[9173ee]: / docs / image / main.html

Download this file

917 lines (834 with data), 40.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.10.0" />
<title>pymskt.image.main API documentation</title>
<meta name="description" content="" />
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin>
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin>
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin>
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script>
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>pymskt.image.main</code></h1>
</header>
<section id="section-intro">
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">from typing import Optional
import os
import vtk
import SimpleITK as sitk
import numpy as np
from vtk.util.numpy_support import numpy_to_vtk
def set_vtk_image_origin(vtk_image, new_origin=(0, 0, 0)):
&#34;&#34;&#34;
Reset the origin of a `vtk_image`
Parameters
----------
vtk_image : vtk.image
VTK image that we want to change the origin of.
new_origin : tuple, optional
New origin to asign to `vtk_image`, by default (0, 0, 0)
Returns
-------
vtk.Filter
End of VTK filter pipeline after applying origin change.
&#34;&#34;&#34;
change_origin = vtk.vtkImageChangeInformation()
change_origin.SetInputConnection(vtk_image.GetOutputPort())
change_origin.SetOutputOrigin(new_origin)
change_origin.Update()
return change_origin
def read_nrrd(path, set_origin_zero=False):
&#34;&#34;&#34;
Read NRRD image file into vtk. Enables usage of marching cubes
and other functions that work on image data.
Parameters
----------
path : str
Path to `.nrrd` medical image to read in.
set_origin_zero : bool, optional
Bool to determine if origin should be set to zeros, by default False
Returns
-------
vtk.Filter
End of VTK filter pipeline.
&#34;&#34;&#34;
image_reader = vtk.vtkNrrdReader()
image_reader.SetFileName(path)
image_reader.Update()
if set_origin_zero is True:
change_origin = set_vtk_image_origin(image_reader, new_origin=(0, 0, 0))
return change_origin
elif set_origin_zero is False:
return image_reader
def set_seg_border_to_zeros(seg_image,
border_size=1):
&#34;&#34;&#34;
Utility function to ensure that all segmentations are &#34;closed&#34; after marching cubes.
If the segmentation extends to the edges of the image then the surface wont be closed
at the places it touches the edges.
Parameters
----------
seg_image : SimpleITK.Image
Image of a segmentation.
border_size : int, optional
The size of the border to set around the edges of the 3D image, by default 1
Returns
-------
SimpleITK.Image
The image with border set to 0 (background).
&#34;&#34;&#34;
seg_array = sitk.GetArrayFromImage(seg_image)
new_seg_array = np.zeros_like(seg_array)
new_seg_array[border_size:-border_size, border_size:-border_size, border_size:-border_size] = seg_array[border_size:-border_size, border_size:-border_size, border_size:-border_size]
new_seg_image = sitk.GetImageFromArray(new_seg_array)
new_seg_image.CopyInformation(seg_image)
return new_seg_image
def smooth_image(image, label_idx, variance=1.0):
&#34;&#34;&#34;
Smooth a single label in a SimpleITK image. Used as pre-processing for
bones/cartilage before applying marching cubes. Helps obtain smooth surfaces.
Parameters
----------
image : SimpleITK.Image
Image to be smoothed.
label_idx : int
Integer of the tissue of interest to be smoothed in the image.
variance : float, optional
The size of the smoothing, by default 1.0
Returns
-------
SimpleITK.Image
Image of only the label (tissue) of interest after being smoothed.
&#34;&#34;&#34;
new_image = binarize_segmentation_image(image, label_idx)
new_image = sitk.Cast(new_image, sitk.sitkFloat32)
gauss_filter = sitk.DiscreteGaussianImageFilter()
gauss_filter.SetVariance(variance)
# gauss_filter.SetUseImageSpacingOn
gauss_filter.SetUseImageSpacing(True)
filtered_new_image = gauss_filter.Execute(new_image)
return filtered_new_image
def binarize_segmentation_image(seg_image, label_idx):
&#34;&#34;&#34;
Return segmentation that is only 0s/1s, with 1s where label_idx is
located in the image.
Parameters
----------
seg_image : SimpleITK.Image
Segmentation image that contains data we want to binarize
label_idx : int
Integer/label that we want to extract (binarize) from the
`seg_image`.
Returns
-------
SimpleITK.Image
New segmentation image that is binarized.
&#34;&#34;&#34;
array = sitk.GetArrayFromImage(seg_image)
array_ = np.zeros_like(array)
array_[array == label_idx] = 1
new_seg_image = sitk.GetImageFromArray(array_)
new_seg_image.CopyInformation(seg_image)
return new_seg_image
def crop_bone_based_on_width(seg_image,
bone_idx,
np_med_lat_axis=0,
np_inf_sup_axis=1,
bone_crop_distal=True,
value_to_reassign=0,
percent_width_to_crop_height=1.0):
&#34;&#34;&#34;
Crop the bone labelmap of a SimpleITK.Image so that it is proportional to the
bones medial/lateral width.
Parameters
----------
seg_image : SimpleITK.Image
Image to be cropped.
bone_idx : int
Label_index of the bone to be cropped.
np_med_lat_axis : int, optional
Medial/lateral axis, by default 0
np_inf_sup_axis : int, optional
Inferior/superir axis, by default 1
bone_crop_distal : bool, optional
Boolean of cropping should occur distal or proximally, by default True
value_to_reassign : int, optional
Value to replace bone label with, by default 0
percent_width_to_crop_height : float, optional
Bone length as a proportion of width, by default 1.0
Returns
-------
SimpleITK.Image
Image after bone is cropped as a proportion of the bone&#39;s width.
&#34;&#34;&#34;
seg_array = sitk.GetArrayFromImage(seg_image)
loc_bone = np.where(seg_array == bone_idx)
med_lat_width_bone_mm = (np.max(loc_bone[np_med_lat_axis]) - np.min(loc_bone[np_med_lat_axis])) * \
seg_image.GetSpacing()[::-1][np_med_lat_axis]
inf_sup_crop_in_pixels = (med_lat_width_bone_mm / seg_image.GetSpacing()[::-1][
np_inf_sup_axis]) * percent_width_to_crop_height
if bone_crop_distal is True:
bone_distal_idx = np.max(loc_bone[np_inf_sup_axis])
bone_proximal_idx = bone_distal_idx - inf_sup_crop_in_pixels
if bone_proximal_idx &lt; 1:
bone_proximal_idx = 1
elif bone_crop_distal is False:
bone_proximal_idx = np.min(loc_bone[np_inf_sup_axis])
bone_distal_idx = bone_proximal_idx + inf_sup_crop_in_pixels
if bone_distal_idx &gt; seg_array.shape[np_inf_sup_axis]:
bone_distal_idx = seg_array.shape[np_inf_sup_axis] - 1
max_inf_sup_idx = max(bone_distal_idx, bone_proximal_idx)
min_inf_sup_idx = min(bone_distal_idx, bone_proximal_idx)
idx_bone_to_keep = np.where(
(loc_bone[np_inf_sup_axis] &gt; min_inf_sup_idx) &amp; (loc_bone[np_inf_sup_axis] &lt; max_inf_sup_idx))
loc_bone_to_remove = tuple([np.delete(x, idx_bone_to_keep) for x in loc_bone])
seg_array[loc_bone_to_remove] = value_to_reassign
new_seg_image = sitk.GetImageFromArray(seg_array)
new_seg_image.CopyInformation(seg_image)
return new_seg_image
def apply_transform_retain_array(image, transform, interpolator=sitk.sitkNearestNeighbor):
&#34;&#34;&#34;
This function will move the actual image in space but keep the underlying array the same.
So, in x/y/z land the pixels are in a new location, but the actual underlying data array
is the same.
Parameters
----------
image : SimpleITK.Image
Image to be transformed.
transform : SimpleITK.Transform
Transform to apply
interpolator : SimpleITK.Interpolator, optional
Interpolator type to use, by default sitk.sitkNearestNeighbor
Returns
-------
SimpleITK.Image
New image after applying the appropriate transform.
Notes
-----
I have a feeling that this is overkill.
&#34;&#34;&#34;
inverse_transform = transform.GetInverse()
new_origin = inverse_transform.TransformPoint(image.GetOrigin())
new_x = inverse_transform.TransformPoint(image.TransformIndexToPhysicalPoint((image.GetSize()[0], 0, 0)))
new_y = inverse_transform.TransformPoint(image.TransformIndexToPhysicalPoint((0, image.GetSize()[1], 0)))
new_z = inverse_transform.TransformPoint(image.TransformIndexToPhysicalPoint((0, 0, image.GetSize()[2])))
# Create x-axis vector
new_x_vector = np.asarray(new_x) - np.asarray(new_origin)
new_x_vector /= np.sqrt(np.sum(np.square(new_x_vector)))
# Create y-axis vector
new_y_vector = np.asarray(new_y) - np.asarray(new_origin)
new_y_vector /= np.sqrt(np.sum(np.square(new_y_vector)))
# Create z-axis vector
new_z_vector = np.asarray(new_z) - np.asarray(new_origin)
new_z_vector /= np.sqrt(np.sum(np.square(new_z_vector)))
# New image size (shape)
new_size = image.GetSize()
# New image spacing
new_spacing = image.GetSpacing()
# Create 3x3 transformation matrix from the x/y/z unit vectors.
new_three_by_three = np.zeros((3,3))
new_three_by_three[:,0] = new_x_vector
new_three_by_three[:,1] = new_y_vector
new_three_by_three[:,2] = new_z_vector
new_image = sitk.Resample(image,
new_size,
transform,
interpolator,
new_origin,
new_spacing,
new_three_by_three.flatten().tolist())
return new_image
def create_vtk_image(
origin: Optional[int] = [0, 0, 0],
dimensions: Optional[list] = [20, 20, 20],
spacing: Optional[float] = [1., 1., 1.],
scalar: Optional[float] = 20.,
data: Optional[np.ndarray] = None
):
&#34;&#34;&#34;
Function to create a 3D vtkimage from a numpy array
OR to create a uniform image (all same value)
Parameters
----------
origin : Optional[int], optional
X/Y/Z origin of the image, by default [0, 0, 0]
dimensions : Optional[list], optional
Size of the image along each dimension, by default [20, 20, 20]
spacing : Optional[float], optional
Image spacing along each dimension, by default [1., 1., 1.]
scalar : Optional[float], optional
Scalar value to use for a uniform image, by default 20.
data : Optional[np.ndarray], optional
Data for a non-uniform image, by default None
&#34;&#34;&#34;
if data is None:
data = np.ones(dimensions) * scalar
else:
if len(data.shape) == 3:
dimensions = data.shape
else:
dimensions = [1, 1, 1]
for idx, dim_size in enumerate(data.shape):
dimensions[idx] = dim_size
vtk_array = numpy_to_vtk(data.flatten(order=&#39;F&#39;))
vtk_array.SetName(&#39;test&#39;)
# points = vtk.vtkDoubleArray()
# points.SetName(&#39;test&#39;)
# points.SetNumberOfComponents(1)
# points.SetNumberOfTuples(np.product(dimensions))
# for x in range(dimensions[0]):
# for y in range(dimensions[1]):
# for z in range(dimensions[2]):
# points.SetValue(
# (z * dimensions[0] * dimensions[1]) + (x * dimensions[1]) + y,
# array[x, y, z]
# )
vtk_image = vtk.vtkImageData()
vtk_image.SetOrigin(*origin)
vtk_image.SetDimensions(*dimensions)
vtk_image.SetSpacing(*spacing)
vtk_image.GetPointData().SetScalars(vtk_array)
#
return vtk_image</code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-functions">Functions</h2>
<dl>
<dt id="pymskt.image.main.apply_transform_retain_array"><code class="name flex">
<span>def <span class="ident">apply_transform_retain_array</span></span>(<span>image, transform, interpolator=1)</span>
</code></dt>
<dd>
<div class="desc"><p>This function will move the actual image in space but keep the underlying array the same.
So, in x/y/z land the pixels are in a new location, but the actual underlying data array
is the same. </p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>image</code></strong> :&ensp;<code>SimpleITK.Image</code></dt>
<dd>Image to be transformed.</dd>
<dt><strong><code>transform</code></strong> :&ensp;<code>SimpleITK.Transform</code></dt>
<dd>Transform to apply</dd>
<dt><strong><code>interpolator</code></strong> :&ensp;<code>SimpleITK.Interpolator</code>, optional</dt>
<dd>Interpolator type to use, by default sitk.sitkNearestNeighbor</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>SimpleITK.Image</code></dt>
<dd>New image after applying the appropriate transform.</dd>
</dl>
<h2 id="notes">Notes</h2>
<p>I have a feeling that this is overkill.</p></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def apply_transform_retain_array(image, transform, interpolator=sitk.sitkNearestNeighbor):
&#34;&#34;&#34;
This function will move the actual image in space but keep the underlying array the same.
So, in x/y/z land the pixels are in a new location, but the actual underlying data array
is the same.
Parameters
----------
image : SimpleITK.Image
Image to be transformed.
transform : SimpleITK.Transform
Transform to apply
interpolator : SimpleITK.Interpolator, optional
Interpolator type to use, by default sitk.sitkNearestNeighbor
Returns
-------
SimpleITK.Image
New image after applying the appropriate transform.
Notes
-----
I have a feeling that this is overkill.
&#34;&#34;&#34;
inverse_transform = transform.GetInverse()
new_origin = inverse_transform.TransformPoint(image.GetOrigin())
new_x = inverse_transform.TransformPoint(image.TransformIndexToPhysicalPoint((image.GetSize()[0], 0, 0)))
new_y = inverse_transform.TransformPoint(image.TransformIndexToPhysicalPoint((0, image.GetSize()[1], 0)))
new_z = inverse_transform.TransformPoint(image.TransformIndexToPhysicalPoint((0, 0, image.GetSize()[2])))
# Create x-axis vector
new_x_vector = np.asarray(new_x) - np.asarray(new_origin)
new_x_vector /= np.sqrt(np.sum(np.square(new_x_vector)))
# Create y-axis vector
new_y_vector = np.asarray(new_y) - np.asarray(new_origin)
new_y_vector /= np.sqrt(np.sum(np.square(new_y_vector)))
# Create z-axis vector
new_z_vector = np.asarray(new_z) - np.asarray(new_origin)
new_z_vector /= np.sqrt(np.sum(np.square(new_z_vector)))
# New image size (shape)
new_size = image.GetSize()
# New image spacing
new_spacing = image.GetSpacing()
# Create 3x3 transformation matrix from the x/y/z unit vectors.
new_three_by_three = np.zeros((3,3))
new_three_by_three[:,0] = new_x_vector
new_three_by_three[:,1] = new_y_vector
new_three_by_three[:,2] = new_z_vector
new_image = sitk.Resample(image,
new_size,
transform,
interpolator,
new_origin,
new_spacing,
new_three_by_three.flatten().tolist())
return new_image</code></pre>
</details>
</dd>
<dt id="pymskt.image.main.binarize_segmentation_image"><code class="name flex">
<span>def <span class="ident">binarize_segmentation_image</span></span>(<span>seg_image, label_idx)</span>
</code></dt>
<dd>
<div class="desc"><p>Return segmentation that is only 0s/1s, with 1s where label_idx is
located in the image. </p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>seg_image</code></strong> :&ensp;<code>SimpleITK.Image</code></dt>
<dd>Segmentation image that contains data we want to binarize</dd>
<dt><strong><code>label_idx</code></strong> :&ensp;<code>int</code></dt>
<dd>Integer/label that we want to extract (binarize) from the
<code>seg_image</code>.</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>SimpleITK.Image</code></dt>
<dd>New segmentation image that is binarized.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def binarize_segmentation_image(seg_image, label_idx):
&#34;&#34;&#34;
Return segmentation that is only 0s/1s, with 1s where label_idx is
located in the image.
Parameters
----------
seg_image : SimpleITK.Image
Segmentation image that contains data we want to binarize
label_idx : int
Integer/label that we want to extract (binarize) from the
`seg_image`.
Returns
-------
SimpleITK.Image
New segmentation image that is binarized.
&#34;&#34;&#34;
array = sitk.GetArrayFromImage(seg_image)
array_ = np.zeros_like(array)
array_[array == label_idx] = 1
new_seg_image = sitk.GetImageFromArray(array_)
new_seg_image.CopyInformation(seg_image)
return new_seg_image</code></pre>
</details>
</dd>
<dt id="pymskt.image.main.create_vtk_image"><code class="name flex">
<span>def <span class="ident">create_vtk_image</span></span>(<span>origin: Optional[int] = [0, 0, 0], dimensions: Optional[list] = [20, 20, 20], spacing: Optional[float] = [1.0, 1.0, 1.0], scalar: Optional[float] = 20.0, data: Optional[numpy.ndarray] = None)</span>
</code></dt>
<dd>
<div class="desc"><p>Function to create a 3D vtkimage from a numpy array
OR to create a uniform image (all same value)</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>origin</code></strong> :&ensp;<code>Optional[int]</code>, optional</dt>
<dd>X/Y/Z origin of the image, by default [0, 0, 0]</dd>
<dt><strong><code>dimensions</code></strong> :&ensp;<code>Optional[list]</code>, optional</dt>
<dd>Size of the image along each dimension, by default [20, 20, 20]</dd>
<dt><strong><code>spacing</code></strong> :&ensp;<code>Optional[float]</code>, optional</dt>
<dd>Image spacing along each dimension, by default [1., 1., 1.]</dd>
<dt><strong><code>scalar</code></strong> :&ensp;<code>Optional[float]</code>, optional</dt>
<dd>Scalar value to use for a uniform image, by default 20.</dd>
<dt><strong><code>data</code></strong> :&ensp;<code>Optional[np.ndarray]</code>, optional</dt>
<dd>Data for a non-uniform image, by default None</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def create_vtk_image(
origin: Optional[int] = [0, 0, 0],
dimensions: Optional[list] = [20, 20, 20],
spacing: Optional[float] = [1., 1., 1.],
scalar: Optional[float] = 20.,
data: Optional[np.ndarray] = None
):
&#34;&#34;&#34;
Function to create a 3D vtkimage from a numpy array
OR to create a uniform image (all same value)
Parameters
----------
origin : Optional[int], optional
X/Y/Z origin of the image, by default [0, 0, 0]
dimensions : Optional[list], optional
Size of the image along each dimension, by default [20, 20, 20]
spacing : Optional[float], optional
Image spacing along each dimension, by default [1., 1., 1.]
scalar : Optional[float], optional
Scalar value to use for a uniform image, by default 20.
data : Optional[np.ndarray], optional
Data for a non-uniform image, by default None
&#34;&#34;&#34;
if data is None:
data = np.ones(dimensions) * scalar
else:
if len(data.shape) == 3:
dimensions = data.shape
else:
dimensions = [1, 1, 1]
for idx, dim_size in enumerate(data.shape):
dimensions[idx] = dim_size
vtk_array = numpy_to_vtk(data.flatten(order=&#39;F&#39;))
vtk_array.SetName(&#39;test&#39;)
# points = vtk.vtkDoubleArray()
# points.SetName(&#39;test&#39;)
# points.SetNumberOfComponents(1)
# points.SetNumberOfTuples(np.product(dimensions))
# for x in range(dimensions[0]):
# for y in range(dimensions[1]):
# for z in range(dimensions[2]):
# points.SetValue(
# (z * dimensions[0] * dimensions[1]) + (x * dimensions[1]) + y,
# array[x, y, z]
# )
vtk_image = vtk.vtkImageData()
vtk_image.SetOrigin(*origin)
vtk_image.SetDimensions(*dimensions)
vtk_image.SetSpacing(*spacing)
vtk_image.GetPointData().SetScalars(vtk_array)
#
return vtk_image</code></pre>
</details>
</dd>
<dt id="pymskt.image.main.crop_bone_based_on_width"><code class="name flex">
<span>def <span class="ident">crop_bone_based_on_width</span></span>(<span>seg_image, bone_idx, np_med_lat_axis=0, np_inf_sup_axis=1, bone_crop_distal=True, value_to_reassign=0, percent_width_to_crop_height=1.0)</span>
</code></dt>
<dd>
<div class="desc"><p>Crop the bone labelmap of a SimpleITK.Image so that it is proportional to the
bones medial/lateral width. </p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>seg_image</code></strong> :&ensp;<code>SimpleITK.Image</code></dt>
<dd>Image to be cropped.</dd>
<dt><strong><code>bone_idx</code></strong> :&ensp;<code>int</code></dt>
<dd>Label_index of the bone to be cropped.</dd>
<dt><strong><code>np_med_lat_axis</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Medial/lateral axis, by default 0</dd>
<dt><strong><code>np_inf_sup_axis</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Inferior/superir axis, by default 1</dd>
<dt><strong><code>bone_crop_distal</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Boolean of cropping should occur distal or proximally, by default True</dd>
<dt><strong><code>value_to_reassign</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>Value to replace bone label with, by default 0</dd>
<dt><strong><code>percent_width_to_crop_height</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>Bone length as a proportion of width, by default 1.0</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>SimpleITK.Image</code></dt>
<dd>Image after bone is cropped as a proportion of the bone's width.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def crop_bone_based_on_width(seg_image,
bone_idx,
np_med_lat_axis=0,
np_inf_sup_axis=1,
bone_crop_distal=True,
value_to_reassign=0,
percent_width_to_crop_height=1.0):
&#34;&#34;&#34;
Crop the bone labelmap of a SimpleITK.Image so that it is proportional to the
bones medial/lateral width.
Parameters
----------
seg_image : SimpleITK.Image
Image to be cropped.
bone_idx : int
Label_index of the bone to be cropped.
np_med_lat_axis : int, optional
Medial/lateral axis, by default 0
np_inf_sup_axis : int, optional
Inferior/superir axis, by default 1
bone_crop_distal : bool, optional
Boolean of cropping should occur distal or proximally, by default True
value_to_reassign : int, optional
Value to replace bone label with, by default 0
percent_width_to_crop_height : float, optional
Bone length as a proportion of width, by default 1.0
Returns
-------
SimpleITK.Image
Image after bone is cropped as a proportion of the bone&#39;s width.
&#34;&#34;&#34;
seg_array = sitk.GetArrayFromImage(seg_image)
loc_bone = np.where(seg_array == bone_idx)
med_lat_width_bone_mm = (np.max(loc_bone[np_med_lat_axis]) - np.min(loc_bone[np_med_lat_axis])) * \
seg_image.GetSpacing()[::-1][np_med_lat_axis]
inf_sup_crop_in_pixels = (med_lat_width_bone_mm / seg_image.GetSpacing()[::-1][
np_inf_sup_axis]) * percent_width_to_crop_height
if bone_crop_distal is True:
bone_distal_idx = np.max(loc_bone[np_inf_sup_axis])
bone_proximal_idx = bone_distal_idx - inf_sup_crop_in_pixels
if bone_proximal_idx &lt; 1:
bone_proximal_idx = 1
elif bone_crop_distal is False:
bone_proximal_idx = np.min(loc_bone[np_inf_sup_axis])
bone_distal_idx = bone_proximal_idx + inf_sup_crop_in_pixels
if bone_distal_idx &gt; seg_array.shape[np_inf_sup_axis]:
bone_distal_idx = seg_array.shape[np_inf_sup_axis] - 1
max_inf_sup_idx = max(bone_distal_idx, bone_proximal_idx)
min_inf_sup_idx = min(bone_distal_idx, bone_proximal_idx)
idx_bone_to_keep = np.where(
(loc_bone[np_inf_sup_axis] &gt; min_inf_sup_idx) &amp; (loc_bone[np_inf_sup_axis] &lt; max_inf_sup_idx))
loc_bone_to_remove = tuple([np.delete(x, idx_bone_to_keep) for x in loc_bone])
seg_array[loc_bone_to_remove] = value_to_reassign
new_seg_image = sitk.GetImageFromArray(seg_array)
new_seg_image.CopyInformation(seg_image)
return new_seg_image</code></pre>
</details>
</dd>
<dt id="pymskt.image.main.read_nrrd"><code class="name flex">
<span>def <span class="ident">read_nrrd</span></span>(<span>path, set_origin_zero=False)</span>
</code></dt>
<dd>
<div class="desc"><p>Read NRRD image file into vtk. Enables usage of marching cubes
and other functions that work on image data.</p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>path</code></strong> :&ensp;<code>str</code></dt>
<dd>Path to <code>.nrrd</code> medical image to read in.</dd>
<dt><strong><code>set_origin_zero</code></strong> :&ensp;<code>bool</code>, optional</dt>
<dd>Bool to determine if origin should be set to zeros, by default False</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>vtk.Filter</code></dt>
<dd>End of VTK filter pipeline.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def read_nrrd(path, set_origin_zero=False):
&#34;&#34;&#34;
Read NRRD image file into vtk. Enables usage of marching cubes
and other functions that work on image data.
Parameters
----------
path : str
Path to `.nrrd` medical image to read in.
set_origin_zero : bool, optional
Bool to determine if origin should be set to zeros, by default False
Returns
-------
vtk.Filter
End of VTK filter pipeline.
&#34;&#34;&#34;
image_reader = vtk.vtkNrrdReader()
image_reader.SetFileName(path)
image_reader.Update()
if set_origin_zero is True:
change_origin = set_vtk_image_origin(image_reader, new_origin=(0, 0, 0))
return change_origin
elif set_origin_zero is False:
return image_reader</code></pre>
</details>
</dd>
<dt id="pymskt.image.main.set_seg_border_to_zeros"><code class="name flex">
<span>def <span class="ident">set_seg_border_to_zeros</span></span>(<span>seg_image, border_size=1)</span>
</code></dt>
<dd>
<div class="desc"><p>Utility function to ensure that all segmentations are "closed" after marching cubes.
If the segmentation extends to the edges of the image then the surface wont be closed
at the places it touches the edges. </p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>seg_image</code></strong> :&ensp;<code>SimpleITK.Image</code></dt>
<dd>Image of a segmentation.</dd>
<dt><strong><code>border_size</code></strong> :&ensp;<code>int</code>, optional</dt>
<dd>The size of the border to set around the edges of the 3D image, by default 1</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>SimpleITK.Image</code></dt>
<dd>The image with border set to 0 (background).</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def set_seg_border_to_zeros(seg_image,
border_size=1):
&#34;&#34;&#34;
Utility function to ensure that all segmentations are &#34;closed&#34; after marching cubes.
If the segmentation extends to the edges of the image then the surface wont be closed
at the places it touches the edges.
Parameters
----------
seg_image : SimpleITK.Image
Image of a segmentation.
border_size : int, optional
The size of the border to set around the edges of the 3D image, by default 1
Returns
-------
SimpleITK.Image
The image with border set to 0 (background).
&#34;&#34;&#34;
seg_array = sitk.GetArrayFromImage(seg_image)
new_seg_array = np.zeros_like(seg_array)
new_seg_array[border_size:-border_size, border_size:-border_size, border_size:-border_size] = seg_array[border_size:-border_size, border_size:-border_size, border_size:-border_size]
new_seg_image = sitk.GetImageFromArray(new_seg_array)
new_seg_image.CopyInformation(seg_image)
return new_seg_image</code></pre>
</details>
</dd>
<dt id="pymskt.image.main.set_vtk_image_origin"><code class="name flex">
<span>def <span class="ident">set_vtk_image_origin</span></span>(<span>vtk_image, new_origin=(0, 0, 0))</span>
</code></dt>
<dd>
<div class="desc"><p>Reset the origin of a <code>vtk_image</code></p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>vtk_image</code></strong> :&ensp;<code>vtk.image</code></dt>
<dd>VTK image that we want to change the origin of.</dd>
<dt><strong><code>new_origin</code></strong> :&ensp;<code>tuple</code>, optional</dt>
<dd>New origin to asign to <code>vtk_image</code>, by default (0, 0, 0)</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>vtk.Filter</code></dt>
<dd>End of VTK filter pipeline after applying origin change.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def set_vtk_image_origin(vtk_image, new_origin=(0, 0, 0)):
&#34;&#34;&#34;
Reset the origin of a `vtk_image`
Parameters
----------
vtk_image : vtk.image
VTK image that we want to change the origin of.
new_origin : tuple, optional
New origin to asign to `vtk_image`, by default (0, 0, 0)
Returns
-------
vtk.Filter
End of VTK filter pipeline after applying origin change.
&#34;&#34;&#34;
change_origin = vtk.vtkImageChangeInformation()
change_origin.SetInputConnection(vtk_image.GetOutputPort())
change_origin.SetOutputOrigin(new_origin)
change_origin.Update()
return change_origin</code></pre>
</details>
</dd>
<dt id="pymskt.image.main.smooth_image"><code class="name flex">
<span>def <span class="ident">smooth_image</span></span>(<span>image, label_idx, variance=1.0)</span>
</code></dt>
<dd>
<div class="desc"><p>Smooth a single label in a SimpleITK image. Used as pre-processing for
bones/cartilage before applying marching cubes. Helps obtain smooth surfaces. </p>
<h2 id="parameters">Parameters</h2>
<dl>
<dt><strong><code>image</code></strong> :&ensp;<code>SimpleITK.Image</code></dt>
<dd>Image to be smoothed.</dd>
<dt><strong><code>label_idx</code></strong> :&ensp;<code>int</code></dt>
<dd>Integer of the tissue of interest to be smoothed in the image.</dd>
<dt><strong><code>variance</code></strong> :&ensp;<code>float</code>, optional</dt>
<dd>The size of the smoothing, by default 1.0</dd>
</dl>
<h2 id="returns">Returns</h2>
<dl>
<dt><code>SimpleITK.Image</code></dt>
<dd>Image of only the label (tissue) of interest after being smoothed.</dd>
</dl></div>
<details class="source">
<summary>
<span>Expand source code</span>
</summary>
<pre><code class="python">def smooth_image(image, label_idx, variance=1.0):
&#34;&#34;&#34;
Smooth a single label in a SimpleITK image. Used as pre-processing for
bones/cartilage before applying marching cubes. Helps obtain smooth surfaces.
Parameters
----------
image : SimpleITK.Image
Image to be smoothed.
label_idx : int
Integer of the tissue of interest to be smoothed in the image.
variance : float, optional
The size of the smoothing, by default 1.0
Returns
-------
SimpleITK.Image
Image of only the label (tissue) of interest after being smoothed.
&#34;&#34;&#34;
new_image = binarize_segmentation_image(image, label_idx)
new_image = sitk.Cast(new_image, sitk.sitkFloat32)
gauss_filter = sitk.DiscreteGaussianImageFilter()
gauss_filter.SetVariance(variance)
# gauss_filter.SetUseImageSpacingOn
gauss_filter.SetUseImageSpacing(True)
filtered_new_image = gauss_filter.Execute(new_image)
return filtered_new_image</code></pre>
</details>
</dd>
</dl>
</section>
<section>
</section>
</article>
<nav id="sidebar">
<h1>Index</h1>
<div class="toc">
<ul></ul>
</div>
<ul id="index">
<li><h3>Super-module</h3>
<ul>
<li><code><a title="pymskt.image" href="index.html">pymskt.image</a></code></li>
</ul>
</li>
<li><h3><a href="#header-functions">Functions</a></h3>
<ul class="">
<li><code><a title="pymskt.image.main.apply_transform_retain_array" href="#pymskt.image.main.apply_transform_retain_array">apply_transform_retain_array</a></code></li>
<li><code><a title="pymskt.image.main.binarize_segmentation_image" href="#pymskt.image.main.binarize_segmentation_image">binarize_segmentation_image</a></code></li>
<li><code><a title="pymskt.image.main.create_vtk_image" href="#pymskt.image.main.create_vtk_image">create_vtk_image</a></code></li>
<li><code><a title="pymskt.image.main.crop_bone_based_on_width" href="#pymskt.image.main.crop_bone_based_on_width">crop_bone_based_on_width</a></code></li>
<li><code><a title="pymskt.image.main.read_nrrd" href="#pymskt.image.main.read_nrrd">read_nrrd</a></code></li>
<li><code><a title="pymskt.image.main.set_seg_border_to_zeros" href="#pymskt.image.main.set_seg_border_to_zeros">set_seg_border_to_zeros</a></code></li>
<li><code><a title="pymskt.image.main.set_vtk_image_origin" href="#pymskt.image.main.set_vtk_image_origin">set_vtk_image_origin</a></code></li>
<li><code><a title="pymskt.image.main.smooth_image" href="#pymskt.image.main.smooth_image">smooth_image</a></code></li>
</ul>
</li>
</ul>
</nav>
</main>
<footer id="footer">
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p>
</footer>
</body>
</html>