|
a |
|
b/docs/mesh/meshTools.html |
|
|
1 |
<!doctype html> |
|
|
2 |
<html lang="en"> |
|
|
3 |
<head> |
|
|
4 |
<meta charset="utf-8"> |
|
|
5 |
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" /> |
|
|
6 |
<meta name="generator" content="pdoc 0.10.0" /> |
|
|
7 |
<title>pymskt.mesh.meshTools API documentation</title> |
|
|
8 |
<meta name="description" content="" /> |
|
|
9 |
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin> |
|
|
10 |
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin> |
|
|
11 |
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin> |
|
|
12 |
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style> |
|
|
13 |
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style> |
|
|
14 |
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style> |
|
|
15 |
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script> |
|
|
16 |
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script> |
|
|
17 |
</head> |
|
|
18 |
<body> |
|
|
19 |
<main> |
|
|
20 |
<article id="content"> |
|
|
21 |
<header> |
|
|
22 |
<h1 class="title">Module <code>pymskt.mesh.meshTools</code></h1> |
|
|
23 |
</header> |
|
|
24 |
<section id="section-intro"> |
|
|
25 |
<details class="source"> |
|
|
26 |
<summary> |
|
|
27 |
<span>Expand source code</span> |
|
|
28 |
</summary> |
|
|
29 |
<pre><code class="python">import os |
|
|
30 |
import time |
|
|
31 |
from turtle import distance |
|
|
32 |
|
|
|
33 |
import vtk |
|
|
34 |
from vtk.util.numpy_support import vtk_to_numpy, numpy_to_vtk |
|
|
35 |
|
|
|
36 |
import SimpleITK as sitk |
|
|
37 |
import pyacvd |
|
|
38 |
import pyvista as pv |
|
|
39 |
|
|
|
40 |
import numpy as np |
|
|
41 |
|
|
|
42 |
from pymskt.utils import n2l, l2n, safely_delete_tmp_file |
|
|
43 |
from pymskt.mesh.utils import is_hit, get_intersect, get_surface_normals, get_obb_surface |
|
|
44 |
import pymskt.image as pybtimage |
|
|
45 |
import pymskt.mesh.createMesh as createMesh |
|
|
46 |
import pymskt.mesh.meshTransform as meshTransform |
|
|
47 |
from pymskt.cython_functions import gaussian_kernel |
|
|
48 |
|
|
|
49 |
epsilon = 1e-7 |
|
|
50 |
|
|
|
51 |
class ProbeVtkImageDataAlongLine: |
|
|
52 |
""" |
|
|
53 |
Class to find values along a line. This is used to get things like the mean T2 value normal |
|
|
54 |
to a bones surface & within the cartialge region. This is done by defining a line in a |
|
|
55 |
particualar location. |
|
|
56 |
|
|
|
57 |
Parameters |
|
|
58 |
---------- |
|
|
59 |
line_resolution : float |
|
|
60 |
How many points to create along the line. |
|
|
61 |
vtk_image : vtk.vtkImageData |
|
|
62 |
Image read into vtk so that we can apply the probe to it. |
|
|
63 |
save_data_in_class : bool, optional |
|
|
64 |
Whether or not to save data along the line(s) to the class, by default True |
|
|
65 |
save_mean : bool, optional |
|
|
66 |
Whether the mean value should be saved along the line, by default False |
|
|
67 |
save_std : bool, optional |
|
|
68 |
Whether the standard deviation of the data along the line should be |
|
|
69 |
saved, by default False |
|
|
70 |
save_most_common : bool, optional |
|
|
71 |
Whether the mode (most common) value should be saved used for identifying cartilage |
|
|
72 |
regions on the bone surface, by default False |
|
|
73 |
filler : int, optional |
|
|
74 |
What value should be placed at locations where we don't have a value |
|
|
75 |
(e.g., where we don't have T2 values), by default 0 |
|
|
76 |
non_zero_only : bool, optional |
|
|
77 |
Only save non-zero values along the line, by default True |
|
|
78 |
This is done becuase zeros are normally regions of error (e.g. |
|
|
79 |
poor T2 relaxation fit) and thus would artifically reduce the outcome |
|
|
80 |
along the line. |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
Attributes |
|
|
84 |
---------- |
|
|
85 |
save_mean : bool |
|
|
86 |
Whether the mean value should be saved along the line, by default False |
|
|
87 |
save_std : bool |
|
|
88 |
Whether the standard deviation of the data along the line should be |
|
|
89 |
saved, by default False |
|
|
90 |
save_most_common : bool |
|
|
91 |
Whether the mode (most common) value should be saved used for identifying cartilage |
|
|
92 |
regions on the bone surface, by default False |
|
|
93 |
filler : float |
|
|
94 |
What value should be placed at locations where we don't have a value |
|
|
95 |
(e.g., where we don't have T2 values), by default 0 |
|
|
96 |
non_zero_only : bool |
|
|
97 |
Only save non-zero values along the line, by default True |
|
|
98 |
This is done becuase zeros are normally regions of error (e.g. |
|
|
99 |
poor T2 relaxation fit) and thus would artifically reduce the outcome |
|
|
100 |
along the line. |
|
|
101 |
line : vtk.vtkLineSource |
|
|
102 |
Line to put into `probe_filter` and to determine mean/std/common values for. |
|
|
103 |
probe_filter : vtk.vtkProbeFilter |
|
|
104 |
Filter to use to get the image data along the line. |
|
|
105 |
_mean_data : list |
|
|
106 |
List of the mean values for each vertex / line projected |
|
|
107 |
_std_data : list |
|
|
108 |
List of standard deviation of each vertex / line projected |
|
|
109 |
_most_common_data : list |
|
|
110 |
List of most common data of each vertex / line projected |
|
|
111 |
|
|
|
112 |
Methods |
|
|
113 |
------- |
|
|
114 |
|
|
|
115 |
|
|
|
116 |
""" |
|
|
117 |
def __init__(self, |
|
|
118 |
line_resolution, |
|
|
119 |
vtk_image, |
|
|
120 |
save_data_in_class=True, |
|
|
121 |
save_mean=False, |
|
|
122 |
save_std=False, |
|
|
123 |
save_most_common=False, |
|
|
124 |
save_max=False, |
|
|
125 |
filler=0, |
|
|
126 |
non_zero_only=True, |
|
|
127 |
data_categorical=False |
|
|
128 |
): |
|
|
129 |
"""[summary] |
|
|
130 |
|
|
|
131 |
Parameters |
|
|
132 |
---------- |
|
|
133 |
line_resolution : float |
|
|
134 |
How many points to create along the line. |
|
|
135 |
vtk_image : vtk.vtkImageData |
|
|
136 |
Image read into vtk so that we can apply the probe to it. |
|
|
137 |
save_data_in_class : bool, optional |
|
|
138 |
Whether or not to save data along the line(s) to the class, by default True |
|
|
139 |
save_mean : bool, optional |
|
|
140 |
Whether the mean value should be saved along the line, by default False |
|
|
141 |
save_std : bool, optional |
|
|
142 |
Whether the standard deviation of the data along the line should be |
|
|
143 |
saved, by default False |
|
|
144 |
save_most_common : bool, optional |
|
|
145 |
Whether the mode (most common) value should be saved used for identifying cartilage |
|
|
146 |
regions on the bone surface, by default False |
|
|
147 |
save_max : bool, optional |
|
|
148 |
Whether the max value should be saved along the line, be default False |
|
|
149 |
filler : int, optional |
|
|
150 |
What value should be placed at locations where we don't have a value |
|
|
151 |
(e.g., where we don't have T2 values), by default 0 |
|
|
152 |
non_zero_only : bool, optional |
|
|
153 |
Only save non-zero values along the line, by default True |
|
|
154 |
This is done becuase zeros are normally regions of error (e.g. |
|
|
155 |
poor T2 relaxation fit) and thus would artifically reduce the outcome |
|
|
156 |
along the line. |
|
|
157 |
data_categorical : bool, optional |
|
|
158 |
Specify whether or not the data is categorical to determine the interpolation |
|
|
159 |
method that should be used. |
|
|
160 |
""" |
|
|
161 |
self.save_mean = save_mean |
|
|
162 |
self.save_std = save_std |
|
|
163 |
self.save_most_common = save_most_common |
|
|
164 |
self.save_max = save_max |
|
|
165 |
self.filler = filler |
|
|
166 |
self.non_zero_only = non_zero_only |
|
|
167 |
|
|
|
168 |
self.line = vtk.vtkLineSource() |
|
|
169 |
self.line.SetResolution(line_resolution) |
|
|
170 |
|
|
|
171 |
self.probe_filter = vtk.vtkProbeFilter() |
|
|
172 |
self.probe_filter.SetSourceData(vtk_image) |
|
|
173 |
if data_categorical is True: |
|
|
174 |
self.probe_filter.CategoricalDataOn() |
|
|
175 |
|
|
|
176 |
if save_data_in_class is True: |
|
|
177 |
if self.save_mean is True: |
|
|
178 |
self._mean_data = [] |
|
|
179 |
if self.save_std is True: |
|
|
180 |
self._std_data = [] |
|
|
181 |
if self.save_most_common is True: |
|
|
182 |
self._most_common_data = [] |
|
|
183 |
if self.save_max is True: |
|
|
184 |
self._max_data = [] |
|
|
185 |
|
|
|
186 |
def get_data_along_line(self, |
|
|
187 |
start_pt, |
|
|
188 |
end_pt): |
|
|
189 |
""" |
|
|
190 |
Function to get scalar values along a line between `start_pt` and `end_pt`. |
|
|
191 |
|
|
|
192 |
Parameters |
|
|
193 |
---------- |
|
|
194 |
start_pt : list |
|
|
195 |
List of the x,y,z position of the starting point in the line. |
|
|
196 |
end_pt : list |
|
|
197 |
List of the x,y,z position of the ending point in the line. |
|
|
198 |
|
|
|
199 |
Returns |
|
|
200 |
------- |
|
|
201 |
numpy.ndarray |
|
|
202 |
numpy array of scalar values obtained along the line. |
|
|
203 |
""" |
|
|
204 |
self.line.SetPoint1(start_pt) |
|
|
205 |
self.line.SetPoint2(end_pt) |
|
|
206 |
|
|
|
207 |
self.probe_filter.SetInputConnection(self.line.GetOutputPort()) |
|
|
208 |
self.probe_filter.Update() |
|
|
209 |
scalars = vtk_to_numpy(self.probe_filter.GetOutput().GetPointData().GetScalars()) |
|
|
210 |
|
|
|
211 |
if self.non_zero_only is True: |
|
|
212 |
scalars = scalars[scalars != 0] |
|
|
213 |
|
|
|
214 |
return scalars |
|
|
215 |
|
|
|
216 |
def save_data_along_line(self, |
|
|
217 |
start_pt, |
|
|
218 |
end_pt): |
|
|
219 |
""" |
|
|
220 |
Save the appropriate outcomes to a growing list. |
|
|
221 |
|
|
|
222 |
Parameters |
|
|
223 |
---------- |
|
|
224 |
start_pt : list |
|
|
225 |
List of the x,y,z position of the starting point in the line. |
|
|
226 |
end_pt : list |
|
|
227 |
List of the x,y,z position of the ending point in the line. |
|
|
228 |
""" |
|
|
229 |
scalars = self.get_data_along_line(start_pt, end_pt) |
|
|
230 |
if len(scalars) > 0: |
|
|
231 |
if self.save_mean is True: |
|
|
232 |
self._mean_data.append(np.mean(scalars)) |
|
|
233 |
if self.save_std is True: |
|
|
234 |
self._std_data.append(np.std(scalars, ddof=1)) |
|
|
235 |
if self.save_most_common is True: |
|
|
236 |
# most_common is for getting segmentations and trying to assign a bone region |
|
|
237 |
# to be a cartilage ROI. This is becuase there might be a normal vector that |
|
|
238 |
# cross > 1 cartilage region (e.g., weight-bearing vs anterior fem cartilage) |
|
|
239 |
self._most_common_data.append(np.bincount(scalars).argmax()) |
|
|
240 |
if self.save_max is True: |
|
|
241 |
self._max_data.append(np.max(scalars)) |
|
|
242 |
else: |
|
|
243 |
self.append_filler() |
|
|
244 |
|
|
|
245 |
def append_filler(self): |
|
|
246 |
""" |
|
|
247 |
Add filler value to the requisite lists (_mean_data, _std_data, etc.) as |
|
|
248 |
appropriate. |
|
|
249 |
""" |
|
|
250 |
if self.save_mean is True: |
|
|
251 |
self._mean_data.append(self.filler) |
|
|
252 |
if self.save_std is True: |
|
|
253 |
self._std_data.append(self.filler) |
|
|
254 |
if self.save_most_common is True: |
|
|
255 |
self._most_common_data.append(self.filler) |
|
|
256 |
if self.save_max is True: |
|
|
257 |
self._max_data.append(self.filler) |
|
|
258 |
|
|
|
259 |
@property |
|
|
260 |
def mean_data(self): |
|
|
261 |
""" |
|
|
262 |
Return the `_mean_data` |
|
|
263 |
|
|
|
264 |
Returns |
|
|
265 |
------- |
|
|
266 |
list |
|
|
267 |
List of mean values along each line tested. |
|
|
268 |
""" |
|
|
269 |
if self.save_mean is True: |
|
|
270 |
return self._mean_data |
|
|
271 |
else: |
|
|
272 |
return None |
|
|
273 |
|
|
|
274 |
@property |
|
|
275 |
def std_data(self): |
|
|
276 |
""" |
|
|
277 |
Return the `_std_data` |
|
|
278 |
|
|
|
279 |
Returns |
|
|
280 |
------- |
|
|
281 |
list |
|
|
282 |
List of the std values along each line tested. |
|
|
283 |
""" |
|
|
284 |
if self.save_std is True: |
|
|
285 |
return self._std_data |
|
|
286 |
else: |
|
|
287 |
return None |
|
|
288 |
|
|
|
289 |
@property |
|
|
290 |
def most_common_data(self): |
|
|
291 |
""" |
|
|
292 |
Return the `_most_common_data` |
|
|
293 |
|
|
|
294 |
Returns |
|
|
295 |
------- |
|
|
296 |
list |
|
|
297 |
List of the most common value for each line tested. |
|
|
298 |
""" |
|
|
299 |
if self.save_most_common is True: |
|
|
300 |
return self._most_common_data |
|
|
301 |
else: |
|
|
302 |
return None |
|
|
303 |
|
|
|
304 |
@property |
|
|
305 |
def max_data(self): |
|
|
306 |
""" |
|
|
307 |
Return the `_max_data` |
|
|
308 |
|
|
|
309 |
Returns |
|
|
310 |
------- |
|
|
311 |
list |
|
|
312 |
List of the most common value for each line tested. |
|
|
313 |
""" |
|
|
314 |
if self.save_max is True: |
|
|
315 |
return self._max_data |
|
|
316 |
else: |
|
|
317 |
return None |
|
|
318 |
|
|
|
319 |
|
|
|
320 |
def get_cartilage_properties_at_points(surface_bone, |
|
|
321 |
surface_cartilage, |
|
|
322 |
t2_vtk_image=None, |
|
|
323 |
seg_vtk_image=None, |
|
|
324 |
ray_cast_length=20., |
|
|
325 |
percent_ray_length_opposite_direction=0.25, |
|
|
326 |
no_thickness_filler=0., |
|
|
327 |
no_t2_filler=0., |
|
|
328 |
no_seg_filler=0, |
|
|
329 |
line_resolution=100): # Could be nan?? |
|
|
330 |
""" |
|
|
331 |
Extract cartilage outcomes (T2 & thickness) at all points on bone surface. |
|
|
332 |
|
|
|
333 |
Parameters |
|
|
334 |
---------- |
|
|
335 |
surface_bone : BoneMesh |
|
|
336 |
Bone mesh containing vtk.vtkPolyData - get outcomes for nodes (vertices) on |
|
|
337 |
this mesh |
|
|
338 |
surface_cartilage : CartilageMesh |
|
|
339 |
Cartilage mesh containing vtk.vtkPolyData - for obtaining cartilage outcomes. |
|
|
340 |
t2_vtk_image : vtk.vtkImageData, optional |
|
|
341 |
vtk object that contains our Cartilage T2 data, by default None |
|
|
342 |
seg_vtk_image : vtk.vtkImageData, optional |
|
|
343 |
vtk object that contains the segmentation mask(s) to help assign |
|
|
344 |
labels to bone surface (e.g., most common), by default None |
|
|
345 |
ray_cast_length : float, optional |
|
|
346 |
Length (mm) of ray to cast from bone surface when trying to find cartilage (inner & |
|
|
347 |
outter shell), by default 20.0 |
|
|
348 |
percent_ray_length_opposite_direction : float, optional |
|
|
349 |
How far to project ray inside of the bone. This is done just in case the cartilage |
|
|
350 |
surface ends up slightly inside of (or coincident with) the bone surface, by default 0.25 |
|
|
351 |
no_thickness_filler : float, optional |
|
|
352 |
Value to use instead of thickness (if no cartilage), by default 0. |
|
|
353 |
no_t2_filler : float, optional |
|
|
354 |
Value to use instead of T2 (if no cartilage), by default 0. |
|
|
355 |
no_seg_filler : int, optional |
|
|
356 |
Value to use if no segmentation label available (because no cartilage?), by default 0 |
|
|
357 |
line_resolution : int, optional |
|
|
358 |
Number of points to have along line, by default 100 |
|
|
359 |
|
|
|
360 |
Returns |
|
|
361 |
------- |
|
|
362 |
list |
|
|
363 |
Will return list of data for: |
|
|
364 |
Cartilage thickness |
|
|
365 |
Mean T2 at each point on bone |
|
|
366 |
Most common cartilage label at each point on bone (normal to surface). |
|
|
367 |
""" |
|
|
368 |
|
|
|
369 |
normals = get_surface_normals(surface_bone) |
|
|
370 |
points = surface_bone.GetPoints() |
|
|
371 |
obb_cartilage = get_obb_surface(surface_cartilage) |
|
|
372 |
point_normals = normals.GetOutput().GetPointData().GetNormals() |
|
|
373 |
|
|
|
374 |
thickness_data = [] |
|
|
375 |
if (t2_vtk_image is not None) or (seg_vtk_image is not None): |
|
|
376 |
# if T2 data, or a segmentation image is provided, then setup Probe tool to |
|
|
377 |
# get T2 values and/or cartilage ROI for each bone vertex. |
|
|
378 |
line = vtk.vtkLineSource() |
|
|
379 |
line.SetResolution(line_resolution) |
|
|
380 |
|
|
|
381 |
if t2_vtk_image is not None: |
|
|
382 |
t2_data_probe = ProbeVtkImageDataAlongLine(line_resolution, |
|
|
383 |
t2_vtk_image, |
|
|
384 |
save_mean=True, |
|
|
385 |
filler=no_t2_filler) |
|
|
386 |
if seg_vtk_image is not None: |
|
|
387 |
seg_data_probe = ProbeVtkImageDataAlongLine(line_resolution, |
|
|
388 |
seg_vtk_image, |
|
|
389 |
save_most_common=True, |
|
|
390 |
filler=no_seg_filler, |
|
|
391 |
data_categorical=True) |
|
|
392 |
# Loop through all points |
|
|
393 |
for idx in range(points.GetNumberOfPoints()): |
|
|
394 |
point = points.GetPoint(idx) |
|
|
395 |
normal = point_normals.GetTuple(idx) |
|
|
396 |
|
|
|
397 |
end_point_ray = n2l(l2n(point) + ray_cast_length*l2n(normal)) |
|
|
398 |
start_point_ray = n2l(l2n(point) + ray_cast_length*percent_ray_length_opposite_direction*(-l2n(normal))) |
|
|
399 |
|
|
|
400 |
# Check if there are any intersections for the given ray |
|
|
401 |
if is_hit(obb_cartilage, start_point_ray, end_point_ray): # intersections were found |
|
|
402 |
# Retrieve coordinates of intersection points and intersected cell ids |
|
|
403 |
points_intersect, cell_ids_intersect = get_intersect(obb_cartilage, start_point_ray, end_point_ray) |
|
|
404 |
# points |
|
|
405 |
if len(points_intersect) == 2: |
|
|
406 |
thickness_data.append(np.sqrt(np.sum(np.square(l2n(points_intersect[0]) - l2n(points_intersect[1]))))) |
|
|
407 |
if t2_vtk_image is not None: |
|
|
408 |
t2_data_probe.save_data_along_line(start_pt=points_intersect[0], |
|
|
409 |
end_pt=points_intersect[1]) |
|
|
410 |
if seg_vtk_image is not None: |
|
|
411 |
seg_data_probe.save_data_along_line(start_pt=points_intersect[0], |
|
|
412 |
end_pt=points_intersect[1]) |
|
|
413 |
|
|
|
414 |
else: |
|
|
415 |
thickness_data.append(no_thickness_filler) |
|
|
416 |
if t2_vtk_image is not None: |
|
|
417 |
t2_data_probe.append_filler() |
|
|
418 |
if seg_vtk_image is not None: |
|
|
419 |
seg_data_probe.append_filler() |
|
|
420 |
else: |
|
|
421 |
thickness_data.append(no_thickness_filler) |
|
|
422 |
if t2_vtk_image is not None: |
|
|
423 |
t2_data_probe.append_filler() |
|
|
424 |
if seg_vtk_image is not None: |
|
|
425 |
seg_data_probe.append_filler() |
|
|
426 |
|
|
|
427 |
if (t2_vtk_image is None) & (seg_vtk_image is None): |
|
|
428 |
return np.asarray(thickness_data, dtype=np.float) |
|
|
429 |
elif (t2_vtk_image is not None) & (seg_vtk_image is not None): |
|
|
430 |
return (np.asarray(thickness_data, dtype=np.float), |
|
|
431 |
np.asarray(t2_data_probe.mean_data, dtype=np.float), |
|
|
432 |
np.asarray(seg_data_probe.most_common_data, dtype=np.int) |
|
|
433 |
) |
|
|
434 |
elif t2_vtk_image is not None: |
|
|
435 |
return (np.asarray(thickness_data, dtype=np.float), |
|
|
436 |
np.asarray(t2_data_probe.mean_data, dtype=np.float) |
|
|
437 |
) |
|
|
438 |
elif seg_vtk_image is not None: |
|
|
439 |
return (np.asarray(thickness_data, dtype=np.float), |
|
|
440 |
np.asarray(seg_data_probe.most_common_data, dtype=np.int) |
|
|
441 |
) |
|
|
442 |
|
|
|
443 |
def set_mesh_physical_point_coords(mesh, new_points): |
|
|
444 |
""" |
|
|
445 |
Convenience function to update the x/y/z point coords of a mesh |
|
|
446 |
|
|
|
447 |
Nothing is returned becuase the mesh object is updated in-place. |
|
|
448 |
|
|
|
449 |
Parameters |
|
|
450 |
---------- |
|
|
451 |
mesh : vtk.vtkPolyData |
|
|
452 |
Mesh object we want to update the point coordinates for |
|
|
453 |
new_points : np.ndarray |
|
|
454 |
Numpy array shaped n_points x 3. These are the new point coordinates that |
|
|
455 |
we want to update the mesh to have. |
|
|
456 |
|
|
|
457 |
""" |
|
|
458 |
orig_point_coords = get_mesh_physical_point_coords(mesh) |
|
|
459 |
if new_points.shape == orig_point_coords.shape: |
|
|
460 |
mesh.GetPoints().SetData(numpy_to_vtk(new_points)) |
|
|
461 |
|
|
|
462 |
|
|
|
463 |
def get_mesh_physical_point_coords(mesh): |
|
|
464 |
""" |
|
|
465 |
Get a numpy array of the x/y/z location of each point (vertex) on the `mesh`. |
|
|
466 |
|
|
|
467 |
Parameters |
|
|
468 |
---------- |
|
|
469 |
mesh : |
|
|
470 |
[description] |
|
|
471 |
|
|
|
472 |
Returns |
|
|
473 |
------- |
|
|
474 |
numpy.ndarray |
|
|
475 |
n_points x 3 array describing the x/y/z position of each point. |
|
|
476 |
|
|
|
477 |
Notes |
|
|
478 |
----- |
|
|
479 |
Below is the original method used to retrieve the point coordinates. |
|
|
480 |
|
|
|
481 |
point_coordinates = np.zeros((mesh.GetNumberOfPoints(), 3)) |
|
|
482 |
for pt_idx in range(mesh.GetNumberOfPoints()): |
|
|
483 |
point_coordinates[pt_idx, :] = mesh.GetPoint(pt_idx) |
|
|
484 |
""" |
|
|
485 |
|
|
|
486 |
point_coordinates = vtk_to_numpy(mesh.GetPoints().GetData()) |
|
|
487 |
return point_coordinates |
|
|
488 |
|
|
|
489 |
def smooth_scalars_from_second_mesh_onto_base(base_mesh, |
|
|
490 |
second_mesh, |
|
|
491 |
sigma=1., |
|
|
492 |
idx_coords_to_smooth_base=None, |
|
|
493 |
idx_coords_to_smooth_second=None, |
|
|
494 |
set_non_smoothed_scalars_to_zero=True |
|
|
495 |
): # sigma is equal to fwhm=2 (1mm in each direction) |
|
|
496 |
""" |
|
|
497 |
Function to copy surface scalars from one mesh to another. This is done in a "smoothing" fashioon |
|
|
498 |
to get a weighted-average of the closest point - this is because the points on the 2 meshes won't |
|
|
499 |
be coincident with one another. The weighted average is done using a gaussian smoothing. |
|
|
500 |
|
|
|
501 |
Parameters |
|
|
502 |
---------- |
|
|
503 |
base_mesh : vtk.vtkPolyData |
|
|
504 |
The base mesh to smooth the scalars from `second_mesh` onto. |
|
|
505 |
second_mesh : vtk.vtkPolyData |
|
|
506 |
The mesh with the scalar values that we want to pass onto the `base_mesh`. |
|
|
507 |
sigma : float, optional |
|
|
508 |
Sigma (standard deviation) of gaussian filter to apply to scalars, by default 1. |
|
|
509 |
idx_coords_to_smooth_base : list, optional |
|
|
510 |
List of the indices of nodes that are of interest for transferring (typically cartilage), |
|
|
511 |
by default None |
|
|
512 |
idx_coords_to_smooth_second : list, optional |
|
|
513 |
List of the indices of the nodes that are of interest on the second mesh, by default None |
|
|
514 |
set_non_smoothed_scalars_to_zero : bool, optional |
|
|
515 |
Whether or not to set all notes that are not smoothed to zero, by default True |
|
|
516 |
|
|
|
517 |
Returns |
|
|
518 |
------- |
|
|
519 |
numpy.ndarray |
|
|
520 |
An array of the scalar values for each node on the base mesh that includes the scalar values |
|
|
521 |
transfered (smoothed) from the secondary mesh. |
|
|
522 |
""" |
|
|
523 |
base_mesh_pts = get_mesh_physical_point_coords(base_mesh) |
|
|
524 |
if idx_coords_to_smooth_base is not None: |
|
|
525 |
base_mesh_pts = base_mesh_pts[idx_coords_to_smooth_base, :] |
|
|
526 |
second_mesh_pts = get_mesh_physical_point_coords(second_mesh) |
|
|
527 |
if idx_coords_to_smooth_second is not None: |
|
|
528 |
second_mesh_pts = second_mesh_pts[idx_coords_to_smooth_second, :] |
|
|
529 |
gauss_kernel = gaussian_kernel(base_mesh_pts, second_mesh_pts, sigma=sigma) |
|
|
530 |
second_mesh_scalars = np.copy(vtk_to_numpy(second_mesh.GetPointData().GetScalars())) |
|
|
531 |
if idx_coords_to_smooth_second is not None: |
|
|
532 |
# If sub-sampled second mesh - then only give the scalars from those sub-sampled points on mesh. |
|
|
533 |
second_mesh_scalars = second_mesh_scalars[idx_coords_to_smooth_second] |
|
|
534 |
|
|
|
535 |
smoothed_scalars_on_base = np.sum(gauss_kernel * second_mesh_scalars, axis=1) |
|
|
536 |
|
|
|
537 |
if idx_coords_to_smooth_base is not None: |
|
|
538 |
# if sub-sampled baseline mesh (only want to set cartilage to certain points/vertices), then |
|
|
539 |
# set the calculated smoothed scalars to only those nodes (and leave all other nodes the same as they were |
|
|
540 |
# originally. |
|
|
541 |
if set_non_smoothed_scalars_to_zero is True: |
|
|
542 |
base_mesh_scalars = np.zeros(base_mesh.GetNumberOfPoints()) |
|
|
543 |
else: |
|
|
544 |
base_mesh_scalars = np.copy(vtk_to_numpy(base_mesh.GetPointData().GetScalars())) |
|
|
545 |
base_mesh_scalars[idx_coords_to_smooth_base] = smoothed_scalars_on_base |
|
|
546 |
return base_mesh_scalars |
|
|
547 |
|
|
|
548 |
else: |
|
|
549 |
return smoothed_scalars_on_base |
|
|
550 |
|
|
|
551 |
|
|
|
552 |
def transfer_mesh_scalars_get_weighted_average_n_closest(new_mesh, old_mesh, n=3): |
|
|
553 |
""" |
|
|
554 |
Transfer scalars from old_mesh to new_mesh using the weighted-average of the `n` closest |
|
|
555 |
nodes/points/vertices. Similar but not exactly the same as `smooth_scalars_from_second_mesh_onto_base` |
|
|
556 |
|
|
|
557 |
This function is ideally used for things like transferring cartilage thickness values from one mesh to another |
|
|
558 |
after they have been registered together. This is necessary for things like performing statistical analyses or |
|
|
559 |
getting aggregate statistics. |
|
|
560 |
|
|
|
561 |
Parameters |
|
|
562 |
---------- |
|
|
563 |
new_mesh : vtk.vtkPolyData |
|
|
564 |
The new mesh that we want to transfer scalar values onto. Also `base_mesh` from |
|
|
565 |
`smooth_scalars_from_second_mesh_onto_base` |
|
|
566 |
old_mesh : vtk.vtkPolyData |
|
|
567 |
The mesh that we want to transfer scalars from. Also called `second_mesh` from |
|
|
568 |
`smooth_scalars_from_second_mesh_onto_base` |
|
|
569 |
n : int, optional |
|
|
570 |
The number of closest nodes that we want to get weighed average of, by default 3 |
|
|
571 |
|
|
|
572 |
Returns |
|
|
573 |
------- |
|
|
574 |
numpy.ndarray |
|
|
575 |
An array of the scalar values for each node on the `new_mesh` that includes the scalar values |
|
|
576 |
transfered (smoothed) from the `old_mesh`. |
|
|
577 |
""" |
|
|
578 |
|
|
|
579 |
kDTree = vtk.vtkKdTreePointLocator() |
|
|
580 |
kDTree.SetDataSet(old_mesh) |
|
|
581 |
kDTree.BuildLocator() |
|
|
582 |
|
|
|
583 |
n_arrays = old_mesh.GetPointData().GetNumberOfArrays() |
|
|
584 |
array_names = [old_mesh.GetPointData().GetArray(array_idx).GetName() for array_idx in range(n_arrays)] |
|
|
585 |
new_scalars = np.zeros((new_mesh.GetNumberOfPoints(), n_arrays)) |
|
|
586 |
scalars_old_mesh = [np.copy(vtk_to_numpy(old_mesh.GetPointData().GetArray(array_name))) for array_name in array_names] |
|
|
587 |
# print('len scalars_old_mesh', len(scalars_old_mesh)) |
|
|
588 |
# scalars_old_mesh = np.copy(vtk_to_numpy(old_mesh.GetPointData().GetScalars())) |
|
|
589 |
for new_mesh_pt_idx in range(new_mesh.GetNumberOfPoints()): |
|
|
590 |
point = new_mesh.GetPoint(new_mesh_pt_idx) |
|
|
591 |
closest_ids = vtk.vtkIdList() |
|
|
592 |
kDTree.FindClosestNPoints(n, point, closest_ids) |
|
|
593 |
|
|
|
594 |
list_scalars = [] |
|
|
595 |
distance_weighting = [] |
|
|
596 |
for closest_pts_idx in range(closest_ids.GetNumberOfIds()): |
|
|
597 |
pt_idx = closest_ids.GetId(closest_pts_idx) |
|
|
598 |
_point = old_mesh.GetPoint(pt_idx) |
|
|
599 |
list_scalars.append([scalars[pt_idx] for scalars in scalars_old_mesh]) |
|
|
600 |
distance_weighting.append(1 / np.sqrt(np.sum(np.square(np.asarray(point) - np.asarray(_point) + epsilon)))) |
|
|
601 |
|
|
|
602 |
total_distance = np.sum(distance_weighting) |
|
|
603 |
# print('list_scalars', list_scalars) |
|
|
604 |
# print('distance_weighting', distance_weighting) |
|
|
605 |
# print('total_distance', total_distance) |
|
|
606 |
normalized_value = np.sum(np.asarray(list_scalars) * np.expand_dims(np.asarray(distance_weighting), axis=1), |
|
|
607 |
axis=0) / total_distance |
|
|
608 |
# print('new_mesh_pt_idx', new_mesh_pt_idx) |
|
|
609 |
# print('normalized_value', normalized_value) |
|
|
610 |
# print('new_scalars shape', new_scalars.shape) |
|
|
611 |
new_scalars[new_mesh_pt_idx, :] = normalized_value |
|
|
612 |
return new_scalars |
|
|
613 |
|
|
|
614 |
def get_smoothed_scalars(mesh, max_dist=2.0, order=2, gaussian=False): |
|
|
615 |
""" |
|
|
616 |
perform smoothing of scalars on the nodes of a surface mesh. |
|
|
617 |
return the smoothed values of the nodes so they can be used as necessary. |
|
|
618 |
(e.g. to replace originals or something else) |
|
|
619 |
Smoothing is done for all data within `max_dist` and uses a simple weighted average based on |
|
|
620 |
the distance to the power of `order`. Default is squared distance (`order=2`) |
|
|
621 |
|
|
|
622 |
Parameters |
|
|
623 |
---------- |
|
|
624 |
mesh : vtk.vtkPolyData |
|
|
625 |
Surface mesh that we want to smooth scalars of. |
|
|
626 |
max_dist : float, optional |
|
|
627 |
Maximum distance of nodes that we want to smooth (mm), by default 2.0 |
|
|
628 |
order : int, optional |
|
|
629 |
Order of the polynomial used for weighting other nodes within `max_dist`, by default 2 |
|
|
630 |
gaussian : bool, optional |
|
|
631 |
Should this use a gaussian smoothing, or weighted average, by default False |
|
|
632 |
|
|
|
633 |
Returns |
|
|
634 |
------- |
|
|
635 |
numpy.ndarray |
|
|
636 |
An array of the scalar values for each node on the `mesh` after they have been smoothed. |
|
|
637 |
""" |
|
|
638 |
|
|
|
639 |
kDTree = vtk.vtkKdTreePointLocator() |
|
|
640 |
kDTree.SetDataSet(mesh) |
|
|
641 |
kDTree.BuildLocator() |
|
|
642 |
|
|
|
643 |
thickness_smoothed = np.zeros(mesh.GetNumberOfPoints()) |
|
|
644 |
scalars = l2n(mesh.GetPointData().GetScalars()) |
|
|
645 |
for idx in range(mesh.GetNumberOfPoints()): |
|
|
646 |
if scalars[idx] >0: # don't smooth nodes with thickness == 0 (or negative? if that were to happen) |
|
|
647 |
point = mesh.GetPoint(idx) |
|
|
648 |
closest_ids = vtk.vtkIdList() |
|
|
649 |
kDTree.FindPointsWithinRadius(max_dist, point, closest_ids) # This will return a value ( 0 or 1). Can use that for debudding. |
|
|
650 |
|
|
|
651 |
list_scalars = [] |
|
|
652 |
list_distances = [] |
|
|
653 |
for closest_pt_idx in range(closest_ids.GetNumberOfIds()): |
|
|
654 |
pt_idx = closest_ids.GetId(closest_pt_idx) |
|
|
655 |
_point = mesh.GetPoint(pt_idx) |
|
|
656 |
list_scalars.append(scalars[pt_idx]) |
|
|
657 |
list_distances.append(np.sqrt(np.sum(np.square(np.asarray(point) - np.asarray(_point) + epsilon)))) |
|
|
658 |
|
|
|
659 |
distances_weighted = (max_dist - np.asarray(list_distances))**order |
|
|
660 |
scalars_weights = distances_weighted * np.asarray(list_scalars) |
|
|
661 |
normalized_value = np.sum(scalars_weights) / np.sum(distances_weighted) |
|
|
662 |
thickness_smoothed[idx] = normalized_value |
|
|
663 |
return thickness_smoothed |
|
|
664 |
|
|
|
665 |
def gaussian_smooth_surface_scalars(mesh, sigma=1., idx_coords_to_smooth=None, array_name='thickness (mm)', array_idx=None): |
|
|
666 |
""" |
|
|
667 |
The following is another function to smooth the scalar values on the surface of a mesh. |
|
|
668 |
This one performs a gaussian smoothing using the supplied sigma and only smooths based on |
|
|
669 |
the input `idx_coords_to_smooth`. If no `idx_coords_to_smooth` is provided, then all of the |
|
|
670 |
points are smoothed. `idx_coords_to_smooth` should be a list of indices of points to include. |
|
|
671 |
|
|
|
672 |
e.g., coords_to_smooth = np.where(vtk_to_numpy(mesh.GetPointData().GetScalars())>0.01)[0] |
|
|
673 |
This would give only coordinates where the scalar values of the mesh are >0.01. This example is |
|
|
674 |
useful for cartilage where we might only want to smooth in locations that we have cartilage and |
|
|
675 |
ignore the other areas. |
|
|
676 |
|
|
|
677 |
Parameters |
|
|
678 |
---------- |
|
|
679 |
mesh : vtk.vtkPolyData |
|
|
680 |
This is a surface mesh of that we want to smooth the scalars of. |
|
|
681 |
sigma : float, optional |
|
|
682 |
The standard deviation of the gaussian filter to apply, by default 1. |
|
|
683 |
idx_coords_to_smooth : list, optional |
|
|
684 |
List of the indices of the vertices (points) that we want to include in the |
|
|
685 |
smoothing. For example, we can only smooth values that are cartialge and ignore |
|
|
686 |
all non-cartilage points, by default None |
|
|
687 |
array_name : str, optional |
|
|
688 |
Name of the scalar array that we want to smooth/filter, by default 'thickness (mm)' |
|
|
689 |
array_idx : int, optional |
|
|
690 |
The index of the scalar array that we want to smooth/filter - this is an alternative |
|
|
691 |
option to `array_name`, by default None |
|
|
692 |
|
|
|
693 |
Returns |
|
|
694 |
------- |
|
|
695 |
vtk.vtkPolyData |
|
|
696 |
Return the original mesh for which the scalars have been smoothed. However, this is not |
|
|
697 |
necessary becuase if the original mesh still exists then it should have been updated |
|
|
698 |
during the course of the pipeline. |
|
|
699 |
""" |
|
|
700 |
|
|
|
701 |
point_coordinates = get_mesh_physical_point_coords(mesh) |
|
|
702 |
if idx_coords_to_smooth is not None: |
|
|
703 |
point_coordinates = point_coordinates[idx_coords_to_smooth, :] |
|
|
704 |
kernel = gaussian_kernel(point_coordinates, point_coordinates, sigma=sigma) |
|
|
705 |
|
|
|
706 |
original_array = mesh.GetPointData().GetArray(array_idx if array_idx is not None else array_name) |
|
|
707 |
original_scalars = np.copy(vtk_to_numpy(original_array)) |
|
|
708 |
|
|
|
709 |
if idx_coords_to_smooth is not None: |
|
|
710 |
smoothed_scalars = np.sum(kernel * original_scalars[idx_coords_to_smooth], |
|
|
711 |
axis=1) |
|
|
712 |
original_scalars[idx_coords_to_smooth] = smoothed_scalars |
|
|
713 |
smoothed_scalars = original_scalars |
|
|
714 |
else: |
|
|
715 |
smoothed_scalars = np.sum(kernel * original_scalars, axis=1) |
|
|
716 |
|
|
|
717 |
smoothed_scalars = numpy_to_vtk(smoothed_scalars) |
|
|
718 |
smoothed_scalars.SetName(original_array.GetName()) |
|
|
719 |
original_array.DeepCopy(smoothed_scalars) # Assign the scalars back to the original mesh |
|
|
720 |
|
|
|
721 |
# return the mesh object - however, if the original is not deleted, it should be smoothed |
|
|
722 |
# appropriately. |
|
|
723 |
return mesh |
|
|
724 |
|
|
|
725 |
def resample_surface(mesh, subdivisions=2, clusters=10000): |
|
|
726 |
""" |
|
|
727 |
Resample a surface mesh using the ACVD algorithm: |
|
|
728 |
Version used: |
|
|
729 |
- https://github.com/pyvista/pyacvd |
|
|
730 |
Original version w/ more references: |
|
|
731 |
- https://github.com/valette/ACVD |
|
|
732 |
|
|
|
733 |
Parameters |
|
|
734 |
---------- |
|
|
735 |
mesh : vtk.vtkPolyData |
|
|
736 |
Polydata mesh to be re-sampled. |
|
|
737 |
subdivisions : int, optional |
|
|
738 |
Subdivide the mesh to have more points before clustering, by default 2 |
|
|
739 |
Probably not necessary for very dense meshes. |
|
|
740 |
clusters : int, optional |
|
|
741 |
The number of clusters (points/vertices) to create during resampling |
|
|
742 |
surafce, by default 10000 |
|
|
743 |
- This is not exact, might have slight differences. |
|
|
744 |
|
|
|
745 |
Returns |
|
|
746 |
------- |
|
|
747 |
vtk.vtkPolyData : |
|
|
748 |
Return the resampled mesh. This will be a pyvista version of the vtk mesh |
|
|
749 |
but this is usable in all vtk function so it is not an issue. |
|
|
750 |
|
|
|
751 |
|
|
|
752 |
""" |
|
|
753 |
pv_smooth_mesh = pv.wrap(mesh) |
|
|
754 |
clus = pyacvd.Clustering(pv_smooth_mesh) |
|
|
755 |
clus.subdivide(subdivisions) |
|
|
756 |
clus.cluster(clusters) |
|
|
757 |
mesh = clus.create_mesh() |
|
|
758 |
|
|
|
759 |
return mesh |
|
|
760 |
### THE FOLLOWING IS AN OLD/ORIGINAL VERSION OF THIS THAT SMOOTHED ALL ARRAYS ATTACHED TO MESH |
|
|
761 |
# def gaussian_smooth_surface_scalars(mesh, sigma=(1,), idx_coords_to_smooth=None): |
|
|
762 |
# """ |
|
|
763 |
# The following is another function to smooth the scalar values on the surface of a mesh. |
|
|
764 |
# This one performs a gaussian smoothing using the supplied sigma and only smooths based on |
|
|
765 |
# the input `idx_coords_to_smooth`. If no `idx_coords_to_smooth` is provided, then all of the |
|
|
766 |
# points are smoothed. `idx_coords_to_smooth` should be a list of indices of points to include. |
|
|
767 |
|
|
|
768 |
# e.g., coords_to_smooth = np.where(vtk_to_numpy(mesh.GetPointData().GetScalars())>0.01)[0] |
|
|
769 |
# This would give only coordinates where the scalar values of the mesh are >0.01. This example is |
|
|
770 |
# useful for cartilage where we might only want to smooth in locations that we have cartilage and |
|
|
771 |
# ignore the other areas. |
|
|
772 |
|
|
|
773 |
# """ |
|
|
774 |
# point_coordinates = get_mesh_physical_point_coords(mesh) |
|
|
775 |
# if idx_coords_to_smooth is not None: |
|
|
776 |
# point_coordinates = point_coordinates[idx_coords_to_smooth, :] |
|
|
777 |
# kernels = [] |
|
|
778 |
# if isinstance(sigma, (list, tuple)): |
|
|
779 |
# for sig in sigma: |
|
|
780 |
# kernels.append(gaussian_kernel(point_coordinates, point_coordinates, sigma=sig)) |
|
|
781 |
# elif isinstance(sigma, (float, int)): |
|
|
782 |
# kernels.append(gaussian_kernel(point_coordinates, point_coordinates, sigma=sigma)) |
|
|
783 |
|
|
|
784 |
# n_arrays = mesh.GetPointData().GetNumberOfArrays() |
|
|
785 |
# if n_arrays > len(kernels): |
|
|
786 |
# if len(kernels) == 1: |
|
|
787 |
# kernels = [kernels[0] for x in range(n_arrays)] |
|
|
788 |
# for array_idx in range(n_arrays): |
|
|
789 |
# original_array = mesh.GetPointData().GetArray(array_idx) |
|
|
790 |
# original_scalars = np.copy(vtk_to_numpy(original_array)) |
|
|
791 |
|
|
|
792 |
# if idx_coords_to_smooth is not None: |
|
|
793 |
# smoothed_scalars = np.sum(kernels[array_idx] * original_scalars[idx_coords_to_smooth], |
|
|
794 |
# axis=1) |
|
|
795 |
# original_scalars[idx_coords_to_smooth] = smoothed_scalars |
|
|
796 |
# smoothed_scalars = original_scalars |
|
|
797 |
# else: |
|
|
798 |
# smoothed_scalars = np.sum(kernels[array_idx] * original_scalars, axis=1) |
|
|
799 |
|
|
|
800 |
# smoothed_scalars = numpy_to_vtk(smoothed_scalars) |
|
|
801 |
# smoothed_scalars.SetName(original_array.GetName()) |
|
|
802 |
# original_array.DeepCopy(smoothed_scalars) |
|
|
803 |
|
|
|
804 |
# return mesh |
|
|
805 |
|
|
|
806 |
# def get_smoothed_cartilage_thickness_values(loc_nrrd_images, |
|
|
807 |
# seg_image_name, |
|
|
808 |
# bone_label, |
|
|
809 |
# list_cart_labels, |
|
|
810 |
# image_smooth_var=1.0, |
|
|
811 |
# smooth_cart=False, |
|
|
812 |
# image_smooth_var_cart=1.0, |
|
|
813 |
# ray_cast_length=10., |
|
|
814 |
# percent_ray_len_opposite_dir=0.2, |
|
|
815 |
# smooth_surface_scalars=True, |
|
|
816 |
# smooth_only_cartilage_values=True, |
|
|
817 |
# scalar_gauss_sigma=1.6986436005760381, # This is a FWHM = 4 |
|
|
818 |
# bone_pyacvd_subdivisions=2, |
|
|
819 |
# bone_pyacvd_clusters=20000, |
|
|
820 |
# crop_bones=False, |
|
|
821 |
# crop_percent=0.7, |
|
|
822 |
# bone=None, |
|
|
823 |
# loc_t2_map_nrrd=None, |
|
|
824 |
# t2_map_filename=None, |
|
|
825 |
# t2_smooth_sigma_multiple_of_thick=3, |
|
|
826 |
# assign_seg_label_to_bone=False, |
|
|
827 |
# mc_threshold=0.5, |
|
|
828 |
# bone_label_threshold=5000, |
|
|
829 |
# path_to_seg_transform=None, |
|
|
830 |
# reverse_seg_transform=True, |
|
|
831 |
# verbose=False): |
|
|
832 |
# """ |
|
|
833 |
|
|
|
834 |
# :param loc_nrrd_images: |
|
|
835 |
# :param seg_image_name: |
|
|
836 |
# :param bone_label: |
|
|
837 |
# :param list_cart_labels: |
|
|
838 |
# :param image_smooth_var: |
|
|
839 |
# :param loc_tmp_save: |
|
|
840 |
# :param tmp_bone_filename: |
|
|
841 |
# :param smooth_cart: |
|
|
842 |
# :param image_smooth_var_cart: |
|
|
843 |
# :param tmp_cart_filename: |
|
|
844 |
# :param ray_cast_length: |
|
|
845 |
# :param percent_ray_len_opposite_dir: |
|
|
846 |
# :param smooth_surface_scalars: |
|
|
847 |
# :param smooth_surface_scalars_gauss: |
|
|
848 |
# :param smooth_only_cartilage_values: |
|
|
849 |
# :param scalar_gauss_sigma: |
|
|
850 |
# :param scalar_smooth_max_dist: |
|
|
851 |
# :param scalar_smooth_order: |
|
|
852 |
# :param bone_pyacvd_subdivisions: |
|
|
853 |
# :param bone_pyacvd_clusters: |
|
|
854 |
# :param crop_bones: |
|
|
855 |
# :param crop_percent: |
|
|
856 |
# :param bone: |
|
|
857 |
# :param tmp_cropped_image_filename: |
|
|
858 |
# :param loc_t2_map_nrrd:. |
|
|
859 |
# :param t2_map_filename: |
|
|
860 |
# :param t2_smooth_sigma_multiple_of_thick: |
|
|
861 |
# :param assign_seg_label_to_bone: |
|
|
862 |
# :param multiple_cart_labels_separate: |
|
|
863 |
# :param mc_threshold: |
|
|
864 |
# :return: |
|
|
865 |
|
|
|
866 |
# Notes: |
|
|
867 |
# multiple_cart_labels_separate REMOVED from the function. |
|
|
868 |
# """ |
|
|
869 |
# # Read segmentation image |
|
|
870 |
# seg_image = sitk.ReadImage(os.path.join(loc_nrrd_images, seg_image_name)) |
|
|
871 |
# seg_image = set_seg_border_to_zeros(seg_image, border_size=1) |
|
|
872 |
|
|
|
873 |
# seg_view = sitk.GetArrayViewFromImage(seg_image) |
|
|
874 |
# n_pixels_labelled = sum(seg_view[seg_view == bone_label]) |
|
|
875 |
|
|
|
876 |
# if n_pixels_labelled < bone_label_threshold: |
|
|
877 |
# raise Exception('The bone does not exist in this segmentation!, only {} pixels detected, threshold # is {}'.format(n_pixels_labelled, |
|
|
878 |
# bone_label_threshold)) |
|
|
879 |
|
|
|
880 |
# # Read segmentation in vtk format if going to assign labels to surface. |
|
|
881 |
# # Also, if femur break it up into its parts. |
|
|
882 |
# if assign_seg_label_to_bone is True: |
|
|
883 |
# tmp_filename = ''.join(random.choice(string.ascii_lowercase) for i in range(10)) + '.nrrd' |
|
|
884 |
# if bone == 'femur': |
|
|
885 |
# new_seg_image = qc.get_knee_segmentation_with_femur_subregions(seg_image, |
|
|
886 |
# fem_cart_label_idx=1) |
|
|
887 |
# sitk.WriteImage(new_seg_image, os.path.join('/tmp', tmp_filename)) |
|
|
888 |
# else: |
|
|
889 |
# sitk.WriteImage(seg_image, os.path.join('/tmp', tmp_filename)) |
|
|
890 |
# vtk_seg_reader = read_nrrd('/tmp', |
|
|
891 |
# tmp_filename, |
|
|
892 |
# set_origin_zero=True |
|
|
893 |
# ) |
|
|
894 |
# vtk_seg = vtk_seg_reader.GetOutput() |
|
|
895 |
|
|
|
896 |
# seg_transformer = SitkVtkTransformer(seg_image) |
|
|
897 |
|
|
|
898 |
# # Delete tmp files |
|
|
899 |
# safely_delete_tmp_file('/tmp', |
|
|
900 |
# tmp_filename) |
|
|
901 |
|
|
|
902 |
# # Crop the bones if that's an option/thing. |
|
|
903 |
# if crop_bones is True: |
|
|
904 |
# if 'femur' in bone: |
|
|
905 |
# bone_crop_distal = True |
|
|
906 |
# elif 'tibia' in bone: |
|
|
907 |
# bone_crop_distal = False |
|
|
908 |
# else: |
|
|
909 |
# raise Exception('var bone should be "femur" or "tiba" got: {} instead'.format(bone)) |
|
|
910 |
|
|
|
911 |
# seg_image = crop_bone_based_on_width(seg_image, |
|
|
912 |
# bone_label, |
|
|
913 |
# percent_width_to_crop_height=crop_percent, |
|
|
914 |
# bone_crop_distal=bone_crop_distal) |
|
|
915 |
|
|
|
916 |
# if verbose is True: |
|
|
917 |
# tic = time.time() |
|
|
918 |
|
|
|
919 |
# # Create bone mesh/smooth/resample surface points. |
|
|
920 |
# ns_bone_mesh = BoneMesh(seg_image=seg_image, |
|
|
921 |
# label_idx=bone_label) |
|
|
922 |
# if verbose is True: |
|
|
923 |
# print('Loaded mesh') |
|
|
924 |
# ns_bone_mesh.create_mesh(smooth_image=True, |
|
|
925 |
# smooth_image_var=image_smooth_var, |
|
|
926 |
# marching_cubes_threshold=mc_threshold |
|
|
927 |
# ) |
|
|
928 |
# if verbose is True: |
|
|
929 |
# print('Smoothed bone surface') |
|
|
930 |
# ns_bone_mesh.resample_surface(subdivisions=bone_pyacvd_subdivisions, |
|
|
931 |
# clusters=bone_pyacvd_clusters) |
|
|
932 |
# if verbose is True: |
|
|
933 |
# print('Resampled surface') |
|
|
934 |
# n_bone_points = ns_bone_mesh._mesh.GetNumberOfPoints() |
|
|
935 |
|
|
|
936 |
# if verbose is True: |
|
|
937 |
# toc = time.time() |
|
|
938 |
# print('Creating bone mesh took: {}'.format(toc - tic)) |
|
|
939 |
# tic = time.time() |
|
|
940 |
|
|
|
941 |
# # Pre-allocate empty arrays for t2/labels if they are being placed on surface. |
|
|
942 |
# if assign_seg_label_to_bone is True: |
|
|
943 |
# # Apply inverse transform to get it into the space of the image. |
|
|
944 |
# # This is easier than the reverse function. |
|
|
945 |
# if assign_seg_label_to_bone is True: |
|
|
946 |
# ns_bone_mesh.apply_transform_to_mesh(transform=seg_transformer.get_inverse_transform()) |
|
|
947 |
|
|
|
948 |
# labels = np.zeros(n_bone_points, dtype=np.int) |
|
|
949 |
|
|
|
950 |
# thicknesses = np.zeros(n_bone_points, dtype=np.float) |
|
|
951 |
# if verbose is True: |
|
|
952 |
# print('Number bone mesh points: {}'.format(n_bone_points)) |
|
|
953 |
|
|
|
954 |
# # Iterate over cartilage labels |
|
|
955 |
# # Create mesh & store thickness + cartilage label + t2 in arrays |
|
|
956 |
# for cart_label_idx in list_cart_labels: |
|
|
957 |
# # Test to see if this particular cartilage label even exists in the label :P |
|
|
958 |
# # This is important for people that may have no cartilage (of a particular type) |
|
|
959 |
# seg_array_view = sitk.GetArrayViewFromImage(seg_image) |
|
|
960 |
# n_pixels_with_cart = np.sum(seg_array_view == cart_label_idx) |
|
|
961 |
# if n_pixels_with_cart == 0: |
|
|
962 |
# print("Not analyzing cartilage for label {} because it doesnt have any pixels!".format(cart_label_idx)) |
|
|
963 |
# continue |
|
|
964 |
|
|
|
965 |
# ns_cart_mesh = CartilageMesh(seg_image=seg_image, |
|
|
966 |
# label_idx=cart_label_idx) |
|
|
967 |
# ns_cart_mesh.create_mesh(smooth_image=smooth_cart, |
|
|
968 |
# smooth_image_var=image_smooth_var_cart, |
|
|
969 |
# marching_cubes_threshold=mc_threshold) |
|
|
970 |
|
|
|
971 |
# # Perform Thickness & label simultaneously. |
|
|
972 |
|
|
|
973 |
# if assign_seg_label_to_bone is True: |
|
|
974 |
# ns_cart_mesh.apply_transform_to_mesh(transform=seg_transformer.get_inverse_transform()) |
|
|
975 |
|
|
|
976 |
# node_data = get_cartilage_properties_at_points(ns_bone_mesh._mesh, |
|
|
977 |
# ns_cart_mesh._mesh, |
|
|
978 |
# t2_vtk_image=None, |
|
|
979 |
# seg_vtk_image=vtk_seg if assign_seg_label_to_bone is True else None, |
|
|
980 |
# ray_cast_length=ray_cast_length, |
|
|
981 |
# percent_ray_length_opposite_direction=percent_ray_len_opposite_dir |
|
|
982 |
# ) |
|
|
983 |
# if assign_seg_label_to_bone is False: |
|
|
984 |
# thicknesses += node_data |
|
|
985 |
# else: |
|
|
986 |
# thicknesses += node_data[0] |
|
|
987 |
# labels += node_data[1] |
|
|
988 |
|
|
|
989 |
# if verbose is True: |
|
|
990 |
# print('Cartilage label: {}'.format(cart_label_idx)) |
|
|
991 |
# print('Mean thicknesses (all): {}'.format(np.mean(thicknesses))) |
|
|
992 |
|
|
|
993 |
# if verbose is True: |
|
|
994 |
# toc = time.time() |
|
|
995 |
# print('Calculating all thicknesses: {}'.format(toc - tic)) |
|
|
996 |
# tic = time.time() |
|
|
997 |
|
|
|
998 |
# # Assign thickness & T2 data (if it exists) to bone surface. |
|
|
999 |
# thickness_scalars = numpy_to_vtk(thicknesses) |
|
|
1000 |
# thickness_scalars.SetName('thickness (mm)') |
|
|
1001 |
# ns_bone_mesh._mesh.GetPointData().SetScalars(thickness_scalars) |
|
|
1002 |
|
|
|
1003 |
# # Smooth surface scalars |
|
|
1004 |
# if smooth_surface_scalars is True: |
|
|
1005 |
# if smooth_only_cartilage_values is True: |
|
|
1006 |
# loc_cartilage = np.where(vtk_to_numpy(ns_bone_mesh._mesh.GetPointData().GetScalars())>0.01)[0] |
|
|
1007 |
# ns_bone_mesh.mesh = gaussian_smooth_surface_scalars(ns_bone_mesh.mesh, |
|
|
1008 |
# sigma=scalar_gauss_sigma, |
|
|
1009 |
# idx_coords_to_smooth=loc_cartilage) |
|
|
1010 |
# else: |
|
|
1011 |
# ns_bone_mesh.mesh = gaussian_smooth_surface_scalars(ns_bone_mesh.mesh, sigma=scalar_gauss_sigma) |
|
|
1012 |
|
|
|
1013 |
# if verbose is True: |
|
|
1014 |
# toc = time.time() |
|
|
1015 |
# print('Smoothing scalars took: {}'.format(toc - tic)) |
|
|
1016 |
|
|
|
1017 |
# # Add the label values to the bone after smoothing is finished. |
|
|
1018 |
# if assign_seg_label_to_bone is True: |
|
|
1019 |
# label_scalars = numpy_to_vtk(labels) |
|
|
1020 |
# label_scalars.SetName('Cartilage Region') |
|
|
1021 |
# ns_bone_mesh._mesh.GetPointData().AddArray(label_scalars) |
|
|
1022 |
|
|
|
1023 |
# if assign_seg_label_to_bone is True: |
|
|
1024 |
# # Transform bone back to the position it was in before rotating it (for the t2 analysis) |
|
|
1025 |
# ns_bone_mesh.reverse_all_transforms() |
|
|
1026 |
|
|
|
1027 |
# return ns_bone_mesh.mesh</code></pre> |
|
|
1028 |
</details> |
|
|
1029 |
</section> |
|
|
1030 |
<section> |
|
|
1031 |
</section> |
|
|
1032 |
<section> |
|
|
1033 |
</section> |
|
|
1034 |
<section> |
|
|
1035 |
<h2 class="section-title" id="header-functions">Functions</h2> |
|
|
1036 |
<dl> |
|
|
1037 |
<dt id="pymskt.mesh.meshTools.gaussian_smooth_surface_scalars"><code class="name flex"> |
|
|
1038 |
<span>def <span class="ident">gaussian_smooth_surface_scalars</span></span>(<span>mesh, sigma=1.0, idx_coords_to_smooth=None, array_name='thickness (mm)', array_idx=None)</span> |
|
|
1039 |
</code></dt> |
|
|
1040 |
<dd> |
|
|
1041 |
<div class="desc"><p>The following is another function to smooth the scalar values on the surface of a mesh. |
|
|
1042 |
This one performs a gaussian smoothing using the supplied sigma and only smooths based on |
|
|
1043 |
the input <code>idx_coords_to_smooth</code>. If no <code>idx_coords_to_smooth</code> is provided, then all of the |
|
|
1044 |
points are smoothed. <code>idx_coords_to_smooth</code> should be a list of indices of points to include. </p> |
|
|
1045 |
<p>e.g., coords_to_smooth = np.where(vtk_to_numpy(mesh.GetPointData().GetScalars())>0.01)[0] |
|
|
1046 |
This would give only coordinates where the scalar values of the mesh are >0.01. This example is |
|
|
1047 |
useful for cartilage where we might only want to smooth in locations that we have cartilage and |
|
|
1048 |
ignore the other areas. </p> |
|
|
1049 |
<h2 id="parameters">Parameters</h2> |
|
|
1050 |
<dl> |
|
|
1051 |
<dt><strong><code>mesh</code></strong> : <code>vtk.vtkPolyData</code></dt> |
|
|
1052 |
<dd>This is a surface mesh of that we want to smooth the scalars of.</dd> |
|
|
1053 |
<dt><strong><code>sigma</code></strong> : <code>float</code>, optional</dt> |
|
|
1054 |
<dd>The standard deviation of the gaussian filter to apply, by default 1.</dd> |
|
|
1055 |
<dt><strong><code>idx_coords_to_smooth</code></strong> : <code>list</code>, optional</dt> |
|
|
1056 |
<dd>List of the indices of the vertices (points) that we want to include in the |
|
|
1057 |
smoothing. For example, we can only smooth values that are cartialge and ignore |
|
|
1058 |
all non-cartilage points, by default None</dd> |
|
|
1059 |
<dt><strong><code>array_name</code></strong> : <code>str</code>, optional</dt> |
|
|
1060 |
<dd>Name of the scalar array that we want to smooth/filter, by default 'thickness (mm)'</dd> |
|
|
1061 |
<dt><strong><code>array_idx</code></strong> : <code>int</code>, optional</dt> |
|
|
1062 |
<dd>The index of the scalar array that we want to smooth/filter - this is an alternative |
|
|
1063 |
option to <code>array_name</code>, by default None</dd> |
|
|
1064 |
</dl> |
|
|
1065 |
<h2 id="returns">Returns</h2> |
|
|
1066 |
<dl> |
|
|
1067 |
<dt><code>vtk.vtkPolyData</code></dt> |
|
|
1068 |
<dd>Return the original mesh for which the scalars have been smoothed. However, this is not |
|
|
1069 |
necessary becuase if the original mesh still exists then it should have been updated |
|
|
1070 |
during the course of the pipeline.</dd> |
|
|
1071 |
</dl></div> |
|
|
1072 |
<details class="source"> |
|
|
1073 |
<summary> |
|
|
1074 |
<span>Expand source code</span> |
|
|
1075 |
</summary> |
|
|
1076 |
<pre><code class="python">def gaussian_smooth_surface_scalars(mesh, sigma=1., idx_coords_to_smooth=None, array_name='thickness (mm)', array_idx=None): |
|
|
1077 |
""" |
|
|
1078 |
The following is another function to smooth the scalar values on the surface of a mesh. |
|
|
1079 |
This one performs a gaussian smoothing using the supplied sigma and only smooths based on |
|
|
1080 |
the input `idx_coords_to_smooth`. If no `idx_coords_to_smooth` is provided, then all of the |
|
|
1081 |
points are smoothed. `idx_coords_to_smooth` should be a list of indices of points to include. |
|
|
1082 |
|
|
|
1083 |
e.g., coords_to_smooth = np.where(vtk_to_numpy(mesh.GetPointData().GetScalars())>0.01)[0] |
|
|
1084 |
This would give only coordinates where the scalar values of the mesh are >0.01. This example is |
|
|
1085 |
useful for cartilage where we might only want to smooth in locations that we have cartilage and |
|
|
1086 |
ignore the other areas. |
|
|
1087 |
|
|
|
1088 |
Parameters |
|
|
1089 |
---------- |
|
|
1090 |
mesh : vtk.vtkPolyData |
|
|
1091 |
This is a surface mesh of that we want to smooth the scalars of. |
|
|
1092 |
sigma : float, optional |
|
|
1093 |
The standard deviation of the gaussian filter to apply, by default 1. |
|
|
1094 |
idx_coords_to_smooth : list, optional |
|
|
1095 |
List of the indices of the vertices (points) that we want to include in the |
|
|
1096 |
smoothing. For example, we can only smooth values that are cartialge and ignore |
|
|
1097 |
all non-cartilage points, by default None |
|
|
1098 |
array_name : str, optional |
|
|
1099 |
Name of the scalar array that we want to smooth/filter, by default 'thickness (mm)' |
|
|
1100 |
array_idx : int, optional |
|
|
1101 |
The index of the scalar array that we want to smooth/filter - this is an alternative |
|
|
1102 |
option to `array_name`, by default None |
|
|
1103 |
|
|
|
1104 |
Returns |
|
|
1105 |
------- |
|
|
1106 |
vtk.vtkPolyData |
|
|
1107 |
Return the original mesh for which the scalars have been smoothed. However, this is not |
|
|
1108 |
necessary becuase if the original mesh still exists then it should have been updated |
|
|
1109 |
during the course of the pipeline. |
|
|
1110 |
""" |
|
|
1111 |
|
|
|
1112 |
point_coordinates = get_mesh_physical_point_coords(mesh) |
|
|
1113 |
if idx_coords_to_smooth is not None: |
|
|
1114 |
point_coordinates = point_coordinates[idx_coords_to_smooth, :] |
|
|
1115 |
kernel = gaussian_kernel(point_coordinates, point_coordinates, sigma=sigma) |
|
|
1116 |
|
|
|
1117 |
original_array = mesh.GetPointData().GetArray(array_idx if array_idx is not None else array_name) |
|
|
1118 |
original_scalars = np.copy(vtk_to_numpy(original_array)) |
|
|
1119 |
|
|
|
1120 |
if idx_coords_to_smooth is not None: |
|
|
1121 |
smoothed_scalars = np.sum(kernel * original_scalars[idx_coords_to_smooth], |
|
|
1122 |
axis=1) |
|
|
1123 |
original_scalars[idx_coords_to_smooth] = smoothed_scalars |
|
|
1124 |
smoothed_scalars = original_scalars |
|
|
1125 |
else: |
|
|
1126 |
smoothed_scalars = np.sum(kernel * original_scalars, axis=1) |
|
|
1127 |
|
|
|
1128 |
smoothed_scalars = numpy_to_vtk(smoothed_scalars) |
|
|
1129 |
smoothed_scalars.SetName(original_array.GetName()) |
|
|
1130 |
original_array.DeepCopy(smoothed_scalars) # Assign the scalars back to the original mesh |
|
|
1131 |
|
|
|
1132 |
# return the mesh object - however, if the original is not deleted, it should be smoothed |
|
|
1133 |
# appropriately. |
|
|
1134 |
return mesh</code></pre> |
|
|
1135 |
</details> |
|
|
1136 |
</dd> |
|
|
1137 |
<dt id="pymskt.mesh.meshTools.get_cartilage_properties_at_points"><code class="name flex"> |
|
|
1138 |
<span>def <span class="ident">get_cartilage_properties_at_points</span></span>(<span>surface_bone, surface_cartilage, t2_vtk_image=None, seg_vtk_image=None, ray_cast_length=20.0, percent_ray_length_opposite_direction=0.25, no_thickness_filler=0.0, no_t2_filler=0.0, no_seg_filler=0, line_resolution=100)</span> |
|
|
1139 |
</code></dt> |
|
|
1140 |
<dd> |
|
|
1141 |
<div class="desc"><p>Extract cartilage outcomes (T2 & thickness) at all points on bone surface. </p> |
|
|
1142 |
<h2 id="parameters">Parameters</h2> |
|
|
1143 |
<dl> |
|
|
1144 |
<dt><strong><code>surface_bone</code></strong> : <code>BoneMesh</code></dt> |
|
|
1145 |
<dd>Bone mesh containing vtk.vtkPolyData - get outcomes for nodes (vertices) on |
|
|
1146 |
this mesh</dd> |
|
|
1147 |
<dt><strong><code>surface_cartilage</code></strong> : <code>CartilageMesh</code></dt> |
|
|
1148 |
<dd>Cartilage mesh containing vtk.vtkPolyData - for obtaining cartilage outcomes.</dd> |
|
|
1149 |
<dt><strong><code>t2_vtk_image</code></strong> : <code>vtk.vtkImageData</code>, optional</dt> |
|
|
1150 |
<dd>vtk object that contains our Cartilage T2 data, by default None</dd> |
|
|
1151 |
<dt><strong><code>seg_vtk_image</code></strong> : <code>vtk.vtkImageData</code>, optional</dt> |
|
|
1152 |
<dd>vtk object that contains the segmentation mask(s) to help assign |
|
|
1153 |
labels to bone surface (e.g., most common), by default None</dd> |
|
|
1154 |
<dt><strong><code>ray_cast_length</code></strong> : <code>float</code>, optional</dt> |
|
|
1155 |
<dd>Length (mm) of ray to cast from bone surface when trying to find cartilage (inner & |
|
|
1156 |
outter shell), by default 20.0</dd> |
|
|
1157 |
<dt><strong><code>percent_ray_length_opposite_direction</code></strong> : <code>float</code>, optional</dt> |
|
|
1158 |
<dd>How far to project ray inside of the bone. This is done just in case the cartilage |
|
|
1159 |
surface ends up slightly inside of (or coincident with) the bone surface, by default 0.25</dd> |
|
|
1160 |
<dt><strong><code>no_thickness_filler</code></strong> : <code>float</code>, optional</dt> |
|
|
1161 |
<dd>Value to use instead of thickness (if no cartilage), by default 0.</dd> |
|
|
1162 |
<dt><strong><code>no_t2_filler</code></strong> : <code>float</code>, optional</dt> |
|
|
1163 |
<dd>Value to use instead of T2 (if no cartilage), by default 0.</dd> |
|
|
1164 |
<dt><strong><code>no_seg_filler</code></strong> : <code>int</code>, optional</dt> |
|
|
1165 |
<dd>Value to use if no segmentation label available (because no cartilage?), by default 0</dd> |
|
|
1166 |
<dt><strong><code>line_resolution</code></strong> : <code>int</code>, optional</dt> |
|
|
1167 |
<dd>Number of points to have along line, by default 100</dd> |
|
|
1168 |
</dl> |
|
|
1169 |
<h2 id="returns">Returns</h2> |
|
|
1170 |
<dl> |
|
|
1171 |
<dt><code>list</code></dt> |
|
|
1172 |
<dd>Will return list of data for: |
|
|
1173 |
Cartilage thickness |
|
|
1174 |
Mean T2 at each point on bone |
|
|
1175 |
Most common cartilage label at each point on bone (normal to surface).</dd> |
|
|
1176 |
</dl></div> |
|
|
1177 |
<details class="source"> |
|
|
1178 |
<summary> |
|
|
1179 |
<span>Expand source code</span> |
|
|
1180 |
</summary> |
|
|
1181 |
<pre><code class="python">def get_cartilage_properties_at_points(surface_bone, |
|
|
1182 |
surface_cartilage, |
|
|
1183 |
t2_vtk_image=None, |
|
|
1184 |
seg_vtk_image=None, |
|
|
1185 |
ray_cast_length=20., |
|
|
1186 |
percent_ray_length_opposite_direction=0.25, |
|
|
1187 |
no_thickness_filler=0., |
|
|
1188 |
no_t2_filler=0., |
|
|
1189 |
no_seg_filler=0, |
|
|
1190 |
line_resolution=100): # Could be nan?? |
|
|
1191 |
""" |
|
|
1192 |
Extract cartilage outcomes (T2 & thickness) at all points on bone surface. |
|
|
1193 |
|
|
|
1194 |
Parameters |
|
|
1195 |
---------- |
|
|
1196 |
surface_bone : BoneMesh |
|
|
1197 |
Bone mesh containing vtk.vtkPolyData - get outcomes for nodes (vertices) on |
|
|
1198 |
this mesh |
|
|
1199 |
surface_cartilage : CartilageMesh |
|
|
1200 |
Cartilage mesh containing vtk.vtkPolyData - for obtaining cartilage outcomes. |
|
|
1201 |
t2_vtk_image : vtk.vtkImageData, optional |
|
|
1202 |
vtk object that contains our Cartilage T2 data, by default None |
|
|
1203 |
seg_vtk_image : vtk.vtkImageData, optional |
|
|
1204 |
vtk object that contains the segmentation mask(s) to help assign |
|
|
1205 |
labels to bone surface (e.g., most common), by default None |
|
|
1206 |
ray_cast_length : float, optional |
|
|
1207 |
Length (mm) of ray to cast from bone surface when trying to find cartilage (inner & |
|
|
1208 |
outter shell), by default 20.0 |
|
|
1209 |
percent_ray_length_opposite_direction : float, optional |
|
|
1210 |
How far to project ray inside of the bone. This is done just in case the cartilage |
|
|
1211 |
surface ends up slightly inside of (or coincident with) the bone surface, by default 0.25 |
|
|
1212 |
no_thickness_filler : float, optional |
|
|
1213 |
Value to use instead of thickness (if no cartilage), by default 0. |
|
|
1214 |
no_t2_filler : float, optional |
|
|
1215 |
Value to use instead of T2 (if no cartilage), by default 0. |
|
|
1216 |
no_seg_filler : int, optional |
|
|
1217 |
Value to use if no segmentation label available (because no cartilage?), by default 0 |
|
|
1218 |
line_resolution : int, optional |
|
|
1219 |
Number of points to have along line, by default 100 |
|
|
1220 |
|
|
|
1221 |
Returns |
|
|
1222 |
------- |
|
|
1223 |
list |
|
|
1224 |
Will return list of data for: |
|
|
1225 |
Cartilage thickness |
|
|
1226 |
Mean T2 at each point on bone |
|
|
1227 |
Most common cartilage label at each point on bone (normal to surface). |
|
|
1228 |
""" |
|
|
1229 |
|
|
|
1230 |
normals = get_surface_normals(surface_bone) |
|
|
1231 |
points = surface_bone.GetPoints() |
|
|
1232 |
obb_cartilage = get_obb_surface(surface_cartilage) |
|
|
1233 |
point_normals = normals.GetOutput().GetPointData().GetNormals() |
|
|
1234 |
|
|
|
1235 |
thickness_data = [] |
|
|
1236 |
if (t2_vtk_image is not None) or (seg_vtk_image is not None): |
|
|
1237 |
# if T2 data, or a segmentation image is provided, then setup Probe tool to |
|
|
1238 |
# get T2 values and/or cartilage ROI for each bone vertex. |
|
|
1239 |
line = vtk.vtkLineSource() |
|
|
1240 |
line.SetResolution(line_resolution) |
|
|
1241 |
|
|
|
1242 |
if t2_vtk_image is not None: |
|
|
1243 |
t2_data_probe = ProbeVtkImageDataAlongLine(line_resolution, |
|
|
1244 |
t2_vtk_image, |
|
|
1245 |
save_mean=True, |
|
|
1246 |
filler=no_t2_filler) |
|
|
1247 |
if seg_vtk_image is not None: |
|
|
1248 |
seg_data_probe = ProbeVtkImageDataAlongLine(line_resolution, |
|
|
1249 |
seg_vtk_image, |
|
|
1250 |
save_most_common=True, |
|
|
1251 |
filler=no_seg_filler, |
|
|
1252 |
data_categorical=True) |
|
|
1253 |
# Loop through all points |
|
|
1254 |
for idx in range(points.GetNumberOfPoints()): |
|
|
1255 |
point = points.GetPoint(idx) |
|
|
1256 |
normal = point_normals.GetTuple(idx) |
|
|
1257 |
|
|
|
1258 |
end_point_ray = n2l(l2n(point) + ray_cast_length*l2n(normal)) |
|
|
1259 |
start_point_ray = n2l(l2n(point) + ray_cast_length*percent_ray_length_opposite_direction*(-l2n(normal))) |
|
|
1260 |
|
|
|
1261 |
# Check if there are any intersections for the given ray |
|
|
1262 |
if is_hit(obb_cartilage, start_point_ray, end_point_ray): # intersections were found |
|
|
1263 |
# Retrieve coordinates of intersection points and intersected cell ids |
|
|
1264 |
points_intersect, cell_ids_intersect = get_intersect(obb_cartilage, start_point_ray, end_point_ray) |
|
|
1265 |
# points |
|
|
1266 |
if len(points_intersect) == 2: |
|
|
1267 |
thickness_data.append(np.sqrt(np.sum(np.square(l2n(points_intersect[0]) - l2n(points_intersect[1]))))) |
|
|
1268 |
if t2_vtk_image is not None: |
|
|
1269 |
t2_data_probe.save_data_along_line(start_pt=points_intersect[0], |
|
|
1270 |
end_pt=points_intersect[1]) |
|
|
1271 |
if seg_vtk_image is not None: |
|
|
1272 |
seg_data_probe.save_data_along_line(start_pt=points_intersect[0], |
|
|
1273 |
end_pt=points_intersect[1]) |
|
|
1274 |
|
|
|
1275 |
else: |
|
|
1276 |
thickness_data.append(no_thickness_filler) |
|
|
1277 |
if t2_vtk_image is not None: |
|
|
1278 |
t2_data_probe.append_filler() |
|
|
1279 |
if seg_vtk_image is not None: |
|
|
1280 |
seg_data_probe.append_filler() |
|
|
1281 |
else: |
|
|
1282 |
thickness_data.append(no_thickness_filler) |
|
|
1283 |
if t2_vtk_image is not None: |
|
|
1284 |
t2_data_probe.append_filler() |
|
|
1285 |
if seg_vtk_image is not None: |
|
|
1286 |
seg_data_probe.append_filler() |
|
|
1287 |
|
|
|
1288 |
if (t2_vtk_image is None) & (seg_vtk_image is None): |
|
|
1289 |
return np.asarray(thickness_data, dtype=np.float) |
|
|
1290 |
elif (t2_vtk_image is not None) & (seg_vtk_image is not None): |
|
|
1291 |
return (np.asarray(thickness_data, dtype=np.float), |
|
|
1292 |
np.asarray(t2_data_probe.mean_data, dtype=np.float), |
|
|
1293 |
np.asarray(seg_data_probe.most_common_data, dtype=np.int) |
|
|
1294 |
) |
|
|
1295 |
elif t2_vtk_image is not None: |
|
|
1296 |
return (np.asarray(thickness_data, dtype=np.float), |
|
|
1297 |
np.asarray(t2_data_probe.mean_data, dtype=np.float) |
|
|
1298 |
) |
|
|
1299 |
elif seg_vtk_image is not None: |
|
|
1300 |
return (np.asarray(thickness_data, dtype=np.float), |
|
|
1301 |
np.asarray(seg_data_probe.most_common_data, dtype=np.int) |
|
|
1302 |
)</code></pre> |
|
|
1303 |
</details> |
|
|
1304 |
</dd> |
|
|
1305 |
<dt id="pymskt.mesh.meshTools.get_mesh_physical_point_coords"><code class="name flex"> |
|
|
1306 |
<span>def <span class="ident">get_mesh_physical_point_coords</span></span>(<span>mesh)</span> |
|
|
1307 |
</code></dt> |
|
|
1308 |
<dd> |
|
|
1309 |
<div class="desc"><p>Get a numpy array of the x/y/z location of each point (vertex) on the <code>mesh</code>.</p> |
|
|
1310 |
<h2 id="parameters">Parameters</h2> |
|
|
1311 |
<dl> |
|
|
1312 |
<dt><strong><code>mesh</code></strong></dt> |
|
|
1313 |
<dd>[description]</dd> |
|
|
1314 |
</dl> |
|
|
1315 |
<h2 id="returns">Returns</h2> |
|
|
1316 |
<dl> |
|
|
1317 |
<dt><code>numpy.ndarray</code></dt> |
|
|
1318 |
<dd>n_points x 3 array describing the x/y/z position of each point.</dd> |
|
|
1319 |
</dl> |
|
|
1320 |
<h2 id="notes">Notes</h2> |
|
|
1321 |
<p>Below is the original method used to retrieve the point coordinates. </p> |
|
|
1322 |
<p>point_coordinates = np.zeros((mesh.GetNumberOfPoints(), 3)) |
|
|
1323 |
for pt_idx in range(mesh.GetNumberOfPoints()): |
|
|
1324 |
point_coordinates[pt_idx, :] = mesh.GetPoint(pt_idx)</p></div> |
|
|
1325 |
<details class="source"> |
|
|
1326 |
<summary> |
|
|
1327 |
<span>Expand source code</span> |
|
|
1328 |
</summary> |
|
|
1329 |
<pre><code class="python">def get_mesh_physical_point_coords(mesh): |
|
|
1330 |
""" |
|
|
1331 |
Get a numpy array of the x/y/z location of each point (vertex) on the `mesh`. |
|
|
1332 |
|
|
|
1333 |
Parameters |
|
|
1334 |
---------- |
|
|
1335 |
mesh : |
|
|
1336 |
[description] |
|
|
1337 |
|
|
|
1338 |
Returns |
|
|
1339 |
------- |
|
|
1340 |
numpy.ndarray |
|
|
1341 |
n_points x 3 array describing the x/y/z position of each point. |
|
|
1342 |
|
|
|
1343 |
Notes |
|
|
1344 |
----- |
|
|
1345 |
Below is the original method used to retrieve the point coordinates. |
|
|
1346 |
|
|
|
1347 |
point_coordinates = np.zeros((mesh.GetNumberOfPoints(), 3)) |
|
|
1348 |
for pt_idx in range(mesh.GetNumberOfPoints()): |
|
|
1349 |
point_coordinates[pt_idx, :] = mesh.GetPoint(pt_idx) |
|
|
1350 |
""" |
|
|
1351 |
|
|
|
1352 |
point_coordinates = vtk_to_numpy(mesh.GetPoints().GetData()) |
|
|
1353 |
return point_coordinates</code></pre> |
|
|
1354 |
</details> |
|
|
1355 |
</dd> |
|
|
1356 |
<dt id="pymskt.mesh.meshTools.get_smoothed_scalars"><code class="name flex"> |
|
|
1357 |
<span>def <span class="ident">get_smoothed_scalars</span></span>(<span>mesh, max_dist=2.0, order=2, gaussian=False)</span> |
|
|
1358 |
</code></dt> |
|
|
1359 |
<dd> |
|
|
1360 |
<div class="desc"><p>perform smoothing of scalars on the nodes of a surface mesh. |
|
|
1361 |
return the smoothed values of the nodes so they can be used as necessary. |
|
|
1362 |
(e.g. to replace originals or something else) |
|
|
1363 |
Smoothing is done for all data within <code>max_dist</code> and uses a simple weighted average based on |
|
|
1364 |
the distance to the power of <code>order</code>. Default is squared distance (<code>order=2</code>)</p> |
|
|
1365 |
<h2 id="parameters">Parameters</h2> |
|
|
1366 |
<dl> |
|
|
1367 |
<dt><strong><code>mesh</code></strong> : <code>vtk.vtkPolyData</code></dt> |
|
|
1368 |
<dd>Surface mesh that we want to smooth scalars of.</dd> |
|
|
1369 |
<dt><strong><code>max_dist</code></strong> : <code>float</code>, optional</dt> |
|
|
1370 |
<dd>Maximum distance of nodes that we want to smooth (mm), by default 2.0</dd> |
|
|
1371 |
<dt><strong><code>order</code></strong> : <code>int</code>, optional</dt> |
|
|
1372 |
<dd>Order of the polynomial used for weighting other nodes within <code>max_dist</code>, by default 2</dd> |
|
|
1373 |
<dt><strong><code>gaussian</code></strong> : <code>bool</code>, optional</dt> |
|
|
1374 |
<dd>Should this use a gaussian smoothing, or weighted average, by default False</dd> |
|
|
1375 |
</dl> |
|
|
1376 |
<h2 id="returns">Returns</h2> |
|
|
1377 |
<dl> |
|
|
1378 |
<dt><code>numpy.ndarray</code></dt> |
|
|
1379 |
<dd>An array of the scalar values for each node on the <code>mesh</code> after they have been smoothed.</dd> |
|
|
1380 |
</dl></div> |
|
|
1381 |
<details class="source"> |
|
|
1382 |
<summary> |
|
|
1383 |
<span>Expand source code</span> |
|
|
1384 |
</summary> |
|
|
1385 |
<pre><code class="python">def get_smoothed_scalars(mesh, max_dist=2.0, order=2, gaussian=False): |
|
|
1386 |
""" |
|
|
1387 |
perform smoothing of scalars on the nodes of a surface mesh. |
|
|
1388 |
return the smoothed values of the nodes so they can be used as necessary. |
|
|
1389 |
(e.g. to replace originals or something else) |
|
|
1390 |
Smoothing is done for all data within `max_dist` and uses a simple weighted average based on |
|
|
1391 |
the distance to the power of `order`. Default is squared distance (`order=2`) |
|
|
1392 |
|
|
|
1393 |
Parameters |
|
|
1394 |
---------- |
|
|
1395 |
mesh : vtk.vtkPolyData |
|
|
1396 |
Surface mesh that we want to smooth scalars of. |
|
|
1397 |
max_dist : float, optional |
|
|
1398 |
Maximum distance of nodes that we want to smooth (mm), by default 2.0 |
|
|
1399 |
order : int, optional |
|
|
1400 |
Order of the polynomial used for weighting other nodes within `max_dist`, by default 2 |
|
|
1401 |
gaussian : bool, optional |
|
|
1402 |
Should this use a gaussian smoothing, or weighted average, by default False |
|
|
1403 |
|
|
|
1404 |
Returns |
|
|
1405 |
------- |
|
|
1406 |
numpy.ndarray |
|
|
1407 |
An array of the scalar values for each node on the `mesh` after they have been smoothed. |
|
|
1408 |
""" |
|
|
1409 |
|
|
|
1410 |
kDTree = vtk.vtkKdTreePointLocator() |
|
|
1411 |
kDTree.SetDataSet(mesh) |
|
|
1412 |
kDTree.BuildLocator() |
|
|
1413 |
|
|
|
1414 |
thickness_smoothed = np.zeros(mesh.GetNumberOfPoints()) |
|
|
1415 |
scalars = l2n(mesh.GetPointData().GetScalars()) |
|
|
1416 |
for idx in range(mesh.GetNumberOfPoints()): |
|
|
1417 |
if scalars[idx] >0: # don't smooth nodes with thickness == 0 (or negative? if that were to happen) |
|
|
1418 |
point = mesh.GetPoint(idx) |
|
|
1419 |
closest_ids = vtk.vtkIdList() |
|
|
1420 |
kDTree.FindPointsWithinRadius(max_dist, point, closest_ids) # This will return a value ( 0 or 1). Can use that for debudding. |
|
|
1421 |
|
|
|
1422 |
list_scalars = [] |
|
|
1423 |
list_distances = [] |
|
|
1424 |
for closest_pt_idx in range(closest_ids.GetNumberOfIds()): |
|
|
1425 |
pt_idx = closest_ids.GetId(closest_pt_idx) |
|
|
1426 |
_point = mesh.GetPoint(pt_idx) |
|
|
1427 |
list_scalars.append(scalars[pt_idx]) |
|
|
1428 |
list_distances.append(np.sqrt(np.sum(np.square(np.asarray(point) - np.asarray(_point) + epsilon)))) |
|
|
1429 |
|
|
|
1430 |
distances_weighted = (max_dist - np.asarray(list_distances))**order |
|
|
1431 |
scalars_weights = distances_weighted * np.asarray(list_scalars) |
|
|
1432 |
normalized_value = np.sum(scalars_weights) / np.sum(distances_weighted) |
|
|
1433 |
thickness_smoothed[idx] = normalized_value |
|
|
1434 |
return thickness_smoothed</code></pre> |
|
|
1435 |
</details> |
|
|
1436 |
</dd> |
|
|
1437 |
<dt id="pymskt.mesh.meshTools.resample_surface"><code class="name flex"> |
|
|
1438 |
<span>def <span class="ident">resample_surface</span></span>(<span>mesh, subdivisions=2, clusters=10000)</span> |
|
|
1439 |
</code></dt> |
|
|
1440 |
<dd> |
|
|
1441 |
<div class="desc"><p>Resample a surface mesh using the ACVD algorithm: |
|
|
1442 |
Version used: |
|
|
1443 |
- <a href="https://github.com/pyvista/pyacvd">https://github.com/pyvista/pyacvd</a> |
|
|
1444 |
Original version w/ more references: |
|
|
1445 |
- <a href="https://github.com/valette/ACVD">https://github.com/valette/ACVD</a></p> |
|
|
1446 |
<h2 id="parameters">Parameters</h2> |
|
|
1447 |
<dl> |
|
|
1448 |
<dt><strong><code>mesh</code></strong> : <code>vtk.vtkPolyData</code></dt> |
|
|
1449 |
<dd>Polydata mesh to be re-sampled.</dd> |
|
|
1450 |
<dt><strong><code>subdivisions</code></strong> : <code>int</code>, optional</dt> |
|
|
1451 |
<dd>Subdivide the mesh to have more points before clustering, by default 2 |
|
|
1452 |
Probably not necessary for very dense meshes.</dd> |
|
|
1453 |
<dt><strong><code>clusters</code></strong> : <code>int</code>, optional</dt> |
|
|
1454 |
<dd> |
|
|
1455 |
<p>The number of clusters (points/vertices) to create during resampling |
|
|
1456 |
surafce, by default 10000 |
|
|
1457 |
- This is not exact, might have slight differences.</p> |
|
|
1458 |
<h2 id="returns">Returns</h2> |
|
|
1459 |
<p>vtk.vtkPolyData : |
|
|
1460 |
Return the resampled mesh. This will be a pyvista version of the vtk mesh |
|
|
1461 |
but this is usable in all vtk function so it is not an issue.</p> |
|
|
1462 |
</dd> |
|
|
1463 |
</dl></div> |
|
|
1464 |
<details class="source"> |
|
|
1465 |
<summary> |
|
|
1466 |
<span>Expand source code</span> |
|
|
1467 |
</summary> |
|
|
1468 |
<pre><code class="python">def resample_surface(mesh, subdivisions=2, clusters=10000): |
|
|
1469 |
""" |
|
|
1470 |
Resample a surface mesh using the ACVD algorithm: |
|
|
1471 |
Version used: |
|
|
1472 |
- https://github.com/pyvista/pyacvd |
|
|
1473 |
Original version w/ more references: |
|
|
1474 |
- https://github.com/valette/ACVD |
|
|
1475 |
|
|
|
1476 |
Parameters |
|
|
1477 |
---------- |
|
|
1478 |
mesh : vtk.vtkPolyData |
|
|
1479 |
Polydata mesh to be re-sampled. |
|
|
1480 |
subdivisions : int, optional |
|
|
1481 |
Subdivide the mesh to have more points before clustering, by default 2 |
|
|
1482 |
Probably not necessary for very dense meshes. |
|
|
1483 |
clusters : int, optional |
|
|
1484 |
The number of clusters (points/vertices) to create during resampling |
|
|
1485 |
surafce, by default 10000 |
|
|
1486 |
- This is not exact, might have slight differences. |
|
|
1487 |
|
|
|
1488 |
Returns |
|
|
1489 |
------- |
|
|
1490 |
vtk.vtkPolyData : |
|
|
1491 |
Return the resampled mesh. This will be a pyvista version of the vtk mesh |
|
|
1492 |
but this is usable in all vtk function so it is not an issue. |
|
|
1493 |
|
|
|
1494 |
|
|
|
1495 |
""" |
|
|
1496 |
pv_smooth_mesh = pv.wrap(mesh) |
|
|
1497 |
clus = pyacvd.Clustering(pv_smooth_mesh) |
|
|
1498 |
clus.subdivide(subdivisions) |
|
|
1499 |
clus.cluster(clusters) |
|
|
1500 |
mesh = clus.create_mesh() |
|
|
1501 |
|
|
|
1502 |
return mesh</code></pre> |
|
|
1503 |
</details> |
|
|
1504 |
</dd> |
|
|
1505 |
<dt id="pymskt.mesh.meshTools.set_mesh_physical_point_coords"><code class="name flex"> |
|
|
1506 |
<span>def <span class="ident">set_mesh_physical_point_coords</span></span>(<span>mesh, new_points)</span> |
|
|
1507 |
</code></dt> |
|
|
1508 |
<dd> |
|
|
1509 |
<div class="desc"><p>Convenience function to update the x/y/z point coords of a mesh</p> |
|
|
1510 |
<p>Nothing is returned becuase the mesh object is updated in-place. </p> |
|
|
1511 |
<h2 id="parameters">Parameters</h2> |
|
|
1512 |
<dl> |
|
|
1513 |
<dt><strong><code>mesh</code></strong> : <code>vtk.vtkPolyData</code></dt> |
|
|
1514 |
<dd>Mesh object we want to update the point coordinates for</dd> |
|
|
1515 |
<dt><strong><code>new_points</code></strong> : <code>np.ndarray</code></dt> |
|
|
1516 |
<dd>Numpy array shaped n_points x 3. These are the new point coordinates that |
|
|
1517 |
we want to update the mesh to have.</dd> |
|
|
1518 |
</dl></div> |
|
|
1519 |
<details class="source"> |
|
|
1520 |
<summary> |
|
|
1521 |
<span>Expand source code</span> |
|
|
1522 |
</summary> |
|
|
1523 |
<pre><code class="python">def set_mesh_physical_point_coords(mesh, new_points): |
|
|
1524 |
""" |
|
|
1525 |
Convenience function to update the x/y/z point coords of a mesh |
|
|
1526 |
|
|
|
1527 |
Nothing is returned becuase the mesh object is updated in-place. |
|
|
1528 |
|
|
|
1529 |
Parameters |
|
|
1530 |
---------- |
|
|
1531 |
mesh : vtk.vtkPolyData |
|
|
1532 |
Mesh object we want to update the point coordinates for |
|
|
1533 |
new_points : np.ndarray |
|
|
1534 |
Numpy array shaped n_points x 3. These are the new point coordinates that |
|
|
1535 |
we want to update the mesh to have. |
|
|
1536 |
|
|
|
1537 |
""" |
|
|
1538 |
orig_point_coords = get_mesh_physical_point_coords(mesh) |
|
|
1539 |
if new_points.shape == orig_point_coords.shape: |
|
|
1540 |
mesh.GetPoints().SetData(numpy_to_vtk(new_points))</code></pre> |
|
|
1541 |
</details> |
|
|
1542 |
</dd> |
|
|
1543 |
<dt id="pymskt.mesh.meshTools.smooth_scalars_from_second_mesh_onto_base"><code class="name flex"> |
|
|
1544 |
<span>def <span class="ident">smooth_scalars_from_second_mesh_onto_base</span></span>(<span>base_mesh, second_mesh, sigma=1.0, idx_coords_to_smooth_base=None, idx_coords_to_smooth_second=None, set_non_smoothed_scalars_to_zero=True)</span> |
|
|
1545 |
</code></dt> |
|
|
1546 |
<dd> |
|
|
1547 |
<div class="desc"><p>Function to copy surface scalars from one mesh to another. This is done in a "smoothing" fashioon |
|
|
1548 |
to get a weighted-average of the closest point - this is because the points on the 2 meshes won't |
|
|
1549 |
be coincident with one another. The weighted average is done using a gaussian smoothing.</p> |
|
|
1550 |
<h2 id="parameters">Parameters</h2> |
|
|
1551 |
<dl> |
|
|
1552 |
<dt><strong><code>base_mesh</code></strong> : <code>vtk.vtkPolyData</code></dt> |
|
|
1553 |
<dd>The base mesh to smooth the scalars from <code>second_mesh</code> onto.</dd> |
|
|
1554 |
<dt><strong><code>second_mesh</code></strong> : <code>vtk.vtkPolyData</code></dt> |
|
|
1555 |
<dd>The mesh with the scalar values that we want to pass onto the <code>base_mesh</code>.</dd> |
|
|
1556 |
<dt><strong><code>sigma</code></strong> : <code>float</code>, optional</dt> |
|
|
1557 |
<dd>Sigma (standard deviation) of gaussian filter to apply to scalars, by default 1.</dd> |
|
|
1558 |
<dt><strong><code>idx_coords_to_smooth_base</code></strong> : <code>list</code>, optional</dt> |
|
|
1559 |
<dd>List of the indices of nodes that are of interest for transferring (typically cartilage), |
|
|
1560 |
by default None</dd> |
|
|
1561 |
<dt><strong><code>idx_coords_to_smooth_second</code></strong> : <code>list</code>, optional</dt> |
|
|
1562 |
<dd>List of the indices of the nodes that are of interest on the second mesh, by default None</dd> |
|
|
1563 |
<dt><strong><code>set_non_smoothed_scalars_to_zero</code></strong> : <code>bool</code>, optional</dt> |
|
|
1564 |
<dd>Whether or not to set all notes that are not smoothed to zero, by default True</dd> |
|
|
1565 |
</dl> |
|
|
1566 |
<h2 id="returns">Returns</h2> |
|
|
1567 |
<dl> |
|
|
1568 |
<dt><code>numpy.ndarray</code></dt> |
|
|
1569 |
<dd>An array of the scalar values for each node on the base mesh that includes the scalar values |
|
|
1570 |
transfered (smoothed) from the secondary mesh.</dd> |
|
|
1571 |
</dl></div> |
|
|
1572 |
<details class="source"> |
|
|
1573 |
<summary> |
|
|
1574 |
<span>Expand source code</span> |
|
|
1575 |
</summary> |
|
|
1576 |
<pre><code class="python">def smooth_scalars_from_second_mesh_onto_base(base_mesh, |
|
|
1577 |
second_mesh, |
|
|
1578 |
sigma=1., |
|
|
1579 |
idx_coords_to_smooth_base=None, |
|
|
1580 |
idx_coords_to_smooth_second=None, |
|
|
1581 |
set_non_smoothed_scalars_to_zero=True |
|
|
1582 |
): # sigma is equal to fwhm=2 (1mm in each direction) |
|
|
1583 |
""" |
|
|
1584 |
Function to copy surface scalars from one mesh to another. This is done in a "smoothing" fashioon |
|
|
1585 |
to get a weighted-average of the closest point - this is because the points on the 2 meshes won't |
|
|
1586 |
be coincident with one another. The weighted average is done using a gaussian smoothing. |
|
|
1587 |
|
|
|
1588 |
Parameters |
|
|
1589 |
---------- |
|
|
1590 |
base_mesh : vtk.vtkPolyData |
|
|
1591 |
The base mesh to smooth the scalars from `second_mesh` onto. |
|
|
1592 |
second_mesh : vtk.vtkPolyData |
|
|
1593 |
The mesh with the scalar values that we want to pass onto the `base_mesh`. |
|
|
1594 |
sigma : float, optional |
|
|
1595 |
Sigma (standard deviation) of gaussian filter to apply to scalars, by default 1. |
|
|
1596 |
idx_coords_to_smooth_base : list, optional |
|
|
1597 |
List of the indices of nodes that are of interest for transferring (typically cartilage), |
|
|
1598 |
by default None |
|
|
1599 |
idx_coords_to_smooth_second : list, optional |
|
|
1600 |
List of the indices of the nodes that are of interest on the second mesh, by default None |
|
|
1601 |
set_non_smoothed_scalars_to_zero : bool, optional |
|
|
1602 |
Whether or not to set all notes that are not smoothed to zero, by default True |
|
|
1603 |
|
|
|
1604 |
Returns |
|
|
1605 |
------- |
|
|
1606 |
numpy.ndarray |
|
|
1607 |
An array of the scalar values for each node on the base mesh that includes the scalar values |
|
|
1608 |
transfered (smoothed) from the secondary mesh. |
|
|
1609 |
""" |
|
|
1610 |
base_mesh_pts = get_mesh_physical_point_coords(base_mesh) |
|
|
1611 |
if idx_coords_to_smooth_base is not None: |
|
|
1612 |
base_mesh_pts = base_mesh_pts[idx_coords_to_smooth_base, :] |
|
|
1613 |
second_mesh_pts = get_mesh_physical_point_coords(second_mesh) |
|
|
1614 |
if idx_coords_to_smooth_second is not None: |
|
|
1615 |
second_mesh_pts = second_mesh_pts[idx_coords_to_smooth_second, :] |
|
|
1616 |
gauss_kernel = gaussian_kernel(base_mesh_pts, second_mesh_pts, sigma=sigma) |
|
|
1617 |
second_mesh_scalars = np.copy(vtk_to_numpy(second_mesh.GetPointData().GetScalars())) |
|
|
1618 |
if idx_coords_to_smooth_second is not None: |
|
|
1619 |
# If sub-sampled second mesh - then only give the scalars from those sub-sampled points on mesh. |
|
|
1620 |
second_mesh_scalars = second_mesh_scalars[idx_coords_to_smooth_second] |
|
|
1621 |
|
|
|
1622 |
smoothed_scalars_on_base = np.sum(gauss_kernel * second_mesh_scalars, axis=1) |
|
|
1623 |
|
|
|
1624 |
if idx_coords_to_smooth_base is not None: |
|
|
1625 |
# if sub-sampled baseline mesh (only want to set cartilage to certain points/vertices), then |
|
|
1626 |
# set the calculated smoothed scalars to only those nodes (and leave all other nodes the same as they were |
|
|
1627 |
# originally. |
|
|
1628 |
if set_non_smoothed_scalars_to_zero is True: |
|
|
1629 |
base_mesh_scalars = np.zeros(base_mesh.GetNumberOfPoints()) |
|
|
1630 |
else: |
|
|
1631 |
base_mesh_scalars = np.copy(vtk_to_numpy(base_mesh.GetPointData().GetScalars())) |
|
|
1632 |
base_mesh_scalars[idx_coords_to_smooth_base] = smoothed_scalars_on_base |
|
|
1633 |
return base_mesh_scalars |
|
|
1634 |
|
|
|
1635 |
else: |
|
|
1636 |
return smoothed_scalars_on_base</code></pre> |
|
|
1637 |
</details> |
|
|
1638 |
</dd> |
|
|
1639 |
<dt id="pymskt.mesh.meshTools.transfer_mesh_scalars_get_weighted_average_n_closest"><code class="name flex"> |
|
|
1640 |
<span>def <span class="ident">transfer_mesh_scalars_get_weighted_average_n_closest</span></span>(<span>new_mesh, old_mesh, n=3)</span> |
|
|
1641 |
</code></dt> |
|
|
1642 |
<dd> |
|
|
1643 |
<div class="desc"><p>Transfer scalars from old_mesh to new_mesh using the weighted-average of the <code>n</code> closest |
|
|
1644 |
nodes/points/vertices. Similar but not exactly the same as <code><a title="pymskt.mesh.meshTools.smooth_scalars_from_second_mesh_onto_base" href="#pymskt.mesh.meshTools.smooth_scalars_from_second_mesh_onto_base">smooth_scalars_from_second_mesh_onto_base()</a></code></p> |
|
|
1645 |
<p>This function is ideally used for things like transferring cartilage thickness values from one mesh to another |
|
|
1646 |
after they have been registered together. This is necessary for things like performing statistical analyses or |
|
|
1647 |
getting aggregate statistics. </p> |
|
|
1648 |
<h2 id="parameters">Parameters</h2> |
|
|
1649 |
<dl> |
|
|
1650 |
<dt><strong><code>new_mesh</code></strong> : <code>vtk.vtkPolyData</code></dt> |
|
|
1651 |
<dd>The new mesh that we want to transfer scalar values onto. Also <code>base_mesh</code> from |
|
|
1652 |
<code><a title="pymskt.mesh.meshTools.smooth_scalars_from_second_mesh_onto_base" href="#pymskt.mesh.meshTools.smooth_scalars_from_second_mesh_onto_base">smooth_scalars_from_second_mesh_onto_base()</a></code></dd> |
|
|
1653 |
<dt><strong><code>old_mesh</code></strong> : <code>vtk.vtkPolyData</code></dt> |
|
|
1654 |
<dd>The mesh that we want to transfer scalars from. Also called <code>second_mesh</code> from |
|
|
1655 |
<code><a title="pymskt.mesh.meshTools.smooth_scalars_from_second_mesh_onto_base" href="#pymskt.mesh.meshTools.smooth_scalars_from_second_mesh_onto_base">smooth_scalars_from_second_mesh_onto_base()</a></code></dd> |
|
|
1656 |
<dt><strong><code>n</code></strong> : <code>int</code>, optional</dt> |
|
|
1657 |
<dd>The number of closest nodes that we want to get weighed average of, by default 3</dd> |
|
|
1658 |
</dl> |
|
|
1659 |
<h2 id="returns">Returns</h2> |
|
|
1660 |
<dl> |
|
|
1661 |
<dt><code>numpy.ndarray</code></dt> |
|
|
1662 |
<dd>An array of the scalar values for each node on the <code>new_mesh</code> that includes the scalar values |
|
|
1663 |
transfered (smoothed) from the <code>old_mesh</code>.</dd> |
|
|
1664 |
</dl></div> |
|
|
1665 |
<details class="source"> |
|
|
1666 |
<summary> |
|
|
1667 |
<span>Expand source code</span> |
|
|
1668 |
</summary> |
|
|
1669 |
<pre><code class="python">def transfer_mesh_scalars_get_weighted_average_n_closest(new_mesh, old_mesh, n=3): |
|
|
1670 |
""" |
|
|
1671 |
Transfer scalars from old_mesh to new_mesh using the weighted-average of the `n` closest |
|
|
1672 |
nodes/points/vertices. Similar but not exactly the same as `smooth_scalars_from_second_mesh_onto_base` |
|
|
1673 |
|
|
|
1674 |
This function is ideally used for things like transferring cartilage thickness values from one mesh to another |
|
|
1675 |
after they have been registered together. This is necessary for things like performing statistical analyses or |
|
|
1676 |
getting aggregate statistics. |
|
|
1677 |
|
|
|
1678 |
Parameters |
|
|
1679 |
---------- |
|
|
1680 |
new_mesh : vtk.vtkPolyData |
|
|
1681 |
The new mesh that we want to transfer scalar values onto. Also `base_mesh` from |
|
|
1682 |
`smooth_scalars_from_second_mesh_onto_base` |
|
|
1683 |
old_mesh : vtk.vtkPolyData |
|
|
1684 |
The mesh that we want to transfer scalars from. Also called `second_mesh` from |
|
|
1685 |
`smooth_scalars_from_second_mesh_onto_base` |
|
|
1686 |
n : int, optional |
|
|
1687 |
The number of closest nodes that we want to get weighed average of, by default 3 |
|
|
1688 |
|
|
|
1689 |
Returns |
|
|
1690 |
------- |
|
|
1691 |
numpy.ndarray |
|
|
1692 |
An array of the scalar values for each node on the `new_mesh` that includes the scalar values |
|
|
1693 |
transfered (smoothed) from the `old_mesh`. |
|
|
1694 |
""" |
|
|
1695 |
|
|
|
1696 |
kDTree = vtk.vtkKdTreePointLocator() |
|
|
1697 |
kDTree.SetDataSet(old_mesh) |
|
|
1698 |
kDTree.BuildLocator() |
|
|
1699 |
|
|
|
1700 |
n_arrays = old_mesh.GetPointData().GetNumberOfArrays() |
|
|
1701 |
array_names = [old_mesh.GetPointData().GetArray(array_idx).GetName() for array_idx in range(n_arrays)] |
|
|
1702 |
new_scalars = np.zeros((new_mesh.GetNumberOfPoints(), n_arrays)) |
|
|
1703 |
scalars_old_mesh = [np.copy(vtk_to_numpy(old_mesh.GetPointData().GetArray(array_name))) for array_name in array_names] |
|
|
1704 |
# print('len scalars_old_mesh', len(scalars_old_mesh)) |
|
|
1705 |
# scalars_old_mesh = np.copy(vtk_to_numpy(old_mesh.GetPointData().GetScalars())) |
|
|
1706 |
for new_mesh_pt_idx in range(new_mesh.GetNumberOfPoints()): |
|
|
1707 |
point = new_mesh.GetPoint(new_mesh_pt_idx) |
|
|
1708 |
closest_ids = vtk.vtkIdList() |
|
|
1709 |
kDTree.FindClosestNPoints(n, point, closest_ids) |
|
|
1710 |
|
|
|
1711 |
list_scalars = [] |
|
|
1712 |
distance_weighting = [] |
|
|
1713 |
for closest_pts_idx in range(closest_ids.GetNumberOfIds()): |
|
|
1714 |
pt_idx = closest_ids.GetId(closest_pts_idx) |
|
|
1715 |
_point = old_mesh.GetPoint(pt_idx) |
|
|
1716 |
list_scalars.append([scalars[pt_idx] for scalars in scalars_old_mesh]) |
|
|
1717 |
distance_weighting.append(1 / np.sqrt(np.sum(np.square(np.asarray(point) - np.asarray(_point) + epsilon)))) |
|
|
1718 |
|
|
|
1719 |
total_distance = np.sum(distance_weighting) |
|
|
1720 |
# print('list_scalars', list_scalars) |
|
|
1721 |
# print('distance_weighting', distance_weighting) |
|
|
1722 |
# print('total_distance', total_distance) |
|
|
1723 |
normalized_value = np.sum(np.asarray(list_scalars) * np.expand_dims(np.asarray(distance_weighting), axis=1), |
|
|
1724 |
axis=0) / total_distance |
|
|
1725 |
# print('new_mesh_pt_idx', new_mesh_pt_idx) |
|
|
1726 |
# print('normalized_value', normalized_value) |
|
|
1727 |
# print('new_scalars shape', new_scalars.shape) |
|
|
1728 |
new_scalars[new_mesh_pt_idx, :] = normalized_value |
|
|
1729 |
return new_scalars</code></pre> |
|
|
1730 |
</details> |
|
|
1731 |
</dd> |
|
|
1732 |
</dl> |
|
|
1733 |
</section> |
|
|
1734 |
<section> |
|
|
1735 |
<h2 class="section-title" id="header-classes">Classes</h2> |
|
|
1736 |
<dl> |
|
|
1737 |
<dt id="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine"><code class="flex name class"> |
|
|
1738 |
<span>class <span class="ident">ProbeVtkImageDataAlongLine</span></span> |
|
|
1739 |
<span>(</span><span>line_resolution, vtk_image, save_data_in_class=True, save_mean=False, save_std=False, save_most_common=False, save_max=False, filler=0, non_zero_only=True, data_categorical=False)</span> |
|
|
1740 |
</code></dt> |
|
|
1741 |
<dd> |
|
|
1742 |
<div class="desc"><p>Class to find values along a line. This is used to get things like the mean T2 value normal |
|
|
1743 |
to a bones surface & within the cartialge region. This is done by defining a line in a |
|
|
1744 |
particualar location. </p> |
|
|
1745 |
<h2 id="parameters">Parameters</h2> |
|
|
1746 |
<dl> |
|
|
1747 |
<dt><strong><code>line_resolution</code></strong> : <code>float</code></dt> |
|
|
1748 |
<dd>How many points to create along the line.</dd> |
|
|
1749 |
<dt><strong><code>vtk_image</code></strong> : <code>vtk.vtkImageData</code></dt> |
|
|
1750 |
<dd>Image read into vtk so that we can apply the probe to it.</dd> |
|
|
1751 |
<dt><strong><code>save_data_in_class</code></strong> : <code>bool</code>, optional</dt> |
|
|
1752 |
<dd>Whether or not to save data along the line(s) to the class, by default True</dd> |
|
|
1753 |
<dt><strong><code>save_mean</code></strong> : <code>bool</code>, optional</dt> |
|
|
1754 |
<dd>Whether the mean value should be saved along the line, by default False</dd> |
|
|
1755 |
<dt><strong><code>save_std</code></strong> : <code>bool</code>, optional</dt> |
|
|
1756 |
<dd>Whether the standard deviation of the data along the line should be |
|
|
1757 |
saved, by default False</dd> |
|
|
1758 |
<dt><strong><code>save_most_common</code></strong> : <code>bool</code>, optional</dt> |
|
|
1759 |
<dd>Whether the mode (most common) value should be saved used for identifying cartilage |
|
|
1760 |
regions on the bone surface, by default False</dd> |
|
|
1761 |
<dt><strong><code>filler</code></strong> : <code>int</code>, optional</dt> |
|
|
1762 |
<dd>What value should be placed at locations where we don't have a value |
|
|
1763 |
(e.g., where we don't have T2 values), by default 0</dd> |
|
|
1764 |
<dt><strong><code>non_zero_only</code></strong> : <code>bool</code>, optional</dt> |
|
|
1765 |
<dd>Only save non-zero values along the line, by default True |
|
|
1766 |
This is done becuase zeros are normally regions of error (e.g. |
|
|
1767 |
poor T2 relaxation fit) and thus would artifically reduce the outcome |
|
|
1768 |
along the line.</dd> |
|
|
1769 |
</dl> |
|
|
1770 |
<h2 id="attributes">Attributes</h2> |
|
|
1771 |
<dl> |
|
|
1772 |
<dt><strong><code>save_mean</code></strong> : <code>bool</code></dt> |
|
|
1773 |
<dd>Whether the mean value should be saved along the line, by default False</dd> |
|
|
1774 |
<dt><strong><code>save_std</code></strong> : <code>bool</code></dt> |
|
|
1775 |
<dd>Whether the standard deviation of the data along the line should be |
|
|
1776 |
saved, by default False</dd> |
|
|
1777 |
<dt><strong><code>save_most_common</code></strong> : <code>bool </code></dt> |
|
|
1778 |
<dd>Whether the mode (most common) value should be saved used for identifying cartilage |
|
|
1779 |
regions on the bone surface, by default False</dd> |
|
|
1780 |
<dt><strong><code>filler</code></strong> : <code>float</code></dt> |
|
|
1781 |
<dd>What value should be placed at locations where we don't have a value |
|
|
1782 |
(e.g., where we don't have T2 values), by default 0</dd> |
|
|
1783 |
<dt><strong><code>non_zero_only</code></strong> : <code>bool </code></dt> |
|
|
1784 |
<dd>Only save non-zero values along the line, by default True |
|
|
1785 |
This is done becuase zeros are normally regions of error (e.g. |
|
|
1786 |
poor T2 relaxation fit) and thus would artifically reduce the outcome |
|
|
1787 |
along the line.</dd> |
|
|
1788 |
<dt><strong><code>line</code></strong> : <code>vtk.vtkLineSource</code></dt> |
|
|
1789 |
<dd>Line to put into <code>probe_filter</code> and to determine mean/std/common values for.</dd> |
|
|
1790 |
<dt><strong><code>probe_filter</code></strong> : <code>vtk.vtkProbeFilter</code></dt> |
|
|
1791 |
<dd>Filter to use to get the image data along the line.</dd> |
|
|
1792 |
<dt><strong><code>_mean_data</code></strong> : <code>list</code></dt> |
|
|
1793 |
<dd>List of the mean values for each vertex / line projected</dd> |
|
|
1794 |
<dt><strong><code>_std_data</code></strong> : <code>list</code></dt> |
|
|
1795 |
<dd>List of standard deviation of each vertex / line projected</dd> |
|
|
1796 |
<dt><strong><code>_most_common_data</code></strong> : <code>list</code></dt> |
|
|
1797 |
<dd>List of most common data of each vertex / line projected</dd> |
|
|
1798 |
</dl> |
|
|
1799 |
<h2 id="methods">Methods</h2> |
|
|
1800 |
<p>[summary]</p> |
|
|
1801 |
<h2 id="parameters_1">Parameters</h2> |
|
|
1802 |
<dl> |
|
|
1803 |
<dt><strong><code>line_resolution</code></strong> : <code>float</code></dt> |
|
|
1804 |
<dd>How many points to create along the line.</dd> |
|
|
1805 |
<dt><strong><code>vtk_image</code></strong> : <code>vtk.vtkImageData</code></dt> |
|
|
1806 |
<dd>Image read into vtk so that we can apply the probe to it.</dd> |
|
|
1807 |
<dt><strong><code>save_data_in_class</code></strong> : <code>bool</code>, optional</dt> |
|
|
1808 |
<dd>Whether or not to save data along the line(s) to the class, by default True</dd> |
|
|
1809 |
<dt><strong><code>save_mean</code></strong> : <code>bool</code>, optional</dt> |
|
|
1810 |
<dd>Whether the mean value should be saved along the line, by default False</dd> |
|
|
1811 |
<dt><strong><code>save_std</code></strong> : <code>bool</code>, optional</dt> |
|
|
1812 |
<dd>Whether the standard deviation of the data along the line should be |
|
|
1813 |
saved, by default False</dd> |
|
|
1814 |
<dt><strong><code>save_most_common</code></strong> : <code>bool</code>, optional</dt> |
|
|
1815 |
<dd>Whether the mode (most common) value should be saved used for identifying cartilage |
|
|
1816 |
regions on the bone surface, by default False</dd> |
|
|
1817 |
<dt><strong><code>save_max</code></strong> : <code>bool</code>, optional</dt> |
|
|
1818 |
<dd>Whether the max value should be saved along the line, be default False</dd> |
|
|
1819 |
<dt><strong><code>filler</code></strong> : <code>int</code>, optional</dt> |
|
|
1820 |
<dd>What value should be placed at locations where we don't have a value |
|
|
1821 |
(e.g., where we don't have T2 values), by default 0</dd> |
|
|
1822 |
<dt><strong><code>non_zero_only</code></strong> : <code>bool</code>, optional</dt> |
|
|
1823 |
<dd>Only save non-zero values along the line, by default True |
|
|
1824 |
This is done becuase zeros are normally regions of error (e.g. |
|
|
1825 |
poor T2 relaxation fit) and thus would artifically reduce the outcome |
|
|
1826 |
along the line.</dd> |
|
|
1827 |
<dt><strong><code>data_categorical</code></strong> : <code>bool</code>, optional</dt> |
|
|
1828 |
<dd>Specify whether or not the data is categorical to determine the interpolation |
|
|
1829 |
method that should be used.</dd> |
|
|
1830 |
</dl></div> |
|
|
1831 |
<details class="source"> |
|
|
1832 |
<summary> |
|
|
1833 |
<span>Expand source code</span> |
|
|
1834 |
</summary> |
|
|
1835 |
<pre><code class="python">class ProbeVtkImageDataAlongLine: |
|
|
1836 |
""" |
|
|
1837 |
Class to find values along a line. This is used to get things like the mean T2 value normal |
|
|
1838 |
to a bones surface & within the cartialge region. This is done by defining a line in a |
|
|
1839 |
particualar location. |
|
|
1840 |
|
|
|
1841 |
Parameters |
|
|
1842 |
---------- |
|
|
1843 |
line_resolution : float |
|
|
1844 |
How many points to create along the line. |
|
|
1845 |
vtk_image : vtk.vtkImageData |
|
|
1846 |
Image read into vtk so that we can apply the probe to it. |
|
|
1847 |
save_data_in_class : bool, optional |
|
|
1848 |
Whether or not to save data along the line(s) to the class, by default True |
|
|
1849 |
save_mean : bool, optional |
|
|
1850 |
Whether the mean value should be saved along the line, by default False |
|
|
1851 |
save_std : bool, optional |
|
|
1852 |
Whether the standard deviation of the data along the line should be |
|
|
1853 |
saved, by default False |
|
|
1854 |
save_most_common : bool, optional |
|
|
1855 |
Whether the mode (most common) value should be saved used for identifying cartilage |
|
|
1856 |
regions on the bone surface, by default False |
|
|
1857 |
filler : int, optional |
|
|
1858 |
What value should be placed at locations where we don't have a value |
|
|
1859 |
(e.g., where we don't have T2 values), by default 0 |
|
|
1860 |
non_zero_only : bool, optional |
|
|
1861 |
Only save non-zero values along the line, by default True |
|
|
1862 |
This is done becuase zeros are normally regions of error (e.g. |
|
|
1863 |
poor T2 relaxation fit) and thus would artifically reduce the outcome |
|
|
1864 |
along the line. |
|
|
1865 |
|
|
|
1866 |
|
|
|
1867 |
Attributes |
|
|
1868 |
---------- |
|
|
1869 |
save_mean : bool |
|
|
1870 |
Whether the mean value should be saved along the line, by default False |
|
|
1871 |
save_std : bool |
|
|
1872 |
Whether the standard deviation of the data along the line should be |
|
|
1873 |
saved, by default False |
|
|
1874 |
save_most_common : bool |
|
|
1875 |
Whether the mode (most common) value should be saved used for identifying cartilage |
|
|
1876 |
regions on the bone surface, by default False |
|
|
1877 |
filler : float |
|
|
1878 |
What value should be placed at locations where we don't have a value |
|
|
1879 |
(e.g., where we don't have T2 values), by default 0 |
|
|
1880 |
non_zero_only : bool |
|
|
1881 |
Only save non-zero values along the line, by default True |
|
|
1882 |
This is done becuase zeros are normally regions of error (e.g. |
|
|
1883 |
poor T2 relaxation fit) and thus would artifically reduce the outcome |
|
|
1884 |
along the line. |
|
|
1885 |
line : vtk.vtkLineSource |
|
|
1886 |
Line to put into `probe_filter` and to determine mean/std/common values for. |
|
|
1887 |
probe_filter : vtk.vtkProbeFilter |
|
|
1888 |
Filter to use to get the image data along the line. |
|
|
1889 |
_mean_data : list |
|
|
1890 |
List of the mean values for each vertex / line projected |
|
|
1891 |
_std_data : list |
|
|
1892 |
List of standard deviation of each vertex / line projected |
|
|
1893 |
_most_common_data : list |
|
|
1894 |
List of most common data of each vertex / line projected |
|
|
1895 |
|
|
|
1896 |
Methods |
|
|
1897 |
------- |
|
|
1898 |
|
|
|
1899 |
|
|
|
1900 |
""" |
|
|
1901 |
def __init__(self, |
|
|
1902 |
line_resolution, |
|
|
1903 |
vtk_image, |
|
|
1904 |
save_data_in_class=True, |
|
|
1905 |
save_mean=False, |
|
|
1906 |
save_std=False, |
|
|
1907 |
save_most_common=False, |
|
|
1908 |
save_max=False, |
|
|
1909 |
filler=0, |
|
|
1910 |
non_zero_only=True, |
|
|
1911 |
data_categorical=False |
|
|
1912 |
): |
|
|
1913 |
"""[summary] |
|
|
1914 |
|
|
|
1915 |
Parameters |
|
|
1916 |
---------- |
|
|
1917 |
line_resolution : float |
|
|
1918 |
How many points to create along the line. |
|
|
1919 |
vtk_image : vtk.vtkImageData |
|
|
1920 |
Image read into vtk so that we can apply the probe to it. |
|
|
1921 |
save_data_in_class : bool, optional |
|
|
1922 |
Whether or not to save data along the line(s) to the class, by default True |
|
|
1923 |
save_mean : bool, optional |
|
|
1924 |
Whether the mean value should be saved along the line, by default False |
|
|
1925 |
save_std : bool, optional |
|
|
1926 |
Whether the standard deviation of the data along the line should be |
|
|
1927 |
saved, by default False |
|
|
1928 |
save_most_common : bool, optional |
|
|
1929 |
Whether the mode (most common) value should be saved used for identifying cartilage |
|
|
1930 |
regions on the bone surface, by default False |
|
|
1931 |
save_max : bool, optional |
|
|
1932 |
Whether the max value should be saved along the line, be default False |
|
|
1933 |
filler : int, optional |
|
|
1934 |
What value should be placed at locations where we don't have a value |
|
|
1935 |
(e.g., where we don't have T2 values), by default 0 |
|
|
1936 |
non_zero_only : bool, optional |
|
|
1937 |
Only save non-zero values along the line, by default True |
|
|
1938 |
This is done becuase zeros are normally regions of error (e.g. |
|
|
1939 |
poor T2 relaxation fit) and thus would artifically reduce the outcome |
|
|
1940 |
along the line. |
|
|
1941 |
data_categorical : bool, optional |
|
|
1942 |
Specify whether or not the data is categorical to determine the interpolation |
|
|
1943 |
method that should be used. |
|
|
1944 |
""" |
|
|
1945 |
self.save_mean = save_mean |
|
|
1946 |
self.save_std = save_std |
|
|
1947 |
self.save_most_common = save_most_common |
|
|
1948 |
self.save_max = save_max |
|
|
1949 |
self.filler = filler |
|
|
1950 |
self.non_zero_only = non_zero_only |
|
|
1951 |
|
|
|
1952 |
self.line = vtk.vtkLineSource() |
|
|
1953 |
self.line.SetResolution(line_resolution) |
|
|
1954 |
|
|
|
1955 |
self.probe_filter = vtk.vtkProbeFilter() |
|
|
1956 |
self.probe_filter.SetSourceData(vtk_image) |
|
|
1957 |
if data_categorical is True: |
|
|
1958 |
self.probe_filter.CategoricalDataOn() |
|
|
1959 |
|
|
|
1960 |
if save_data_in_class is True: |
|
|
1961 |
if self.save_mean is True: |
|
|
1962 |
self._mean_data = [] |
|
|
1963 |
if self.save_std is True: |
|
|
1964 |
self._std_data = [] |
|
|
1965 |
if self.save_most_common is True: |
|
|
1966 |
self._most_common_data = [] |
|
|
1967 |
if self.save_max is True: |
|
|
1968 |
self._max_data = [] |
|
|
1969 |
|
|
|
1970 |
def get_data_along_line(self, |
|
|
1971 |
start_pt, |
|
|
1972 |
end_pt): |
|
|
1973 |
""" |
|
|
1974 |
Function to get scalar values along a line between `start_pt` and `end_pt`. |
|
|
1975 |
|
|
|
1976 |
Parameters |
|
|
1977 |
---------- |
|
|
1978 |
start_pt : list |
|
|
1979 |
List of the x,y,z position of the starting point in the line. |
|
|
1980 |
end_pt : list |
|
|
1981 |
List of the x,y,z position of the ending point in the line. |
|
|
1982 |
|
|
|
1983 |
Returns |
|
|
1984 |
------- |
|
|
1985 |
numpy.ndarray |
|
|
1986 |
numpy array of scalar values obtained along the line. |
|
|
1987 |
""" |
|
|
1988 |
self.line.SetPoint1(start_pt) |
|
|
1989 |
self.line.SetPoint2(end_pt) |
|
|
1990 |
|
|
|
1991 |
self.probe_filter.SetInputConnection(self.line.GetOutputPort()) |
|
|
1992 |
self.probe_filter.Update() |
|
|
1993 |
scalars = vtk_to_numpy(self.probe_filter.GetOutput().GetPointData().GetScalars()) |
|
|
1994 |
|
|
|
1995 |
if self.non_zero_only is True: |
|
|
1996 |
scalars = scalars[scalars != 0] |
|
|
1997 |
|
|
|
1998 |
return scalars |
|
|
1999 |
|
|
|
2000 |
def save_data_along_line(self, |
|
|
2001 |
start_pt, |
|
|
2002 |
end_pt): |
|
|
2003 |
""" |
|
|
2004 |
Save the appropriate outcomes to a growing list. |
|
|
2005 |
|
|
|
2006 |
Parameters |
|
|
2007 |
---------- |
|
|
2008 |
start_pt : list |
|
|
2009 |
List of the x,y,z position of the starting point in the line. |
|
|
2010 |
end_pt : list |
|
|
2011 |
List of the x,y,z position of the ending point in the line. |
|
|
2012 |
""" |
|
|
2013 |
scalars = self.get_data_along_line(start_pt, end_pt) |
|
|
2014 |
if len(scalars) > 0: |
|
|
2015 |
if self.save_mean is True: |
|
|
2016 |
self._mean_data.append(np.mean(scalars)) |
|
|
2017 |
if self.save_std is True: |
|
|
2018 |
self._std_data.append(np.std(scalars, ddof=1)) |
|
|
2019 |
if self.save_most_common is True: |
|
|
2020 |
# most_common is for getting segmentations and trying to assign a bone region |
|
|
2021 |
# to be a cartilage ROI. This is becuase there might be a normal vector that |
|
|
2022 |
# cross > 1 cartilage region (e.g., weight-bearing vs anterior fem cartilage) |
|
|
2023 |
self._most_common_data.append(np.bincount(scalars).argmax()) |
|
|
2024 |
if self.save_max is True: |
|
|
2025 |
self._max_data.append(np.max(scalars)) |
|
|
2026 |
else: |
|
|
2027 |
self.append_filler() |
|
|
2028 |
|
|
|
2029 |
def append_filler(self): |
|
|
2030 |
""" |
|
|
2031 |
Add filler value to the requisite lists (_mean_data, _std_data, etc.) as |
|
|
2032 |
appropriate. |
|
|
2033 |
""" |
|
|
2034 |
if self.save_mean is True: |
|
|
2035 |
self._mean_data.append(self.filler) |
|
|
2036 |
if self.save_std is True: |
|
|
2037 |
self._std_data.append(self.filler) |
|
|
2038 |
if self.save_most_common is True: |
|
|
2039 |
self._most_common_data.append(self.filler) |
|
|
2040 |
if self.save_max is True: |
|
|
2041 |
self._max_data.append(self.filler) |
|
|
2042 |
|
|
|
2043 |
@property |
|
|
2044 |
def mean_data(self): |
|
|
2045 |
""" |
|
|
2046 |
Return the `_mean_data` |
|
|
2047 |
|
|
|
2048 |
Returns |
|
|
2049 |
------- |
|
|
2050 |
list |
|
|
2051 |
List of mean values along each line tested. |
|
|
2052 |
""" |
|
|
2053 |
if self.save_mean is True: |
|
|
2054 |
return self._mean_data |
|
|
2055 |
else: |
|
|
2056 |
return None |
|
|
2057 |
|
|
|
2058 |
@property |
|
|
2059 |
def std_data(self): |
|
|
2060 |
""" |
|
|
2061 |
Return the `_std_data` |
|
|
2062 |
|
|
|
2063 |
Returns |
|
|
2064 |
------- |
|
|
2065 |
list |
|
|
2066 |
List of the std values along each line tested. |
|
|
2067 |
""" |
|
|
2068 |
if self.save_std is True: |
|
|
2069 |
return self._std_data |
|
|
2070 |
else: |
|
|
2071 |
return None |
|
|
2072 |
|
|
|
2073 |
@property |
|
|
2074 |
def most_common_data(self): |
|
|
2075 |
""" |
|
|
2076 |
Return the `_most_common_data` |
|
|
2077 |
|
|
|
2078 |
Returns |
|
|
2079 |
------- |
|
|
2080 |
list |
|
|
2081 |
List of the most common value for each line tested. |
|
|
2082 |
""" |
|
|
2083 |
if self.save_most_common is True: |
|
|
2084 |
return self._most_common_data |
|
|
2085 |
else: |
|
|
2086 |
return None |
|
|
2087 |
|
|
|
2088 |
@property |
|
|
2089 |
def max_data(self): |
|
|
2090 |
""" |
|
|
2091 |
Return the `_max_data` |
|
|
2092 |
|
|
|
2093 |
Returns |
|
|
2094 |
------- |
|
|
2095 |
list |
|
|
2096 |
List of the most common value for each line tested. |
|
|
2097 |
""" |
|
|
2098 |
if self.save_max is True: |
|
|
2099 |
return self._max_data |
|
|
2100 |
else: |
|
|
2101 |
return None</code></pre> |
|
|
2102 |
</details> |
|
|
2103 |
<h3>Instance variables</h3> |
|
|
2104 |
<dl> |
|
|
2105 |
<dt id="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.max_data"><code class="name">var <span class="ident">max_data</span></code></dt> |
|
|
2106 |
<dd> |
|
|
2107 |
<div class="desc"><p>Return the <code>_max_data</code></p> |
|
|
2108 |
<h2 id="returns">Returns</h2> |
|
|
2109 |
<dl> |
|
|
2110 |
<dt><code>list</code></dt> |
|
|
2111 |
<dd>List of the most common value for each line tested.</dd> |
|
|
2112 |
</dl></div> |
|
|
2113 |
<details class="source"> |
|
|
2114 |
<summary> |
|
|
2115 |
<span>Expand source code</span> |
|
|
2116 |
</summary> |
|
|
2117 |
<pre><code class="python">@property |
|
|
2118 |
def max_data(self): |
|
|
2119 |
""" |
|
|
2120 |
Return the `_max_data` |
|
|
2121 |
|
|
|
2122 |
Returns |
|
|
2123 |
------- |
|
|
2124 |
list |
|
|
2125 |
List of the most common value for each line tested. |
|
|
2126 |
""" |
|
|
2127 |
if self.save_max is True: |
|
|
2128 |
return self._max_data |
|
|
2129 |
else: |
|
|
2130 |
return None</code></pre> |
|
|
2131 |
</details> |
|
|
2132 |
</dd> |
|
|
2133 |
<dt id="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.mean_data"><code class="name">var <span class="ident">mean_data</span></code></dt> |
|
|
2134 |
<dd> |
|
|
2135 |
<div class="desc"><p>Return the <code>_mean_data</code></p> |
|
|
2136 |
<h2 id="returns">Returns</h2> |
|
|
2137 |
<dl> |
|
|
2138 |
<dt><code>list</code></dt> |
|
|
2139 |
<dd>List of mean values along each line tested.</dd> |
|
|
2140 |
</dl></div> |
|
|
2141 |
<details class="source"> |
|
|
2142 |
<summary> |
|
|
2143 |
<span>Expand source code</span> |
|
|
2144 |
</summary> |
|
|
2145 |
<pre><code class="python">@property |
|
|
2146 |
def mean_data(self): |
|
|
2147 |
""" |
|
|
2148 |
Return the `_mean_data` |
|
|
2149 |
|
|
|
2150 |
Returns |
|
|
2151 |
------- |
|
|
2152 |
list |
|
|
2153 |
List of mean values along each line tested. |
|
|
2154 |
""" |
|
|
2155 |
if self.save_mean is True: |
|
|
2156 |
return self._mean_data |
|
|
2157 |
else: |
|
|
2158 |
return None</code></pre> |
|
|
2159 |
</details> |
|
|
2160 |
</dd> |
|
|
2161 |
<dt id="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.most_common_data"><code class="name">var <span class="ident">most_common_data</span></code></dt> |
|
|
2162 |
<dd> |
|
|
2163 |
<div class="desc"><p>Return the <code>_most_common_data</code></p> |
|
|
2164 |
<h2 id="returns">Returns</h2> |
|
|
2165 |
<dl> |
|
|
2166 |
<dt><code>list</code></dt> |
|
|
2167 |
<dd>List of the most common value for each line tested.</dd> |
|
|
2168 |
</dl></div> |
|
|
2169 |
<details class="source"> |
|
|
2170 |
<summary> |
|
|
2171 |
<span>Expand source code</span> |
|
|
2172 |
</summary> |
|
|
2173 |
<pre><code class="python">@property |
|
|
2174 |
def most_common_data(self): |
|
|
2175 |
""" |
|
|
2176 |
Return the `_most_common_data` |
|
|
2177 |
|
|
|
2178 |
Returns |
|
|
2179 |
------- |
|
|
2180 |
list |
|
|
2181 |
List of the most common value for each line tested. |
|
|
2182 |
""" |
|
|
2183 |
if self.save_most_common is True: |
|
|
2184 |
return self._most_common_data |
|
|
2185 |
else: |
|
|
2186 |
return None</code></pre> |
|
|
2187 |
</details> |
|
|
2188 |
</dd> |
|
|
2189 |
<dt id="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.std_data"><code class="name">var <span class="ident">std_data</span></code></dt> |
|
|
2190 |
<dd> |
|
|
2191 |
<div class="desc"><p>Return the <code>_std_data</code></p> |
|
|
2192 |
<h2 id="returns">Returns</h2> |
|
|
2193 |
<dl> |
|
|
2194 |
<dt><code>list</code></dt> |
|
|
2195 |
<dd>List of the std values along each line tested.</dd> |
|
|
2196 |
</dl></div> |
|
|
2197 |
<details class="source"> |
|
|
2198 |
<summary> |
|
|
2199 |
<span>Expand source code</span> |
|
|
2200 |
</summary> |
|
|
2201 |
<pre><code class="python">@property |
|
|
2202 |
def std_data(self): |
|
|
2203 |
""" |
|
|
2204 |
Return the `_std_data` |
|
|
2205 |
|
|
|
2206 |
Returns |
|
|
2207 |
------- |
|
|
2208 |
list |
|
|
2209 |
List of the std values along each line tested. |
|
|
2210 |
""" |
|
|
2211 |
if self.save_std is True: |
|
|
2212 |
return self._std_data |
|
|
2213 |
else: |
|
|
2214 |
return None</code></pre> |
|
|
2215 |
</details> |
|
|
2216 |
</dd> |
|
|
2217 |
</dl> |
|
|
2218 |
<h3>Methods</h3> |
|
|
2219 |
<dl> |
|
|
2220 |
<dt id="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.append_filler"><code class="name flex"> |
|
|
2221 |
<span>def <span class="ident">append_filler</span></span>(<span>self)</span> |
|
|
2222 |
</code></dt> |
|
|
2223 |
<dd> |
|
|
2224 |
<div class="desc"><p>Add filler value to the requisite lists (_mean_data, _std_data, etc.) as |
|
|
2225 |
appropriate.</p></div> |
|
|
2226 |
<details class="source"> |
|
|
2227 |
<summary> |
|
|
2228 |
<span>Expand source code</span> |
|
|
2229 |
</summary> |
|
|
2230 |
<pre><code class="python">def append_filler(self): |
|
|
2231 |
""" |
|
|
2232 |
Add filler value to the requisite lists (_mean_data, _std_data, etc.) as |
|
|
2233 |
appropriate. |
|
|
2234 |
""" |
|
|
2235 |
if self.save_mean is True: |
|
|
2236 |
self._mean_data.append(self.filler) |
|
|
2237 |
if self.save_std is True: |
|
|
2238 |
self._std_data.append(self.filler) |
|
|
2239 |
if self.save_most_common is True: |
|
|
2240 |
self._most_common_data.append(self.filler) |
|
|
2241 |
if self.save_max is True: |
|
|
2242 |
self._max_data.append(self.filler)</code></pre> |
|
|
2243 |
</details> |
|
|
2244 |
</dd> |
|
|
2245 |
<dt id="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.get_data_along_line"><code class="name flex"> |
|
|
2246 |
<span>def <span class="ident">get_data_along_line</span></span>(<span>self, start_pt, end_pt)</span> |
|
|
2247 |
</code></dt> |
|
|
2248 |
<dd> |
|
|
2249 |
<div class="desc"><p>Function to get scalar values along a line between <code>start_pt</code> and <code>end_pt</code>. </p> |
|
|
2250 |
<h2 id="parameters">Parameters</h2> |
|
|
2251 |
<dl> |
|
|
2252 |
<dt><strong><code>start_pt</code></strong> : <code>list</code></dt> |
|
|
2253 |
<dd>List of the x,y,z position of the starting point in the line.</dd> |
|
|
2254 |
<dt><strong><code>end_pt</code></strong> : <code>list</code></dt> |
|
|
2255 |
<dd>List of the x,y,z position of the ending point in the line.</dd> |
|
|
2256 |
</dl> |
|
|
2257 |
<h2 id="returns">Returns</h2> |
|
|
2258 |
<dl> |
|
|
2259 |
<dt><code>numpy.ndarray</code></dt> |
|
|
2260 |
<dd>numpy array of scalar values obtained along the line.</dd> |
|
|
2261 |
</dl></div> |
|
|
2262 |
<details class="source"> |
|
|
2263 |
<summary> |
|
|
2264 |
<span>Expand source code</span> |
|
|
2265 |
</summary> |
|
|
2266 |
<pre><code class="python">def get_data_along_line(self, |
|
|
2267 |
start_pt, |
|
|
2268 |
end_pt): |
|
|
2269 |
""" |
|
|
2270 |
Function to get scalar values along a line between `start_pt` and `end_pt`. |
|
|
2271 |
|
|
|
2272 |
Parameters |
|
|
2273 |
---------- |
|
|
2274 |
start_pt : list |
|
|
2275 |
List of the x,y,z position of the starting point in the line. |
|
|
2276 |
end_pt : list |
|
|
2277 |
List of the x,y,z position of the ending point in the line. |
|
|
2278 |
|
|
|
2279 |
Returns |
|
|
2280 |
------- |
|
|
2281 |
numpy.ndarray |
|
|
2282 |
numpy array of scalar values obtained along the line. |
|
|
2283 |
""" |
|
|
2284 |
self.line.SetPoint1(start_pt) |
|
|
2285 |
self.line.SetPoint2(end_pt) |
|
|
2286 |
|
|
|
2287 |
self.probe_filter.SetInputConnection(self.line.GetOutputPort()) |
|
|
2288 |
self.probe_filter.Update() |
|
|
2289 |
scalars = vtk_to_numpy(self.probe_filter.GetOutput().GetPointData().GetScalars()) |
|
|
2290 |
|
|
|
2291 |
if self.non_zero_only is True: |
|
|
2292 |
scalars = scalars[scalars != 0] |
|
|
2293 |
|
|
|
2294 |
return scalars</code></pre> |
|
|
2295 |
</details> |
|
|
2296 |
</dd> |
|
|
2297 |
<dt id="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.save_data_along_line"><code class="name flex"> |
|
|
2298 |
<span>def <span class="ident">save_data_along_line</span></span>(<span>self, start_pt, end_pt)</span> |
|
|
2299 |
</code></dt> |
|
|
2300 |
<dd> |
|
|
2301 |
<div class="desc"><p>Save the appropriate outcomes to a growing list. </p> |
|
|
2302 |
<h2 id="parameters">Parameters</h2> |
|
|
2303 |
<dl> |
|
|
2304 |
<dt><strong><code>start_pt</code></strong> : <code>list</code></dt> |
|
|
2305 |
<dd>List of the x,y,z position of the starting point in the line.</dd> |
|
|
2306 |
<dt><strong><code>end_pt</code></strong> : <code>list</code></dt> |
|
|
2307 |
<dd>List of the x,y,z position of the ending point in the line.</dd> |
|
|
2308 |
</dl></div> |
|
|
2309 |
<details class="source"> |
|
|
2310 |
<summary> |
|
|
2311 |
<span>Expand source code</span> |
|
|
2312 |
</summary> |
|
|
2313 |
<pre><code class="python">def save_data_along_line(self, |
|
|
2314 |
start_pt, |
|
|
2315 |
end_pt): |
|
|
2316 |
""" |
|
|
2317 |
Save the appropriate outcomes to a growing list. |
|
|
2318 |
|
|
|
2319 |
Parameters |
|
|
2320 |
---------- |
|
|
2321 |
start_pt : list |
|
|
2322 |
List of the x,y,z position of the starting point in the line. |
|
|
2323 |
end_pt : list |
|
|
2324 |
List of the x,y,z position of the ending point in the line. |
|
|
2325 |
""" |
|
|
2326 |
scalars = self.get_data_along_line(start_pt, end_pt) |
|
|
2327 |
if len(scalars) > 0: |
|
|
2328 |
if self.save_mean is True: |
|
|
2329 |
self._mean_data.append(np.mean(scalars)) |
|
|
2330 |
if self.save_std is True: |
|
|
2331 |
self._std_data.append(np.std(scalars, ddof=1)) |
|
|
2332 |
if self.save_most_common is True: |
|
|
2333 |
# most_common is for getting segmentations and trying to assign a bone region |
|
|
2334 |
# to be a cartilage ROI. This is becuase there might be a normal vector that |
|
|
2335 |
# cross > 1 cartilage region (e.g., weight-bearing vs anterior fem cartilage) |
|
|
2336 |
self._most_common_data.append(np.bincount(scalars).argmax()) |
|
|
2337 |
if self.save_max is True: |
|
|
2338 |
self._max_data.append(np.max(scalars)) |
|
|
2339 |
else: |
|
|
2340 |
self.append_filler()</code></pre> |
|
|
2341 |
</details> |
|
|
2342 |
</dd> |
|
|
2343 |
</dl> |
|
|
2344 |
</dd> |
|
|
2345 |
</dl> |
|
|
2346 |
</section> |
|
|
2347 |
</article> |
|
|
2348 |
<nav id="sidebar"> |
|
|
2349 |
<h1>Index</h1> |
|
|
2350 |
<div class="toc"> |
|
|
2351 |
<ul></ul> |
|
|
2352 |
</div> |
|
|
2353 |
<ul id="index"> |
|
|
2354 |
<li><h3>Super-module</h3> |
|
|
2355 |
<ul> |
|
|
2356 |
<li><code><a title="pymskt.mesh" href="index.html">pymskt.mesh</a></code></li> |
|
|
2357 |
</ul> |
|
|
2358 |
</li> |
|
|
2359 |
<li><h3><a href="#header-functions">Functions</a></h3> |
|
|
2360 |
<ul class=""> |
|
|
2361 |
<li><code><a title="pymskt.mesh.meshTools.gaussian_smooth_surface_scalars" href="#pymskt.mesh.meshTools.gaussian_smooth_surface_scalars">gaussian_smooth_surface_scalars</a></code></li> |
|
|
2362 |
<li><code><a title="pymskt.mesh.meshTools.get_cartilage_properties_at_points" href="#pymskt.mesh.meshTools.get_cartilage_properties_at_points">get_cartilage_properties_at_points</a></code></li> |
|
|
2363 |
<li><code><a title="pymskt.mesh.meshTools.get_mesh_physical_point_coords" href="#pymskt.mesh.meshTools.get_mesh_physical_point_coords">get_mesh_physical_point_coords</a></code></li> |
|
|
2364 |
<li><code><a title="pymskt.mesh.meshTools.get_smoothed_scalars" href="#pymskt.mesh.meshTools.get_smoothed_scalars">get_smoothed_scalars</a></code></li> |
|
|
2365 |
<li><code><a title="pymskt.mesh.meshTools.resample_surface" href="#pymskt.mesh.meshTools.resample_surface">resample_surface</a></code></li> |
|
|
2366 |
<li><code><a title="pymskt.mesh.meshTools.set_mesh_physical_point_coords" href="#pymskt.mesh.meshTools.set_mesh_physical_point_coords">set_mesh_physical_point_coords</a></code></li> |
|
|
2367 |
<li><code><a title="pymskt.mesh.meshTools.smooth_scalars_from_second_mesh_onto_base" href="#pymskt.mesh.meshTools.smooth_scalars_from_second_mesh_onto_base">smooth_scalars_from_second_mesh_onto_base</a></code></li> |
|
|
2368 |
<li><code><a title="pymskt.mesh.meshTools.transfer_mesh_scalars_get_weighted_average_n_closest" href="#pymskt.mesh.meshTools.transfer_mesh_scalars_get_weighted_average_n_closest">transfer_mesh_scalars_get_weighted_average_n_closest</a></code></li> |
|
|
2369 |
</ul> |
|
|
2370 |
</li> |
|
|
2371 |
<li><h3><a href="#header-classes">Classes</a></h3> |
|
|
2372 |
<ul> |
|
|
2373 |
<li> |
|
|
2374 |
<h4><code><a title="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine" href="#pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine">ProbeVtkImageDataAlongLine</a></code></h4> |
|
|
2375 |
<ul class=""> |
|
|
2376 |
<li><code><a title="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.append_filler" href="#pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.append_filler">append_filler</a></code></li> |
|
|
2377 |
<li><code><a title="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.get_data_along_line" href="#pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.get_data_along_line">get_data_along_line</a></code></li> |
|
|
2378 |
<li><code><a title="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.max_data" href="#pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.max_data">max_data</a></code></li> |
|
|
2379 |
<li><code><a title="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.mean_data" href="#pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.mean_data">mean_data</a></code></li> |
|
|
2380 |
<li><code><a title="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.most_common_data" href="#pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.most_common_data">most_common_data</a></code></li> |
|
|
2381 |
<li><code><a title="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.save_data_along_line" href="#pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.save_data_along_line">save_data_along_line</a></code></li> |
|
|
2382 |
<li><code><a title="pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.std_data" href="#pymskt.mesh.meshTools.ProbeVtkImageDataAlongLine.std_data">std_data</a></code></li> |
|
|
2383 |
</ul> |
|
|
2384 |
</li> |
|
|
2385 |
</ul> |
|
|
2386 |
</li> |
|
|
2387 |
</ul> |
|
|
2388 |
</nav> |
|
|
2389 |
</main> |
|
|
2390 |
<footer id="footer"> |
|
|
2391 |
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p> |
|
|
2392 |
</footer> |
|
|
2393 |
</body> |
|
|
2394 |
</html> |