|
a |
|
b/examples/create meshes/Create Muscle Mesh Jan.28.2022.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 4, |
|
|
6 |
"id": "f11c51b1", |
|
|
7 |
"metadata": {}, |
|
|
8 |
"outputs": [], |
|
|
9 |
"source": [ |
|
|
10 |
"import pymskt as mskt\n", |
|
|
11 |
"import SimpleITK as sitk\n", |
|
|
12 |
"import numpy as np\n", |
|
|
13 |
"import os\n", |
|
|
14 |
"\n", |
|
|
15 |
"from pymskt.mesh import Mesh" |
|
|
16 |
] |
|
|
17 |
}, |
|
|
18 |
{ |
|
|
19 |
"cell_type": "code", |
|
|
20 |
"execution_count": 10, |
|
|
21 |
"id": "20bbd34d", |
|
|
22 |
"metadata": {}, |
|
|
23 |
"outputs": [], |
|
|
24 |
"source": [ |
|
|
25 |
"location_seg = '../../data/muscles/segmentation.nii.gz'\n", |
|
|
26 |
"location_save = os.path.expanduser('~/Downloads')" |
|
|
27 |
] |
|
|
28 |
}, |
|
|
29 |
{ |
|
|
30 |
"cell_type": "code", |
|
|
31 |
"execution_count": 5, |
|
|
32 |
"id": "c43ac4d4", |
|
|
33 |
"metadata": {}, |
|
|
34 |
"outputs": [ |
|
|
35 |
{ |
|
|
36 |
"name": "stderr", |
|
|
37 |
"output_type": "stream", |
|
|
38 |
"text": [ |
|
|
39 |
"Use of `point_arrays` is deprecated. Use `point_data` instead.\n", |
|
|
40 |
"Use of `cell_arrays` is deprecated. Use `cell_data` instead.\n" |
|
|
41 |
] |
|
|
42 |
} |
|
|
43 |
], |
|
|
44 |
"source": [ |
|
|
45 |
"# Loading the image in first so we can see what the labels are. \n", |
|
|
46 |
"# This can be skipped and a path provided directly if we know\n", |
|
|
47 |
"# the labels of interest. \n", |
|
|
48 |
"seg_image = sitk.ReadImage(location_seg)\n", |
|
|
49 |
"array = sitk.GetArrayFromImage(seg_image)\n", |
|
|
50 |
"seg_labels = np.unique(array)\n", |
|
|
51 |
"\n", |
|
|
52 |
"mesh1 = Mesh(\n", |
|
|
53 |
" seg_image=seg_image,\n", |
|
|
54 |
" label_idx=seg_labels[1]\n", |
|
|
55 |
" \n", |
|
|
56 |
")\n", |
|
|
57 |
"\n", |
|
|
58 |
"# Below is the command to create the mesh\n", |
|
|
59 |
"# all of the defaults inputs parameters are being listed \n", |
|
|
60 |
"# so that the available options are shown. \n", |
|
|
61 |
"mesh1.create_mesh(\n", |
|
|
62 |
" smooth_image=True, # I suggest leaving this on to help create smooth surfaces. \n", |
|
|
63 |
" smooth_image_var=0.3125/2, # this is the variance of a gaussian filter - can probably be bigger for muscles.\n", |
|
|
64 |
" marching_cubes_threshold=0.5, # this probably shouldnt be changed. \n", |
|
|
65 |
" label_idx=None, # Can specify this here instead of above if you want. \n", |
|
|
66 |
" min_n_pixels=None, # if there is a minimum number of pixels you want for it to create a mesh. \n", |
|
|
67 |
")\n", |
|
|
68 |
"\n", |
|
|
69 |
"mesh1.resample_surface(clusters=10000) # Resample surface to be a specified # of vertices (w/ in a small margin of error)\n", |
|
|
70 |
"\n" |
|
|
71 |
] |
|
|
72 |
}, |
|
|
73 |
{ |
|
|
74 |
"cell_type": "markdown", |
|
|
75 |
"id": "a4c3a458", |
|
|
76 |
"metadata": {}, |
|
|
77 |
"source": [ |
|
|
78 |
"## Save the mesh" |
|
|
79 |
] |
|
|
80 |
}, |
|
|
81 |
{ |
|
|
82 |
"cell_type": "code", |
|
|
83 |
"execution_count": 11, |
|
|
84 |
"id": "7bd7c341", |
|
|
85 |
"metadata": {}, |
|
|
86 |
"outputs": [], |
|
|
87 |
"source": [ |
|
|
88 |
"mesh1.save_mesh(os.path.join(location_save, 'mesh1.vtk')) # Save .vtk version of the mesh\n", |
|
|
89 |
"mesh1.save_mesh(os.path.join(location_save, 'mesh1.stl')) # Save .stl version of the mesh. " |
|
|
90 |
] |
|
|
91 |
}, |
|
|
92 |
{ |
|
|
93 |
"cell_type": "markdown", |
|
|
94 |
"id": "394b11b0", |
|
|
95 |
"metadata": {}, |
|
|
96 |
"source": [ |
|
|
97 |
"# If you want to iterate over all of the labels and save meshes: " |
|
|
98 |
] |
|
|
99 |
}, |
|
|
100 |
{ |
|
|
101 |
"cell_type": "markdown", |
|
|
102 |
"id": "c4c39deb", |
|
|
103 |
"metadata": {}, |
|
|
104 |
"source": [ |
|
|
105 |
"### First create a dictionary to store all of the meshes" |
|
|
106 |
] |
|
|
107 |
}, |
|
|
108 |
{ |
|
|
109 |
"cell_type": "code", |
|
|
110 |
"execution_count": 7, |
|
|
111 |
"id": "4368b846", |
|
|
112 |
"metadata": {}, |
|
|
113 |
"outputs": [], |
|
|
114 |
"source": [ |
|
|
115 |
"dict_meshes = {}\n", |
|
|
116 |
"for label_idx in seg_labels[1:]:\n", |
|
|
117 |
" dict_meshes[label_idx] = mskt.mesh.Mesh(\n", |
|
|
118 |
" seg_image=seg_image,\n", |
|
|
119 |
" label_idx=label_idx\n", |
|
|
120 |
"\n", |
|
|
121 |
" )\n", |
|
|
122 |
" \n", |
|
|
123 |
" dict_meshes[label_idx].create_mesh(smooth_image_var=3.0) # I ADDED MORE SMOOTHING FOR THESE\n", |
|
|
124 |
" dict_meshes[label_idx].resample_surface(clusters=10000)" |
|
|
125 |
] |
|
|
126 |
}, |
|
|
127 |
{ |
|
|
128 |
"cell_type": "markdown", |
|
|
129 |
"id": "1cc29d8d", |
|
|
130 |
"metadata": {}, |
|
|
131 |
"source": [ |
|
|
132 |
"### Save each mesh" |
|
|
133 |
] |
|
|
134 |
}, |
|
|
135 |
{ |
|
|
136 |
"cell_type": "code", |
|
|
137 |
"execution_count": 12, |
|
|
138 |
"id": "f5d6738e", |
|
|
139 |
"metadata": {}, |
|
|
140 |
"outputs": [], |
|
|
141 |
"source": [ |
|
|
142 |
"for key, mesh in dict_meshes.items():\n", |
|
|
143 |
" mesh.save_mesh(os.path.join(location_save, f'muscle_mesh{key}.vtk')) # Save vtk version\n", |
|
|
144 |
" mesh.save_mesh(os.path.join(location_save, f'muscle_mesh{key}.stl')) # Save stl version" |
|
|
145 |
] |
|
|
146 |
}, |
|
|
147 |
{ |
|
|
148 |
"cell_type": "markdown", |
|
|
149 |
"id": "b0a66862", |
|
|
150 |
"metadata": {}, |
|
|
151 |
"source": [ |
|
|
152 |
"# Below is the viewer that should work to see these in jupyter notebooks\n", |
|
|
153 |
"- This wasnt working on my computer for some reason. " |
|
|
154 |
] |
|
|
155 |
}, |
|
|
156 |
{ |
|
|
157 |
"cell_type": "code", |
|
|
158 |
"execution_count": 13, |
|
|
159 |
"id": "b9f350ba", |
|
|
160 |
"metadata": {}, |
|
|
161 |
"outputs": [], |
|
|
162 |
"source": [ |
|
|
163 |
"from itkwidgets import view" |
|
|
164 |
] |
|
|
165 |
}, |
|
|
166 |
{ |
|
|
167 |
"cell_type": "code", |
|
|
168 |
"execution_count": 14, |
|
|
169 |
"id": "505700e8", |
|
|
170 |
"metadata": {}, |
|
|
171 |
"outputs": [ |
|
|
172 |
{ |
|
|
173 |
"data": { |
|
|
174 |
"text/plain": [ |
|
|
175 |
"array([ 0, 14, 16, 18, 20, 22, 24, 26], dtype=uint16)" |
|
|
176 |
] |
|
|
177 |
}, |
|
|
178 |
"execution_count": 14, |
|
|
179 |
"metadata": {}, |
|
|
180 |
"output_type": "execute_result" |
|
|
181 |
} |
|
|
182 |
], |
|
|
183 |
"source": [ |
|
|
184 |
"seg_labels" |
|
|
185 |
] |
|
|
186 |
}, |
|
|
187 |
{ |
|
|
188 |
"cell_type": "code", |
|
|
189 |
"execution_count": 15, |
|
|
190 |
"id": "52169ea2", |
|
|
191 |
"metadata": {}, |
|
|
192 |
"outputs": [ |
|
|
193 |
{ |
|
|
194 |
"data": { |
|
|
195 |
"application/vnd.jupyter.widget-view+json": { |
|
|
196 |
"model_id": "5f7605d7f4274c78bbcbcb884feb90f8", |
|
|
197 |
"version_major": 2, |
|
|
198 |
"version_minor": 0 |
|
|
199 |
}, |
|
|
200 |
"text/plain": [ |
|
|
201 |
"Viewer(geometries=[{'vtkClass': 'vtkPolyData', 'points': {'vtkClass': 'vtkPoints', 'name': '_points', 'numberO…" |
|
|
202 |
] |
|
|
203 |
}, |
|
|
204 |
"metadata": {}, |
|
|
205 |
"output_type": "display_data" |
|
|
206 |
} |
|
|
207 |
], |
|
|
208 |
"source": [ |
|
|
209 |
"# view expects geometries to be in a list: \n", |
|
|
210 |
"geometries = [\n", |
|
|
211 |
" dict_meshes[14].mesh # the Mesh object has the actual mesh inside of it at Mesh.mesh\n", |
|
|
212 |
"]\n", |
|
|
213 |
"view(geometries=geometries)\n" |
|
|
214 |
] |
|
|
215 |
}, |
|
|
216 |
{ |
|
|
217 |
"cell_type": "markdown", |
|
|
218 |
"id": "9c6b9c5a", |
|
|
219 |
"metadata": {}, |
|
|
220 |
"source": [ |
|
|
221 |
"### Show multiple meshes at once: " |
|
|
222 |
] |
|
|
223 |
}, |
|
|
224 |
{ |
|
|
225 |
"cell_type": "code", |
|
|
226 |
"execution_count": 16, |
|
|
227 |
"id": "ddf2bed6", |
|
|
228 |
"metadata": {}, |
|
|
229 |
"outputs": [ |
|
|
230 |
{ |
|
|
231 |
"data": { |
|
|
232 |
"application/vnd.jupyter.widget-view+json": { |
|
|
233 |
"model_id": "b9275aa069ce432b9ab363874895c7d4", |
|
|
234 |
"version_major": 2, |
|
|
235 |
"version_minor": 0 |
|
|
236 |
}, |
|
|
237 |
"text/plain": [ |
|
|
238 |
"Viewer(geometries=[{'vtkClass': 'vtkPolyData', 'points': {'vtkClass': 'vtkPoints', 'name': '_points', 'numberO…" |
|
|
239 |
] |
|
|
240 |
}, |
|
|
241 |
"metadata": {}, |
|
|
242 |
"output_type": "display_data" |
|
|
243 |
} |
|
|
244 |
], |
|
|
245 |
"source": [ |
|
|
246 |
"# view expects geometries to be in a list: \n", |
|
|
247 |
"geometries = [\n", |
|
|
248 |
" dict_meshes[14].mesh, # the Mesh object has the actual mesh inside of it at Mesh.mesh\n", |
|
|
249 |
" dict_meshes[16].mesh,\n", |
|
|
250 |
" dict_meshes[18].mesh,\n", |
|
|
251 |
" dict_meshes[20].mesh,\n", |
|
|
252 |
" dict_meshes[22].mesh,\n", |
|
|
253 |
" dict_meshes[24].mesh,\n", |
|
|
254 |
" dict_meshes[26].mesh\n", |
|
|
255 |
"]\n", |
|
|
256 |
"view(geometries=geometries)" |
|
|
257 |
] |
|
|
258 |
}, |
|
|
259 |
{ |
|
|
260 |
"cell_type": "code", |
|
|
261 |
"execution_count": null, |
|
|
262 |
"id": "397e00d4", |
|
|
263 |
"metadata": {}, |
|
|
264 |
"outputs": [], |
|
|
265 |
"source": [] |
|
|
266 |
} |
|
|
267 |
], |
|
|
268 |
"metadata": { |
|
|
269 |
"kernelspec": { |
|
|
270 |
"display_name": "Python 3 (ipykernel)", |
|
|
271 |
"language": "python", |
|
|
272 |
"name": "python3" |
|
|
273 |
}, |
|
|
274 |
"language_info": { |
|
|
275 |
"codemirror_mode": { |
|
|
276 |
"name": "ipython", |
|
|
277 |
"version": 3 |
|
|
278 |
}, |
|
|
279 |
"file_extension": ".py", |
|
|
280 |
"mimetype": "text/x-python", |
|
|
281 |
"name": "python", |
|
|
282 |
"nbconvert_exporter": "python", |
|
|
283 |
"pygments_lexer": "ipython3", |
|
|
284 |
"version": "3.8.12" |
|
|
285 |
} |
|
|
286 |
}, |
|
|
287 |
"nbformat": 4, |
|
|
288 |
"nbformat_minor": 5 |
|
|
289 |
} |