous cutoff `mc_threshold` after applying
gaussian smoothing with variance = `image_smooth_var`.
&#34;&#34;&#34;
# Set border of segmentation to 0 so that segs are all closed.
seg_image = msktimage.set_seg_border_to_zeros(seg_image, border_size=1)
if filter_binary_image is True:
# smooth/filter the image to get a better surface.
seg_image = msktimage.smooth_image(seg_image, label_idx, image_smooth_var)
else:
seg_image = msktimage.binarize_segmentation_image(seg_image, label_idx)
# save filtered image to disk so can read it in using vtk nrrd reader
sitk.WriteImage(seg_image, os.path.join(loc_tmp_save, tmp_filename))
smoothed_nrrd_reader = msktimage.read_nrrd(os.path.join(loc_tmp_save, tmp_filename),
set_origin_zero=True)
# create the mesh using continuous marching cubes applied to the smoothed binary image.
smooth_mesh = continuous_marching_cubes(smoothed_nrrd_reader, threshold=mc_threshold)
if copy_image_transform is True:
# copy image transofrm to the image to the mesh so that when viewed (e.g. in 3D Slicer) it is aligned with image
smooth_mesh = meshTransform.copy_image_transform_to_mesh(smooth_mesh, seg_image)
# Delete tmp files
safely_delete_tmp_file(loc_tmp_save,
tmp_filename)
return smooth_mesh</code></pre>
</details>
</dd>
<dt id="pymskt.mesh.createMesh.discrete_marching_cubes"><code class="name flex">
<span>def <span class="ident">discrete_marching_cubes</span></span>(<span>vtk_image_reader, n_labels=1, start_label=1, end_label=1, compute_normals_on=True, return_polydata=True)</span>
</code></dt>
<dd>
<div class="desc"><p>Compute dmc on segmentation image.
Creates a surface mesh (polydata) that closely covers binary (discrete) segmentations.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>vtk_image_reader</code></strong> :&ensp;<code>vtk.Filter</code></dt>
<dd>VTK Filter pipeline to apply discrete marching cubes to.</dd>
<dt><strong><code>n_labels</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Number of labes to create mesh for, by default 1</dd>
<dt><strong><code>start_label</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Starting index of labels to mesh, by default 1</dd>
<dt><strong><code>end_label</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Ending index of labels to mesh, by default 1</dd>
<dt><strong><code>compute_normals_on</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Calculate normals to surface, by default True</dd>
<dt><strong><code>return_polydata</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether to return a vtk.polydata or not (<code>vtk.Filter</code> pipeline instead), by default True</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>vtk.Filter Pipeline</code></dt>
<dd>Returns a pipeline which more functions can be chained too - this improves performance.</dd>
<dt><code>OR</code></dt>
<dd>&nbsp;</dd>
<dt><code>vtk.Polydata</code></dt>
<dd>Returns a polydata (surface mesh).</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def discrete_marching_cubes(vtk_image_reader,
n_labels=1,
start_label=1,
end_label=1,
compute_normals_on=True,
return_polydata=True
):
&#34;&#34;&#34;
Compute dmc on segmentation image.
Creates a surface mesh (polydata) that closely covers binary (discrete) segmentations.
Parameters
----------
vtk_image_reader : vtk.Filter
VTK Filter pipeline to apply discrete marching cubes to.
n_labels : int, optional
Number of labes to create mesh for, by default 1
start_label : int, optional
Starting index of labels to mesh, by default 1
end_label : int, optional
Ending index of labels to mesh, by default 1
compute_normals_on : bool, optional
Calculate normals to surface, by default True
return_polydata : bool, optional
Whether to return a vtk.polydata or not (`vtk.Filter` pipeline instead), by default True
Returns
-------
vtk.Filter Pipeline
Returns a pipeline which more functions can be chained too - this improves performance.
OR
vtk.Polydata
Returns a polydata (surface mesh).
&#34;&#34;&#34;
dmc = vtk.vtkDiscreteMarchingCubes()
dmc.SetInputConnection(vtk_image_reader.GetOutputPort())
if compute_normals_on is True:
dmc.ComputeNormalsOn()
dmc.GenerateValues(n_labels, start_label, end_label)
dmc.Update()
if return_polydata is True:
return dmc.GetOutput()
elif return_polydata is False:
return dmc</code></pre>
</details>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="pymskt.mesh" href="index.html">pymskt.mesh</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="pymskt.mesh.createMesh.continuous_marching_cubes" href="#pymskt.mesh.createMesh.continuous_marching_cubes">continuous_marching_cubes</a></code></li>
<li><code><a title="pymskt.mesh.createMesh.create_surface_mesh" href="#pymskt.mesh.createMesh.create_surface_mesh">create_surface_mesh</a></code></li>
<li><code><a title="pymskt.mesh.createMesh.discrete_marching_cubes" href="#pymskt.mesh.createMesh.discrete_marching_cubes">discrete_marching_cubes</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p>
</footer>
</body>
</html>