[ab7503]: / docs / image / cartilage_processing.html

Download this file

1124 lines (1043 with data), 55.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.10.0" />
<title>pymskt.image.cartilage_processing API documentation</title>
<meta name="description" content="" />
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin>
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin>
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>pymskt.image.cartilage_processing</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">import SimpleITK as sitk
import numpy as np
from scipy import ndimage as ndi
def CofM(array):
&#39;&#39;&#39;
Get center of mass for a row of a binary 2D image.
Parameters
----------
array : 1D array
Individual row of a 2D image.
Returns
-------
centerPixels :
Average location of 1s in the row
Notes
-----
Calculates the average location of cartilage for the row of image being analyzed.
Returns 0 if there are no pixels
&#39;&#39;&#39;
pixels = np.where(array==1)
centerPixels = np.mean(pixels)
nans = np.isnan(centerPixels)
if nans == True:
centerPixels = 0
return(centerPixels)
def get_y_CofM(flattenedSeg):
&#39;&#39;&#39;
Get CofM of femoral cartilage for each row of the flattened segmentation.
Parameters
----------
flattenedSeg : 2D array
Axial flattened, and filled in femoral cartilage segmentation.
Returns
-------
yCofM :
Find the CofM for each row of the image.
Notes
-----
Get the x/y coordinates for the CofM for each row of the flattened segmentation.
&#39;&#39;&#39;
locationFemur = np.where(flattenedSeg==1)
yCofM = np.zeros((flattenedSeg.shape[0], 2), dtype=int)
# only calculate for rows with cartilage.
minRow = np.min(locationFemur[0])
maxRow = np.max(locationFemur[0])
# iterate over rows of image, get CofM, store CofM for row.
for x in range(minRow, maxRow):
yCofM[x, 0] = x #store the x-coordinate (row) we calcualted CofM for.
yCofM[x, 1] = int(CofM(flattenedSeg[x, :])) # store the CofM value (make it an integer for indexing)
yCofM = yCofM[minRow+10:maxRow-10,:] # remove 10 most medial and most lateral pixels of femoral cartilage.
return(yCofM)
def absolute_CofM(flattenedSeg):
&#39;&#39;&#39;
Get absolute CofM of all the femoral cartilage pixels
Parameters
----------
flattenedSeg : 2D array
Axial flattened, and filled in femoral cartilage segmentation.
Returns
-------
centerX :
The CofM in the X direction for the segmentation
centerY :
The CofM in the Y direction for the segmentation
Notes
-----
Get the x/y coordinates for the CofM for the whole flattened segmentation
&#39;&#39;&#39;
femurPoints = np.where(flattenedSeg==1)
centerX = np.mean(femurPoints[0])
centerY = np.mean(femurPoints[1])
return(centerX, centerY)
def findNotch(flattenedSeg, trochleaPositionX=1000):
&#39;&#39;&#39;
Get the X Y position of the trochlear notch - where medial/lateral sides of the femur meet.
Parameters
----------
flattenedSeg : 2D array
Axial flattened, and filled in femoral cartilage segmentation.
Returns
-------
trochleaPositionY :
Y position of trochlear notch
trochleaPositionX :
X position of trochlear notch
Notes
-----
Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the
femoral cartilage.
&#39;&#39;&#39;
# Goal is to find the most anterior point that is between the medial/lateral condyles
# First guess at the troch notch in the 1st axis (med/lat axis) is the location with the smallest value for
# the 2nd axis CofM. This is because in axis 1, negative is anterior and we expect the most anterior CofM should
# roughly align with the trochlear notch.
y_CofM = get_y_CofM(flattenedSeg)
first_guess = y_CofM[np.argmin(y_CofM[:,1]), 0]
# the second guess is just the CofM of the whole cartilage.
centerX, centerY = absolute_CofM(flattenedSeg)
second_guess = centerX
# We use the 2 guesses to help define a search space for the trochlear notch.
min_search = int(np.min((first_guess,second_guess))-20)
max_search = int(np.max((first_guess,second_guess))+20)
# now, we iterate over all of the rows (axis 1) of the search space (moving in the medial/lateral direction)
# we are looking for the row where the most posterior point (back of femur) is furthest anterior (notch).
for y in range(min_search, max_search):
# At each row, we find most posterior pixel labeled as cartilage.
try:
trochleaPosition_test = np.max(np.where(flattenedSeg[y,:]==1))
except ValueError:
# if there is no cartilage we&#39;ll get a ValueError exception.
# in that case, set this value to be the max it can be (the size of the first axis)
trochleaPosition_test = flattenedSeg.shape[1]
# if the most posterior point for this row is more anterior than the current trochleaPositionX,
# then update this to be the new trochlear notch.
if trochleaPosition_test &lt; trochleaPositionX:
trochleaPositionX = trochleaPosition_test
trochleaPositionY = y
return(trochleaPositionY, trochleaPositionX+1)
def getAnteriorOfWeightBearing(segArray, femurIndex=1):
&#39;&#39;&#39;
Prepare full segmentation and extract the trochlear notch location.
Parameters
----------
flattenedSeg : 2D array
Axial flattened, and filled in femoral cartilage segmentation.
femurIndex : int
Index of the label used to localize the femur in the array.
Returns
-------
trochleaPositionY :
Y position of trochlear notch
trochleaPositionX :
X position of trochlear notch
Notes
-----
Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the femoral cartilage.
First flatten and fill any holes in the segmentation.
&#39;&#39;&#39;
femurSegmentation = np.zeros_like(segArray)
femurSegmentation[segArray == femurIndex] = 1
flattenedSegmentation = np.amax(femurSegmentation, axis=1)
flattened_seg_filled = ndi.binary_fill_holes(flattenedSegmentation)
trochY, trochX = findNotch(flattened_seg_filled)
return(trochY, trochX)
def getCartilageSubRegions(segArray, anteriorWBslice, posteriorWBslice, trochY,
femurLabel=1, medTibiaLabel=2, latTibiaLabel=3, antFemurMask=5,
medWbFemurMask=6, latWbFemurMask=7, medPostFemurMask=8, latPostFemurMask=9):
&#39;&#39;&#39;
Take cartilage segmentation, and decompose femoral cartilage into subregions of interest.
Parameters
----------
segArray : array
3D array with segmentation for the cartialge regions.
anteriorWBslice : int
Slice that seperates the anterior and weight bearing femoral cartilage.
posteriorWBslice : int
Slice that seperates the weight bearing and posterior femoral cartilage.
trochY : int
Slice that differentiates medial / lateral femur - trochlear notch Y component.
femurLabel : int
Label that femur is in the segArray
medTibiaLabel : int
Label that medial tibia is in the segArray
latTibiaLabel : int
Label that lateral tibia is in the segArray
antFemurMask : int
Label anterior femur should be labeled in final segmentation.
medWbFemurMask : int
Label medial weight bearing femur should be labeled in final segmentation.
latWbFemurMask : int
Label lateral weight bearing femur should be labeled in final segmentation.
medPostFemurMask : int
Label medial posterior femur should be labeled in final segmentation.
latPostFemurMask : int
Label lateral posterior femur should be labeled in final segmentation.
Returns
-------
final_segmentation : array
3D array with the updated segmentations - including weightbearing, medial/latera, anterior, and posterior.
Notes
-----
&#39;&#39;&#39;
#array to store final segmentation
final_segmentation = np.zeros_like(segArray)
#create masks for ant/wb/posterior femur
anterior_femur_mask = np.zeros_like(segArray)
anterior_femur_mask[:,:,:anteriorWBslice] = 1
wb_femur_mask = np.zeros_like(segArray)
wb_femur_mask[:,:,anteriorWBslice:posteriorWBslice] = 1
posterior_femur_mask = np.zeros_like(segArray)
posterior_femur_mask[:,:,posteriorWBslice:] = 1
#create seg of just femur - and then break it into the sub-regions
femurSegArray = np.zeros_like(segArray)
femurSegArray[segArray==femurLabel] = 1
#find the center of the medial/lateral tibia - use to distinguish M/L femur ROIs
locationMedialTibia = np.asarray(np.where(segArray==medTibiaLabel))
locationLateralTibia = np.asarray(np.where(segArray==latTibiaLabel))
centerMedialTibia = locationMedialTibia.mean(axis=1)
centerLateralTibia = locationLateralTibia.mean(axis=1)
med_femur_mask = np.zeros_like(segArray)
lat_femur_mask = np.zeros_like(segArray)
if centerMedialTibia[0] &gt; trochY:
med_femur_mask[trochY:,:,:] = 1
lat_femur_mask[:trochY,:,:] = 1
else:
med_femur_mask[:trochY,:,:] = 1
lat_femur_mask[trochY:,:,:] = 1
final_segmentation[segArray!=femurLabel] = segArray[segArray!=femurLabel]
final_segmentation += (femurSegArray * anterior_femur_mask) * antFemurMask
final_segmentation += (femurSegArray * wb_femur_mask * med_femur_mask) * medWbFemurMask
final_segmentation += (femurSegArray * wb_femur_mask * lat_femur_mask) * latWbFemurMask
final_segmentation += (femurSegArray * posterior_femur_mask * med_femur_mask) * medPostFemurMask
final_segmentation += (femurSegArray * posterior_femur_mask * lat_femur_mask) * latPostFemurMask
return(final_segmentation)
def verify_and_correct_med_lat_tib_cart(
seg_array, #sitk.GetArrayViewFromImage(seg)
tib_label=6,
med_tib_cart_label=2,
lat_tib_cart_label=3,
ml_axis=0
):
&#39;&#39;&#39;
Verify that the medial and lateral tibial cartilage are correctly labeled.
Parameters
----------
seg_array : array
3D array with segmentation for the cartilage/bone regions.
tib_label : int
Label that tibial cartilage is in the seg_array
med_tib_cart_label : int
Label that medial tibial cartilage is in the seg_array
lat_tib_cart_label : int
Label that lateral tibial cartilage is in the seg_array
ml_axis : int
Medial/lateral axis of the acquired knee MRI.
Returns
-------
seg_array : array
3D array with segmentation for the cartilage/bone regions.
The tibial cartilage regions will have been updated to ensure
all tib cart on med/lat sides are correctly classified.
&#39;&#39;&#39;
#get binary array for tibia
array_tib = np.zeros_like(seg_array)
array_tib[seg_array == tib_label] = 1
#get binary array for tib cart
array_tib_cart = np.zeros_like(seg_array)
array_tib_cart[(seg_array == lat_tib_cart_label) + (seg_array == med_tib_cart_label)] = 1
#get the locatons of med/lat cartilage &amp; get their centroids
med_cart_locs = np.asarray(np.where(seg_array == med_tib_cart_label))
lat_cart_locs = np.asarray(np.where(seg_array == lat_tib_cart_label))
middle_med_cart = med_cart_locs[ml_axis,:].mean()
middle_lat_cart = lat_cart_locs[ml_axis,:].mean()
#get location of tibia to get centroid of tibial plateau
tib_locs = np.asarray(np.where(seg_array == tib_label))
middle_tib = tib_locs[ml_axis, :].mean()
center_tibia_slice = int(middle_tib)
# infer the direction(s) for medial/lateral
med_direction = np.sign(middle_med_cart - middle_tib)
lat_direction = np.sign(middle_lat_cart - middle_tib)
if med_direction == lat_direction:
raise Exception(&#39;Middle of med and lat tibial cartilage on same side of centerline!&#39;)
#create med/lat cartilage masks - binary for updating seg masks
med_tib_cart_mask = np.zeros_like(seg_array)
lat_tib_cart_mask = np.zeros_like(seg_array)
if med_direction &gt; 0:
med_tib_cart_mask[center_tibia_slice:,...] = 1
lat_tib_cart_mask[:center_tibia_slice,...] = 1
elif med_direction &lt; 0:
med_tib_cart_mask[:center_tibia_slice,...] = 1
lat_tib_cart_mask[center_tibia_slice:,...] = 1
# create new med/lat cartilage arrays
new_med_cart_array = array_tib_cart * med_tib_cart_mask
new_lat_cart_array = array_tib_cart * lat_tib_cart_mask
#make copy of original segmentation array &amp; update
# med/lat tibial cartilage labels
new_seg_array = seg_array.copy()
new_seg_array[new_med_cart_array == 1] = med_tib_cart_label
new_seg_array[new_lat_cart_array == 1] = lat_tib_cart_label
return new_seg_array
def get_knee_segmentation_with_femur_subregions(seg_image,
fem_cart_label_idx=1,
wb_region_percent_dist=0.6,
# femur_label=1,
med_tibia_label=2,
lat_tibia_label=3,
ant_femur_mask=11,
med_wb_femur_mask=12,
lat_wb_femur_mask=13,
med_post_femur_mask=14,
lat_post_femur_mask=15,
verify_med_lat_tib_cart=True,
tibia_label=6,
ml_axis=0
):
&#34;&#34;&#34;
Give seg image of knee. Return seg image with all sub-regions of femur included.
Parameters
----------
seg_image : SimpleITK.Image
SimpleITK image of the segmentation to be processed.
fem_cart_label_idx : int, optional
Label of femoral cartilage, by default 1
wb_region_percent_dist : float, optional
How large weightbearing region is (from not to posterior of condyles), by default 0.6
femur_label : int, optional
Seg label for the femur cartilage, by default 1
med_tibia_label : int, optional
Seg label for the medial tibia cartilage, by default 2
lat_tibia_label : int, optional
Seg label for the lateral tibia cartilage, by default 3
ant_femur_mask : int, optional
Seg label for the anterior femur region, by default 11
med_wb_femur_mask : int, optional
Seg label for medial weight-bearing femur, by default 12
lat_wb_femur_mask : int, optional
Seg label for lateral weight-bearing femur, by default 13
med_post_femur_mask : int, optional
Seg label for medial posterior femur, by default 14
lat_post_femur_mask : int, optional
Seg label for lateral posterior femur, by default 15
verify_med_lat_tib_cart : bool, optional
Whether to verify that medial and lateral tibial cartilage is on same side of centerline, by default True
tibia_label : int, optional
Seg label for the tibia, by default 6
ml_axis : int, optional
Medial/lateral axis of the acquired knee MRI, by default 0
Returns
-------
SimpleITK.Image
Image of the new/updated segmentation
&#34;&#34;&#34;
troch_notch_y, troch_notch_x = getAnteriorOfWeightBearing(sitk.GetArrayViewFromImage(seg_image),
femurIndex=fem_cart_label_idx)
loc_fem_z, loc_fem_y, loc_fem_x = np.where(sitk.GetArrayViewFromImage(seg_image) == fem_cart_label_idx)
post_femur_slice = np.max(loc_fem_x)
posterior_wb_slice = np.round((post_femur_slice - troch_notch_x) * wb_region_percent_dist + troch_notch_x).astype(int)
new_seg_array = getCartilageSubRegions(sitk.GetArrayViewFromImage(seg_image),
anteriorWBslice=troch_notch_x,
posteriorWBslice=posterior_wb_slice,
trochY=troch_notch_y,
femurLabel=fem_cart_label_idx,
medTibiaLabel=med_tibia_label,
latTibiaLabel=lat_tibia_label,
antFemurMask=ant_femur_mask,
medWbFemurMask=med_wb_femur_mask,
latWbFemurMask=lat_wb_femur_mask,
medPostFemurMask=med_post_femur_mask,
latPostFemurMask=lat_post_femur_mask
)
if verify_med_lat_tib_cart:
new_seg_array = verify_and_correct_med_lat_tib_cart(new_seg_array,
tib_label=tibia_label,
med_tib_cart_label=med_tibia_label,
lat_tib_cart_label=lat_tibia_label,
ml_axis=ml_axis)
seg_label_image = sitk.GetImageFromArray(new_seg_array)
seg_label_image.CopyInformation(seg_image)
return seg_label_image</code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="pymskt.image.cartilage_processing.CofM"><code class="name flex">
<span>def <span class="ident">CofM</span></span>(<span>array)</span>
</code></dt>
<dd>
<div class="desc"><p>Get center of mass for a row of a binary 2D image.
Parameters</p>
<hr>
<dl>
<dt><strong><code>array</code></strong> :&ensp;<code>1D array</code></dt>
<dd>Individual row of a 2D image.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>centerPixels</code></strong></dt>
<dd>Average location of 1s in the row</dd>
</dl>
<h2 id="notes">Notes</h2>
<p>Calculates the average location of cartilage for the row of image being analyzed.
Returns 0 if there are no pixels</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def CofM(array):
&#39;&#39;&#39;
Get center of mass for a row of a binary 2D image.
Parameters
----------
array : 1D array
Individual row of a 2D image.
Returns
-------
centerPixels :
Average location of 1s in the row
Notes
-----
Calculates the average location of cartilage for the row of image being analyzed.
Returns 0 if there are no pixels
&#39;&#39;&#39;
pixels = np.where(array==1)
centerPixels = np.mean(pixels)
nans = np.isnan(centerPixels)
if nans == True:
centerPixels = 0
return(centerPixels)</code></pre>
</details>
</dd>
<dt id="pymskt.image.cartilage_processing.absolute_CofM"><code class="name flex">
<span>def <span class="ident">absolute_CofM</span></span>(<span>flattenedSeg)</span>
</code></dt>
<dd>
<div class="desc"><p>Get absolute CofM of all the femoral cartilage pixels
Parameters</p>
<hr>
<dl>
<dt><strong><code>flattenedSeg</code></strong> :&ensp;<code>2D array</code></dt>
<dd>Axial flattened, and filled in femoral cartilage segmentation.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>centerX</code></strong></dt>
<dd>The CofM in the X direction for the segmentation</dd>
<dt><strong><code>centerY</code></strong></dt>
<dd>The CofM in the Y direction for the segmentation</dd>
</dl>
<h2 id="notes">Notes</h2>
<p>Get the x/y coordinates for the CofM for the whole flattened segmentation</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def absolute_CofM(flattenedSeg):
&#39;&#39;&#39;
Get absolute CofM of all the femoral cartilage pixels
Parameters
----------
flattenedSeg : 2D array
Axial flattened, and filled in femoral cartilage segmentation.
Returns
-------
centerX :
The CofM in the X direction for the segmentation
centerY :
The CofM in the Y direction for the segmentation
Notes
-----
Get the x/y coordinates for the CofM for the whole flattened segmentation
&#39;&#39;&#39;
femurPoints = np.where(flattenedSeg==1)
centerX = np.mean(femurPoints[0])
centerY = np.mean(femurPoints[1])
return(centerX, centerY)</code></pre>
</details>
</dd>
<dt id="pymskt.image.cartilage_processing.findNotch"><code class="name flex">
<span>def <span class="ident">findNotch</span></span>(<span>flattenedSeg, trochleaPositionX=1000)</span>
</code></dt>
<dd>
<div class="desc"><p>Get the X Y position of the trochlear notch - where medial/lateral sides of the femur meet.
Parameters</p>
<hr>
<dl>
<dt><strong><code>flattenedSeg</code></strong> :&ensp;<code>2D array</code></dt>
<dd>Axial flattened, and filled in femoral cartilage segmentation.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>trochleaPositionY</code></strong></dt>
<dd>Y position of trochlear notch</dd>
<dt><strong><code>trochleaPositionX</code></strong></dt>
<dd>X position of trochlear notch</dd>
</dl>
<h2 id="notes">Notes</h2>
<p>Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the
femoral cartilage.</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def findNotch(flattenedSeg, trochleaPositionX=1000):
&#39;&#39;&#39;
Get the X Y position of the trochlear notch - where medial/lateral sides of the femur meet.
Parameters
----------
flattenedSeg : 2D array
Axial flattened, and filled in femoral cartilage segmentation.
Returns
-------
trochleaPositionY :
Y position of trochlear notch
trochleaPositionX :
X position of trochlear notch
Notes
-----
Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the
femoral cartilage.
&#39;&#39;&#39;
# Goal is to find the most anterior point that is between the medial/lateral condyles
# First guess at the troch notch in the 1st axis (med/lat axis) is the location with the smallest value for
# the 2nd axis CofM. This is because in axis 1, negative is anterior and we expect the most anterior CofM should
# roughly align with the trochlear notch.
y_CofM = get_y_CofM(flattenedSeg)
first_guess = y_CofM[np.argmin(y_CofM[:,1]), 0]
# the second guess is just the CofM of the whole cartilage.
centerX, centerY = absolute_CofM(flattenedSeg)
second_guess = centerX
# We use the 2 guesses to help define a search space for the trochlear notch.
min_search = int(np.min((first_guess,second_guess))-20)
max_search = int(np.max((first_guess,second_guess))+20)
# now, we iterate over all of the rows (axis 1) of the search space (moving in the medial/lateral direction)
# we are looking for the row where the most posterior point (back of femur) is furthest anterior (notch).
for y in range(min_search, max_search):
# At each row, we find most posterior pixel labeled as cartilage.
try:
trochleaPosition_test = np.max(np.where(flattenedSeg[y,:]==1))
except ValueError:
# if there is no cartilage we&#39;ll get a ValueError exception.
# in that case, set this value to be the max it can be (the size of the first axis)
trochleaPosition_test = flattenedSeg.shape[1]
# if the most posterior point for this row is more anterior than the current trochleaPositionX,
# then update this to be the new trochlear notch.
if trochleaPosition_test &lt; trochleaPositionX:
trochleaPositionX = trochleaPosition_test
trochleaPositionY = y
return(trochleaPositionY, trochleaPositionX+1)</code></pre>
</details>
</dd>
<dt id="pymskt.image.cartilage_processing.getAnteriorOfWeightBearing"><code class="name flex">
<span>def <span class="ident">getAnteriorOfWeightBearing</span></span>(<span>segArray, femurIndex=1)</span>
</code></dt>
<dd>
<div class="desc"><p>Prepare full segmentation and extract the trochlear notch location.
Parameters</p>
<hr>
<dl>
<dt><strong><code>flattenedSeg</code></strong> :&ensp;<code>2D array</code></dt>
<dd>Axial flattened, and filled in femoral cartilage segmentation.</dd>
<dt><strong><code>femurIndex</code></strong> :&ensp;<code>int</code></dt>
<dd>Index of the label used to localize the femur in the array.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>trochleaPositionY</code></strong></dt>
<dd>Y position of trochlear notch</dd>
<dt><strong><code>trochleaPositionX</code></strong></dt>
<dd>X position of trochlear notch</dd>
</dl>
<h2 id="notes">Notes</h2>
<p>Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the femoral cartilage.
First flatten and fill any holes in the segmentation.</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def getAnteriorOfWeightBearing(segArray, femurIndex=1):
&#39;&#39;&#39;
Prepare full segmentation and extract the trochlear notch location.
Parameters
----------
flattenedSeg : 2D array
Axial flattened, and filled in femoral cartilage segmentation.
femurIndex : int
Index of the label used to localize the femur in the array.
Returns
-------
trochleaPositionY :
Y position of trochlear notch
trochleaPositionX :
X position of trochlear notch
Notes
-----
Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the femoral cartilage.
First flatten and fill any holes in the segmentation.
&#39;&#39;&#39;
femurSegmentation = np.zeros_like(segArray)
femurSegmentation[segArray == femurIndex] = 1
flattenedSegmentation = np.amax(femurSegmentation, axis=1)
flattened_seg_filled = ndi.binary_fill_holes(flattenedSegmentation)
trochY, trochX = findNotch(flattened_seg_filled)
return(trochY, trochX)</code></pre>
</details>
</dd>
<dt id="pymskt.image.cartilage_processing.getCartilageSubRegions"><code class="name flex">
<span>def <span class="ident">getCartilageSubRegions</span></span>(<span>segArray, anteriorWBslice, posteriorWBslice, trochY, femurLabel=1, medTibiaLabel=2, latTibiaLabel=3, antFemurMask=5, medWbFemurMask=6, latWbFemurMask=7, medPostFemurMask=8, latPostFemurMask=9)</span>
</code></dt>
<dd>
<div class="desc"><p>Take cartilage segmentation, and decompose femoral cartilage into subregions of interest.<br>
Parameters</p>
<hr>
<dl>
<dt><strong><code>segArray</code></strong> :&ensp;<code>array</code></dt>
<dd>3D array with segmentation for the cartialge regions.</dd>
<dt><strong><code>anteriorWBslice</code></strong> :&ensp;<code>int</code></dt>
<dd>Slice that seperates the anterior and weight bearing femoral cartilage.</dd>
<dt><strong><code>posteriorWBslice</code></strong> :&ensp;<code>int</code></dt>
<dd>Slice that seperates the weight bearing and posterior femoral cartilage.</dd>
<dt><strong><code>trochY</code></strong> :&ensp;<code>int</code></dt>
<dd>Slice that differentiates medial / lateral femur - trochlear notch Y component.</dd>
<dt><strong><code>femurLabel</code></strong> :&ensp;<code>int</code></dt>
<dd>Label that femur is in the segArray</dd>
<dt><strong><code>medTibiaLabel</code></strong> :&ensp;<code>int</code></dt>
<dd>Label that medial tibia is in the segArray</dd>
<dt><strong><code>latTibiaLabel</code></strong> :&ensp;<code>int</code></dt>
<dd>Label that lateral tibia is in the segArray</dd>
<dt><strong><code>antFemurMask</code></strong> :&ensp;<code>int</code></dt>
<dd>Label anterior femur should be labeled in final segmentation.</dd>
<dt><strong><code>medWbFemurMask</code></strong> :&ensp;<code>int</code></dt>
<dd>Label medial weight bearing femur should be labeled in final segmentation.</dd>
<dt><strong><code>latWbFemurMask</code></strong> :&ensp;<code>int</code></dt>
<dd>Label lateral weight bearing femur should be labeled in final segmentation.</dd>
<dt><strong><code>medPostFemurMask</code></strong> :&ensp;<code>int</code></dt>
<dd>Label medial posterior femur should be labeled in final segmentation.</dd>
<dt><strong><code>latPostFemurMask</code></strong> :&ensp;<code>int</code></dt>
<dd>Label lateral posterior femur should be labeled in final segmentation.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>final_segmentation</code></strong> :&ensp;<code>array</code></dt>
<dd>3D array with the updated segmentations - including weightbearing, medial/latera, anterior, and posterior.</dd>
</dl>
<h2 id="notes">Notes</h2></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def getCartilageSubRegions(segArray, anteriorWBslice, posteriorWBslice, trochY,
femurLabel=1, medTibiaLabel=2, latTibiaLabel=3, antFemurMask=5,
medWbFemurMask=6, latWbFemurMask=7, medPostFemurMask=8, latPostFemurMask=9):
&#39;&#39;&#39;
Take cartilage segmentation, and decompose femoral cartilage into subregions of interest.
Parameters
----------
segArray : array
3D array with segmentation for the cartialge regions.
anteriorWBslice : int
Slice that seperates the anterior and weight bearing femoral cartilage.
posteriorWBslice : int
Slice that seperates the weight bearing and posterior femoral cartilage.
trochY : int
Slice that differentiates medial / lateral femur - trochlear notch Y component.
femurLabel : int
Label that femur is in the segArray
medTibiaLabel : int
Label that medial tibia is in the segArray
latTibiaLabel : int
Label that lateral tibia is in the segArray
antFemurMask : int
Label anterior femur should be labeled in final segmentation.
medWbFemurMask : int
Label medial weight bearing femur should be labeled in final segmentation.
latWbFemurMask : int
Label lateral weight bearing femur should be labeled in final segmentation.
medPostFemurMask : int
Label medial posterior femur should be labeled in final segmentation.
latPostFemurMask : int
Label lateral posterior femur should be labeled in final segmentation.
Returns
-------
final_segmentation : array
3D array with the updated segmentations - including weightbearing, medial/latera, anterior, and posterior.
Notes
-----
&#39;&#39;&#39;
#array to store final segmentation
final_segmentation = np.zeros_like(segArray)
#create masks for ant/wb/posterior femur
anterior_femur_mask = np.zeros_like(segArray)
anterior_femur_mask[:,:,:anteriorWBslice] = 1
wb_femur_mask = np.zeros_like(segArray)
wb_femur_mask[:,:,anteriorWBslice:posteriorWBslice] = 1
posterior_femur_mask = np.zeros_like(segArray)
posterior_femur_mask[:,:,posteriorWBslice:] = 1
#create seg of just femur - and then break it into the sub-regions
femurSegArray = np.zeros_like(segArray)
femurSegArray[segArray==femurLabel] = 1
#find the center of the medial/lateral tibia - use to distinguish M/L femur ROIs
locationMedialTibia = np.asarray(np.where(segArray==medTibiaLabel))
locationLateralTibia = np.asarray(np.where(segArray==latTibiaLabel))
centerMedialTibia = locationMedialTibia.mean(axis=1)
centerLateralTibia = locationLateralTibia.mean(axis=1)
med_femur_mask = np.zeros_like(segArray)
lat_femur_mask = np.zeros_like(segArray)
if centerMedialTibia[0] &gt; trochY:
med_femur_mask[trochY:,:,:] = 1
lat_femur_mask[:trochY,:,:] = 1
else:
med_femur_mask[:trochY,:,:] = 1
lat_femur_mask[trochY:,:,:] = 1
final_segmentation[segArray!=femurLabel] = segArray[segArray!=femurLabel]
final_segmentation += (femurSegArray * anterior_femur_mask) * antFemurMask
final_segmentation += (femurSegArray * wb_femur_mask * med_femur_mask) * medWbFemurMask
final_segmentation += (femurSegArray * wb_femur_mask * lat_femur_mask) * latWbFemurMask
final_segmentation += (femurSegArray * posterior_femur_mask * med_femur_mask) * medPostFemurMask
final_segmentation += (femurSegArray * posterior_femur_mask * lat_femur_mask) * latPostFemurMask
return(final_segmentation)</code></pre>
</details>
</dd>
<dt id="pymskt.image.cartilage_processing.get_knee_segmentation_with_femur_subregions"><code class="name flex">
<span>def <span class="ident">get_knee_segmentation_with_femur_subregions</span></span>(<span>seg_image, fem_cart_label_idx=1, wb_region_percent_dist=0.6, med_tibia_label=2, lat_tibia_label=3, ant_femur_mask=11, med_wb_femur_mask=12, lat_wb_femur_mask=13, med_post_femur_mask=14, lat_post_femur_mask=15, verify_med_lat_tib_cart=True, tibia_label=6, ml_axis=0)</span>
</code></dt>
<dd>
<div class="desc"><p>Give seg image of knee. Return seg image with all sub-regions of femur included. </p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>seg_image</code></strong> :&ensp;<code>SimpleITK.Image</code></dt>
<dd>SimpleITK image of the segmentation to be processed.</dd>
<dt><strong><code>fem_cart_label_idx</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Label of femoral cartilage, by default 1</dd>
<dt><strong><code>wb_region_percent_dist</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>How large weightbearing region is (from not to posterior of condyles), by default 0.6</dd>
<dt><strong><code>femur_label</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Seg label for the femur cartilage, by default 1</dd>
<dt><strong><code>med_tibia_label</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Seg label for the medial tibia cartilage, by default 2</dd>
<dt><strong><code>lat_tibia_label</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Seg label for the lateral tibia cartilage, by default 3</dd>
<dt><strong><code>ant_femur_mask</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Seg label for the anterior femur region, by default 11</dd>
<dt><strong><code>med_wb_femur_mask</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Seg label for medial weight-bearing femur, by default 12</dd>
<dt><strong><code>lat_wb_femur_mask</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Seg label for lateral weight-bearing femur, by default 13</dd>
<dt><strong><code>med_post_femur_mask</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Seg label for medial posterior femur, by default 14</dd>
<dt><strong><code>lat_post_femur_mask</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Seg label for lateral posterior femur, by default 15</dd>
<dt><strong><code>verify_med_lat_tib_cart</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Whether to verify that medial and lateral tibial cartilage is on same side of centerline, by default True</dd>
<dt><strong><code>tibia_label</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Seg label for the tibia, by default 6</dd>
<dt><strong><code>ml_axis</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Medial/lateral axis of the acquired knee MRI, by default 0</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>SimpleITK.Image</code></dt>
<dd>Image of the new/updated segmentation</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def get_knee_segmentation_with_femur_subregions(seg_image,
fem_cart_label_idx=1,
wb_region_percent_dist=0.6,
# femur_label=1,
med_tibia_label=2,
lat_tibia_label=3,
ant_femur_mask=11,
med_wb_femur_mask=12,
lat_wb_femur_mask=13,
med_post_femur_mask=14,
lat_post_femur_mask=15,
verify_med_lat_tib_cart=True,
tibia_label=6,
ml_axis=0
):
&#34;&#34;&#34;
Give seg image of knee. Return seg image with all sub-regions of femur included.
Parameters
----------
seg_image : SimpleITK.Image
SimpleITK image of the segmentation to be processed.
fem_cart_label_idx : int, optional
Label of femoral cartilage, by default 1
wb_region_percent_dist : float, optional
How large weightbearing region is (from not to posterior of condyles), by default 0.6
femur_label : int, optional
Seg label for the femur cartilage, by default 1
med_tibia_label : int, optional
Seg label for the medial tibia cartilage, by default 2
lat_tibia_label : int, optional
Seg label for the lateral tibia cartilage, by default 3
ant_femur_mask : int, optional
Seg label for the anterior femur region, by default 11
med_wb_femur_mask : int, optional
Seg label for medial weight-bearing femur, by default 12
lat_wb_femur_mask : int, optional
Seg label for lateral weight-bearing femur, by default 13
med_post_femur_mask : int, optional
Seg label for medial posterior femur, by default 14
lat_post_femur_mask : int, optional
Seg label for lateral posterior femur, by default 15
verify_med_lat_tib_cart : bool, optional
Whether to verify that medial and lateral tibial cartilage is on same side of centerline, by default True
tibia_label : int, optional
Seg label for the tibia, by default 6
ml_axis : int, optional
Medial/lateral axis of the acquired knee MRI, by default 0
Returns
-------
SimpleITK.Image
Image of the new/updated segmentation
&#34;&#34;&#34;
troch_notch_y, troch_notch_x = getAnteriorOfWeightBearing(sitk.GetArrayViewFromImage(seg_image),
femurIndex=fem_cart_label_idx)
loc_fem_z, loc_fem_y, loc_fem_x = np.where(sitk.GetArrayViewFromImage(seg_image) == fem_cart_label_idx)
post_femur_slice = np.max(loc_fem_x)
posterior_wb_slice = np.round((post_femur_slice - troch_notch_x) * wb_region_percent_dist + troch_notch_x).astype(int)
new_seg_array = getCartilageSubRegions(sitk.GetArrayViewFromImage(seg_image),
anteriorWBslice=troch_notch_x,
posteriorWBslice=posterior_wb_slice,
trochY=troch_notch_y,
femurLabel=fem_cart_label_idx,
medTibiaLabel=med_tibia_label,
latTibiaLabel=lat_tibia_label,
antFemurMask=ant_femur_mask,
medWbFemurMask=med_wb_femur_mask,
latWbFemurMask=lat_wb_femur_mask,
medPostFemurMask=med_post_femur_mask,
latPostFemurMask=lat_post_femur_mask
)
if verify_med_lat_tib_cart:
new_seg_array = verify_and_correct_med_lat_tib_cart(new_seg_array,
tib_label=tibia_label,
med_tib_cart_label=med_tibia_label,
lat_tib_cart_label=lat_tibia_label,
ml_axis=ml_axis)
seg_label_image = sitk.GetImageFromArray(new_seg_array)
seg_label_image.CopyInformation(seg_image)
return seg_label_image</code></pre>
</details>
</dd>
<dt id="pymskt.image.cartilage_processing.get_y_CofM"><code class="name flex">
<span>def <span class="ident">get_y_CofM</span></span>(<span>flattenedSeg)</span>
</code></dt>
<dd>
<div class="desc"><p>Get CofM of femoral cartilage for each row of the flattened segmentation.
Parameters</p>
<hr>
<dl>
<dt><strong><code>flattenedSeg</code></strong> :&ensp;<code>2D array</code></dt>
<dd>Axial flattened, and filled in femoral cartilage segmentation.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>yCofM</code></strong></dt>
<dd>Find the CofM for each row of the image.</dd>
</dl>
<h2 id="notes">Notes</h2>
<p>Get the x/y coordinates for the CofM for each row of the flattened segmentation.</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def get_y_CofM(flattenedSeg):
&#39;&#39;&#39;
Get CofM of femoral cartilage for each row of the flattened segmentation.
Parameters
----------
flattenedSeg : 2D array
Axial flattened, and filled in femoral cartilage segmentation.
Returns
-------
yCofM :
Find the CofM for each row of the image.
Notes
-----
Get the x/y coordinates for the CofM for each row of the flattened segmentation.
&#39;&#39;&#39;
locationFemur = np.where(flattenedSeg==1)
yCofM = np.zeros((flattenedSeg.shape[0], 2), dtype=int)
# only calculate for rows with cartilage.
minRow = np.min(locationFemur[0])
maxRow = np.max(locationFemur[0])
# iterate over rows of image, get CofM, store CofM for row.
for x in range(minRow, maxRow):
yCofM[x, 0] = x #store the x-coordinate (row) we calcualted CofM for.
yCofM[x, 1] = int(CofM(flattenedSeg[x, :])) # store the CofM value (make it an integer for indexing)
yCofM = yCofM[minRow+10:maxRow-10,:] # remove 10 most medial and most lateral pixels of femoral cartilage.
return(yCofM) </code></pre>
</details>
</dd>
<dt id="pymskt.image.cartilage_processing.verify_and_correct_med_lat_tib_cart"><code class="name flex">
<span>def <span class="ident">verify_and_correct_med_lat_tib_cart</span></span>(<span>seg_array, tib_label=6, med_tib_cart_label=2, lat_tib_cart_label=3, ml_axis=0)</span>
</code></dt>
<dd>
<div class="desc"><p>Verify that the medial and lateral tibial cartilage are correctly labeled.
Parameters</p>
<hr>
<dl>
<dt><strong><code>seg_array</code></strong> :&ensp;<code>array</code></dt>
<dd>3D array with segmentation for the cartilage/bone regions.</dd>
<dt><strong><code>tib_label</code></strong> :&ensp;<code>int</code></dt>
<dd>Label that tibial cartilage is in the seg_array</dd>
<dt><strong><code>med_tib_cart_label</code></strong> :&ensp;<code>int</code></dt>
<dd>Label that medial tibial cartilage is in the seg_array</dd>
<dt><strong><code>lat_tib_cart_label</code></strong> :&ensp;<code>int</code></dt>
<dd>Label that lateral tibial cartilage is in the seg_array</dd>
<dt><strong><code>ml_axis</code></strong> :&ensp;<code>int</code></dt>
<dd>Medial/lateral axis of the acquired knee MRI.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><strong><code>seg_array</code></strong> :&ensp;<code>array</code></dt>
<dd>3D array with segmentation for the cartilage/bone regions.
The tibial cartilage regions will have been updated to ensure
all tib cart on med/lat sides are correctly classified.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def verify_and_correct_med_lat_tib_cart(
seg_array, #sitk.GetArrayViewFromImage(seg)
tib_label=6,
med_tib_cart_label=2,
lat_tib_cart_label=3,
ml_axis=0
):
&#39;&#39;&#39;
Verify that the medial and lateral tibial cartilage are correctly labeled.
Parameters
----------
seg_array : array
3D array with segmentation for the cartilage/bone regions.
tib_label : int
Label that tibial cartilage is in the seg_array
med_tib_cart_label : int
Label that medial tibial cartilage is in the seg_array
lat_tib_cart_label : int
Label that lateral tibial cartilage is in the seg_array
ml_axis : int
Medial/lateral axis of the acquired knee MRI.
Returns
-------
seg_array : array
3D array with segmentation for the cartilage/bone regions.
The tibial cartilage regions will have been updated to ensure
all tib cart on med/lat sides are correctly classified.
&#39;&#39;&#39;
#get binary array for tibia
array_tib = np.zeros_like(seg_array)
array_tib[seg_array == tib_label] = 1
#get binary array for tib cart
array_tib_cart = np.zeros_like(seg_array)
array_tib_cart[(seg_array == lat_tib_cart_label) + (seg_array == med_tib_cart_label)] = 1
#get the locatons of med/lat cartilage &amp; get their centroids
med_cart_locs = np.asarray(np.where(seg_array == med_tib_cart_label))
lat_cart_locs = np.asarray(np.where(seg_array == lat_tib_cart_label))
middle_med_cart = med_cart_locs[ml_axis,:].mean()
middle_lat_cart = lat_cart_locs[ml_axis,:].mean()
#get location of tibia to get centroid of tibial plateau
tib_locs = np.asarray(np.where(seg_array == tib_label))
middle_tib = tib_locs[ml_axis, :].mean()
center_tibia_slice = int(middle_tib)
# infer the direction(s) for medial/lateral
med_direction = np.sign(middle_med_cart - middle_tib)
lat_direction = np.sign(middle_lat_cart - middle_tib)
if med_direction == lat_direction:
raise Exception(&#39;Middle of med and lat tibial cartilage on same side of centerline!&#39;)
#create med/lat cartilage masks - binary for updating seg masks
med_tib_cart_mask = np.zeros_like(seg_array)
lat_tib_cart_mask = np.zeros_like(seg_array)
if med_direction &gt; 0:
med_tib_cart_mask[center_tibia_slice:,...] = 1
lat_tib_cart_mask[:center_tibia_slice,...] = 1
elif med_direction &lt; 0:
med_tib_cart_mask[:center_tibia_slice,...] = 1
lat_tib_cart_mask[center_tibia_slice:,...] = 1
# create new med/lat cartilage arrays
new_med_cart_array = array_tib_cart * med_tib_cart_mask
new_lat_cart_array = array_tib_cart * lat_tib_cart_mask
#make copy of original segmentation array &amp; update
# med/lat tibial cartilage labels
new_seg_array = seg_array.copy()
new_seg_array[new_med_cart_array == 1] = med_tib_cart_label
new_seg_array[new_lat_cart_array == 1] = lat_tib_cart_label
return new_seg_array</code></pre>
</details>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="pymskt.image" href="index.html">pymskt.image</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="pymskt.image.cartilage_processing.CofM" href="#pymskt.image.cartilage_processing.CofM">CofM</a></code></li>
<li><code><a title="pymskt.image.cartilage_processing.absolute_CofM" href="#pymskt.image.cartilage_processing.absolute_CofM">absolute_CofM</a></code></li>
<li><code><a title="pymskt.image.cartilage_processing.findNotch" href="#pymskt.image.cartilage_processing.findNotch">findNotch</a></code></li>
<li><code><a title="pymskt.image.cartilage_processing.getAnteriorOfWeightBearing" href="#pymskt.image.cartilage_processing.getAnteriorOfWeightBearing">getAnteriorOfWeightBearing</a></code></li>
<li><code><a title="pymskt.image.cartilage_processing.getCartilageSubRegions" href="#pymskt.image.cartilage_processing.getCartilageSubRegions">getCartilageSubRegions</a></code></li>
<li><code><a title="pymskt.image.cartilage_processing.get_knee_segmentation_with_femur_subregions" href="#pymskt.image.cartilage_processing.get_knee_segmentation_with_femur_subregions">get_knee_segmentation_with_femur_subregions</a></code></li>
<li><code><a title="pymskt.image.cartilage_processing.get_y_CofM" href="#pymskt.image.cartilage_processing.get_y_CofM">get_y_CofM</a></code></li>
<li><code><a title="pymskt.image.cartilage_processing.verify_and_correct_med_lat_tib_cart" href="#pymskt.image.cartilage_processing.verify_and_correct_med_lat_tib_cart">verify_and_correct_med_lat_tib_cart</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p>
</footer>
</body>
</html>