[9173ee]: / docs / mesh / meshRegistration.html

Download this file

394 lines (371 with data), 24.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.10.0" />
<title>pymskt.mesh.meshRegistration API documentation</title>
<meta name="description" content="" />
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin>
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin>
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>pymskt.mesh.meshRegistration</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">import sys
import vtk
try:
import pyfocusr
except ModuleNotFoundError:
print(&#39;pyfocusr not found&#39;)
print(&#39;If you are not using the registration tools, you can ignore this message.&#39;)
print(&#39;install pyfocusr as described in the README: https://github.com/gattia/pymskt&#39;)
print(&#39;or visit the pyfocusr github repo: https://github.com/gattia/pyfocusr&#39;)
import numpy as np
def get_icp_transform(source, target, max_n_iter=1000, n_landmarks=1000, reg_mode=&#39;similarity&#39;):
&#34;&#34;&#34;
Get the Interative Closest Point (ICP) transformation from the `source` mesh to the
`target` mesh.
Parameters
----------
source : vtk.vtkPolyData
Source mesh that we want to transform onto the target mesh.
target : vtk.vtkPolyData
Target mesh that we want to transform the source mesh onto.
max_n_iter : int, optional
Max number of iterations for the registration algorithm to perform, by default 1000
n_landmarks : int, optional
How many landmarks to sample when determining distance between meshes &amp;
solving for the optimal transformation, by default 1000
reg_mode : str, optional
The type of registration to perform. The options are:
- &#39;rigid&#39;: true rigid, translation only
- &#39;similarity&#39;: rigid + equal scale
by default &#39;similarity&#39;
Returns
-------
vtk.vtkIterativeClosestPointTransform
The actual transform object after running the registration.
&#34;&#34;&#34;
icp = vtk.vtkIterativeClosestPointTransform()
icp.SetSource(source)
icp.SetTarget(target)
if reg_mode == &#39;rigid&#39;:
icp.GetLandmarkTransform().SetModeToRigidBody()
elif reg_mode == &#39;similarity&#39;:
icp.GetLandmarkTransform().SetModeToSimilarity()
icp.SetMaximumNumberOfIterations(max_n_iter)
icp.StartByMatchingCentroidsOn()
icp.Modified()
icp.Update()
icp.SetMaximumNumberOfLandmarks(n_landmarks)
return icp
def non_rigidly_register(
target_mesh=None,
source_mesh=None,
final_pt_location=&#39;weighted_average&#39;, # &#39;weighted_average&#39; or &#39;nearest_neighbour&#39;
icp_register_first=True, # Get bones/objects into roughly the same alignment first
icp_registration_mode=&#39;similarity&#39;, # similarity = rigid + scaling (isotropic), (&#34;rigid&#34;, &#34;similarity&#34;, &#34;affine&#34;)
icp_reg_target_to_source=True, # For shape models, the source is usually the reference so we want target in its space (true)
n_spectral_features=3,
n_extra_spectral=3, # For ensuring we have the right spec coords - determined using wasserstein distances.
target_eigenmap_as_reference=True,
get_weighted_spectral_coords=False,
list_features_to_calc=[&#39;curvature&#39;], # &#39;curvature&#39;, min_curvature&#39; &#39;max_curvature&#39; (other features for registration)
use_features_as_coords=True, # During registraiton - do we want to use curvature etc.
rigid_reg_max_iterations=100,
non_rigid_alpha=0.01,
non_rigid_beta=50,
non_rigid_n_eigens=100, # number of eigens for low rank CPD registration
non_rigid_max_iterations=500,
rigid_before_non_rigid_reg=False, # This is of the spectral coordinates - not the x/y/z used in icp_register_first
projection_smooth_iterations=30, # Used for distributing registered points onto target surface - helps preserve diffeomorphism
graph_smoothing_iterations=300, # For smoothing the target mesh before final point correspondence
feature_smoothing_iterations=30, # how much should features (curvature) be smoothed before registration
include_points_as_features=False, # Do we want to incldue x/y/z positions in registration?
norm_physical_and_spectral=True, # set standardized mean and variance for each feature
feature_weights=np.diag([.1,.1]), # should we weight the extra features (curvature) more/less than spectral
n_coords_spectral_ordering=20000, # How many points on mesh to use for ordering spectral coordinates ()
n_coords_spectral_registration=1000, # How many points to use for spectral registrtaion (usually random subsample)
initial_correspondence_type=&#39;kd&#39;, # kd = nearest neightbor, hungarian = minimum cost of assigning between graphs (more compute heavy)
final_correspondence_type=&#39;kd&#39; # kd = nearest neightbor, hungarian = minimum cost of assigning between graphs (more compute heavy)
):
if &#39;pyfocusr&#39; not in sys.modules:
raise ModuleNotFoundError(&#39;pyfocusr is not installed &amp; is necessary for non-rigid registration.&#39;)
if final_pt_location not in [&#39;weighted_average&#39;, &#39;nearest_neighbour&#39;]:
raise Exception(&#39;Did not specify appropriate final_pt_location, must be either &#34;weighted_average&#34;, or &#34;nearest_neighbour&#34;&#39;)
# Test if mesh is a vtk mesh, or a pymsky.Mesh object.
if isinstance(target_mesh, vtk.vtkPolyData):
vtk_mesh_target = target_mesh
else:
try:
vtk_mesh_target = target_mesh.mesh
except:
raise Exception(f&#39;expected type vtk.vtkPolyData or pymskt.mesh.Mesh, got: {type(target_mesh)}&#39;)
if isinstance(source_mesh, vtk.vtkPolyData):
vtk_mesh_source = source_mesh
else:
try:
vtk_mesh_source = source_mesh.mesh
except:
raise Exception(f&#39;expected type vtk.vtkPolyData or pymskt.mesh.Mesh, got: {type(target_mesh)}&#39;)
reg = pyfocusr.Focusr(
vtk_mesh_target=vtk_mesh_target,
vtk_mesh_source=vtk_mesh_source,
icp_register_first=icp_register_first,
icp_registration_mode=icp_registration_mode,
icp_reg_target_to_source=icp_reg_target_to_source,
n_spectral_features=n_spectral_features,
n_extra_spectral=n_extra_spectral,
target_eigenmap_as_reference=target_eigenmap_as_reference,
get_weighted_spectral_coords=get_weighted_spectral_coords,
list_features_to_calc=list_features_to_calc,
use_features_as_coords=use_features_as_coords,
rigid_reg_max_iterations=rigid_reg_max_iterations,
non_rigid_alpha=non_rigid_alpha,
non_rigid_beta=non_rigid_beta,
non_rigid_n_eigens=non_rigid_n_eigens,
non_rigid_max_iterations=non_rigid_max_iterations,
rigid_before_non_rigid_reg=rigid_before_non_rigid_reg,
projection_smooth_iterations=projection_smooth_iterations,
graph_smoothing_iterations=graph_smoothing_iterations,
feature_smoothing_iterations=feature_smoothing_iterations,
include_points_as_features=include_points_as_features,
norm_physical_and_spectral=norm_physical_and_spectral,
feature_weights=feature_weights,
n_coords_spectral_ordering=n_coords_spectral_ordering,
n_coords_spectral_registration=n_coords_spectral_registration,
initial_correspondence_type=initial_correspondence_type,
final_correspondence_type=final_correspondence_type
)
reg.align_maps()
if final_pt_location == &#39;weighted_average&#39;:
reg.get_source_mesh_transformed_weighted_avg()
mesh_transformed_to_target = reg.weighted_avg_transformed_mesh
elif final_pt_location == &#39;nearest_neighbour&#39;:
reg.get_source_mesh_transformed_nearest_neighbour()
mesh_transformed_to_target = reg.nearest_neighbour_transformed_mesh
return mesh_transformed_to_target </code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="pymskt.mesh.meshRegistration.get_icp_transform"><code class="name flex">
<span>def <span class="ident">get_icp_transform</span></span>(<span>source, target, max_n_iter=1000, n_landmarks=1000, reg_mode='similarity')</span>
</code></dt>
<dd>
<div class="desc"><p>Get the Interative Closest Point (ICP) transformation from the <code>source</code> mesh to the
<code>target</code> mesh. </p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>source</code></strong> :&ensp;<code>vtk.vtkPolyData</code></dt>
<dd>Source mesh that we want to transform onto the target mesh.</dd>
<dt><strong><code>target</code></strong> :&ensp;<code>vtk.vtkPolyData</code></dt>
<dd>Target mesh that we want to transform the source mesh onto.</dd>
<dt><strong><code>max_n_iter</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Max number of iterations for the registration algorithm to perform, by default 1000</dd>
<dt><strong><code>n_landmarks</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>How many landmarks to sample when determining distance between meshes &amp;
solving for the optimal transformation, by default 1000</dd>
<dt><strong><code>reg_mode</code></strong> :&ensp;<code>str</code>, optional</dt>
<dd>The type of registration to perform. The options are:
- 'rigid': true rigid, translation only
- 'similarity': rigid + equal scale
by default 'similarity'</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>vtk.vtkIterativeClosestPointTransform</code></dt>
<dd>The actual transform object after running the registration.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def get_icp_transform(source, target, max_n_iter=1000, n_landmarks=1000, reg_mode=&#39;similarity&#39;):
&#34;&#34;&#34;
Get the Interative Closest Point (ICP) transformation from the `source` mesh to the
`target` mesh.
Parameters
----------
source : vtk.vtkPolyData
Source mesh that we want to transform onto the target mesh.
target : vtk.vtkPolyData
Target mesh that we want to transform the source mesh onto.
max_n_iter : int, optional
Max number of iterations for the registration algorithm to perform, by default 1000
n_landmarks : int, optional
How many landmarks to sample when determining distance between meshes &amp;
solving for the optimal transformation, by default 1000
reg_mode : str, optional
The type of registration to perform. The options are:
- &#39;rigid&#39;: true rigid, translation only
- &#39;similarity&#39;: rigid + equal scale
by default &#39;similarity&#39;
Returns
-------
vtk.vtkIterativeClosestPointTransform
The actual transform object after running the registration.
&#34;&#34;&#34;
icp = vtk.vtkIterativeClosestPointTransform()
icp.SetSource(source)
icp.SetTarget(target)
if reg_mode == &#39;rigid&#39;:
icp.GetLandmarkTransform().SetModeToRigidBody()
elif reg_mode == &#39;similarity&#39;:
icp.GetLandmarkTransform().SetModeToSimilarity()
icp.SetMaximumNumberOfIterations(max_n_iter)
icp.StartByMatchingCentroidsOn()
icp.Modified()
icp.Update()
icp.SetMaximumNumberOfLandmarks(n_landmarks)
return icp</code></pre>
</details>
</dd>
<dt id="pymskt.mesh.meshRegistration.non_rigidly_register"><code class="name flex">
<span>def <span class="ident">non_rigidly_register</span></span>(<span>target_mesh=None, source_mesh=None, final_pt_location='weighted_average', icp_register_first=True, icp_registration_mode='similarity', icp_reg_target_to_source=True, n_spectral_features=3, n_extra_spectral=3, target_eigenmap_as_reference=True, get_weighted_spectral_coords=False, list_features_to_calc=['curvature'], use_features_as_coords=True, rigid_reg_max_iterations=100, non_rigid_alpha=0.01, non_rigid_beta=50, non_rigid_n_eigens=100, non_rigid_max_iterations=500, rigid_before_non_rigid_reg=False, projection_smooth_iterations=30, graph_smoothing_iterations=300, feature_smoothing_iterations=30, include_points_as_features=False, norm_physical_and_spectral=True, feature_weights=array([[0.1, 0. ],
[0. , 0.1]]), n_coords_spectral_ordering=20000, n_coords_spectral_registration=1000, initial_correspondence_type='kd', final_correspondence_type='kd')</span>
</code></dt>
<dd>
<div class="desc"></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def non_rigidly_register(
target_mesh=None,
source_mesh=None,
final_pt_location=&#39;weighted_average&#39;, # &#39;weighted_average&#39; or &#39;nearest_neighbour&#39;
icp_register_first=True, # Get bones/objects into roughly the same alignment first
icp_registration_mode=&#39;similarity&#39;, # similarity = rigid + scaling (isotropic), (&#34;rigid&#34;, &#34;similarity&#34;, &#34;affine&#34;)
icp_reg_target_to_source=True, # For shape models, the source is usually the reference so we want target in its space (true)
n_spectral_features=3,
n_extra_spectral=3, # For ensuring we have the right spec coords - determined using wasserstein distances.
target_eigenmap_as_reference=True,
get_weighted_spectral_coords=False,
list_features_to_calc=[&#39;curvature&#39;], # &#39;curvature&#39;, min_curvature&#39; &#39;max_curvature&#39; (other features for registration)
use_features_as_coords=True, # During registraiton - do we want to use curvature etc.
rigid_reg_max_iterations=100,
non_rigid_alpha=0.01,
non_rigid_beta=50,
non_rigid_n_eigens=100, # number of eigens for low rank CPD registration
non_rigid_max_iterations=500,
rigid_before_non_rigid_reg=False, # This is of the spectral coordinates - not the x/y/z used in icp_register_first
projection_smooth_iterations=30, # Used for distributing registered points onto target surface - helps preserve diffeomorphism
graph_smoothing_iterations=300, # For smoothing the target mesh before final point correspondence
feature_smoothing_iterations=30, # how much should features (curvature) be smoothed before registration
include_points_as_features=False, # Do we want to incldue x/y/z positions in registration?
norm_physical_and_spectral=True, # set standardized mean and variance for each feature
feature_weights=np.diag([.1,.1]), # should we weight the extra features (curvature) more/less than spectral
n_coords_spectral_ordering=20000, # How many points on mesh to use for ordering spectral coordinates ()
n_coords_spectral_registration=1000, # How many points to use for spectral registrtaion (usually random subsample)
initial_correspondence_type=&#39;kd&#39;, # kd = nearest neightbor, hungarian = minimum cost of assigning between graphs (more compute heavy)
final_correspondence_type=&#39;kd&#39; # kd = nearest neightbor, hungarian = minimum cost of assigning between graphs (more compute heavy)
):
if &#39;pyfocusr&#39; not in sys.modules:
raise ModuleNotFoundError(&#39;pyfocusr is not installed &amp; is necessary for non-rigid registration.&#39;)
if final_pt_location not in [&#39;weighted_average&#39;, &#39;nearest_neighbour&#39;]:
raise Exception(&#39;Did not specify appropriate final_pt_location, must be either &#34;weighted_average&#34;, or &#34;nearest_neighbour&#34;&#39;)
# Test if mesh is a vtk mesh, or a pymsky.Mesh object.
if isinstance(target_mesh, vtk.vtkPolyData):
vtk_mesh_target = target_mesh
else:
try:
vtk_mesh_target = target_mesh.mesh
except:
raise Exception(f&#39;expected type vtk.vtkPolyData or pymskt.mesh.Mesh, got: {type(target_mesh)}&#39;)
if isinstance(source_mesh, vtk.vtkPolyData):
vtk_mesh_source = source_mesh
else:
try:
vtk_mesh_source = source_mesh.mesh
except:
raise Exception(f&#39;expected type vtk.vtkPolyData or pymskt.mesh.Mesh, got: {type(target_mesh)}&#39;)
reg = pyfocusr.Focusr(
vtk_mesh_target=vtk_mesh_target,
vtk_mesh_source=vtk_mesh_source,
icp_register_first=icp_register_first,
icp_registration_mode=icp_registration_mode,
icp_reg_target_to_source=icp_reg_target_to_source,
n_spectral_features=n_spectral_features,
n_extra_spectral=n_extra_spectral,
target_eigenmap_as_reference=target_eigenmap_as_reference,
get_weighted_spectral_coords=get_weighted_spectral_coords,
list_features_to_calc=list_features_to_calc,
use_features_as_coords=use_features_as_coords,
rigid_reg_max_iterations=rigid_reg_max_iterations,
non_rigid_alpha=non_rigid_alpha,
non_rigid_beta=non_rigid_beta,
non_rigid_n_eigens=non_rigid_n_eigens,
non_rigid_max_iterations=non_rigid_max_iterations,
rigid_before_non_rigid_reg=rigid_before_non_rigid_reg,
projection_smooth_iterations=projection_smooth_iterations,
graph_smoothing_iterations=graph_smoothing_iterations,
feature_smoothing_iterations=feature_smoothing_iterations,
include_points_as_features=include_points_as_features,
norm_physical_and_spectral=norm_physical_and_spectral,
feature_weights=feature_weights,
n_coords_spectral_ordering=n_coords_spectral_ordering,
n_coords_spectral_registration=n_coords_spectral_registration,
initial_correspondence_type=initial_correspondence_type,
final_correspondence_type=final_correspondence_type
)
reg.align_maps()
if final_pt_location == &#39;weighted_average&#39;:
reg.get_source_mesh_transformed_weighted_avg()
mesh_transformed_to_target = reg.weighted_avg_transformed_mesh
elif final_pt_location == &#39;nearest_neighbour&#39;:
reg.get_source_mesh_transformed_nearest_neighbour()
mesh_transformed_to_target = reg.nearest_neighbour_transformed_mesh
return mesh_transformed_to_target </code></pre>
</details>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="pymskt.mesh" href="index.html">pymskt.mesh</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="pymskt.mesh.meshRegistration.get_icp_transform" href="#pymskt.mesh.meshRegistration.get_icp_transform">get_icp_transform</a></code></li>
<li><code><a title="pymskt.mesh.meshRegistration.non_rigidly_register" href="#pymskt.mesh.meshRegistration.non_rigidly_register">non_rigidly_register</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p>
</footer>
</body>
</html>