|
a |
|
b/docs/image/cartilage_processing.html |
|
|
1 |
<!doctype html> |
|
|
2 |
<html lang="en"> |
|
|
3 |
<head> |
|
|
4 |
<meta charset="utf-8"> |
|
|
5 |
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" /> |
|
|
6 |
<meta name="generator" content="pdoc 0.10.0" /> |
|
|
7 |
<title>pymskt.image.cartilage_processing API documentation</title> |
|
|
8 |
<meta name="description" content="" /> |
|
|
9 |
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/sanitize.min.css" integrity="sha256-PK9q560IAAa6WVRRh76LtCaI8pjTJ2z11v0miyNNjrs=" crossorigin> |
|
|
10 |
<link rel="preload stylesheet" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/11.0.1/typography.min.css" integrity="sha256-7l/o7C8jubJiy74VsKTidCy1yBkRtiUGbVkYBylBqUg=" crossorigin> |
|
|
11 |
<link rel="stylesheet preload" as="style" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/styles/github.min.css" crossorigin> |
|
|
12 |
<style>:root{--highlight-color:#fe9}.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}#sidebar > *:last-child{margin-bottom:2cm}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}h1:target,h2:target,h3:target,h4:target,h5:target,h6:target{background:var(--highlight-color);padding:.2em 0}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{margin-top:.6em;font-weight:bold}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}dt:target .name{background:var(--highlight-color)}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary,.git-link-div{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase}.source summary > *{white-space:nowrap;cursor:pointer}.git-link{color:inherit;margin-left:1em}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}td{padding:0 .5em}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style> |
|
|
13 |
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%;height:100vh;overflow:auto;position:sticky;top:0}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style> |
|
|
14 |
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style> |
|
|
15 |
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/10.1.1/highlight.min.js" integrity="sha256-Uv3H6lx7dJmRfRvH8TH6kJD1TSK1aFcwgx+mdg3epi8=" crossorigin></script> |
|
|
16 |
<script>window.addEventListener('DOMContentLoaded', () => hljs.initHighlighting())</script> |
|
|
17 |
</head> |
|
|
18 |
<body> |
|
|
19 |
<main> |
|
|
20 |
<article id="content"> |
|
|
21 |
<header> |
|
|
22 |
<h1 class="title">Module <code>pymskt.image.cartilage_processing</code></h1> |
|
|
23 |
</header> |
|
|
24 |
<section id="section-intro"> |
|
|
25 |
<details class="source"> |
|
|
26 |
<summary> |
|
|
27 |
<span>Expand source code</span> |
|
|
28 |
</summary> |
|
|
29 |
<pre><code class="python">import SimpleITK as sitk |
|
|
30 |
import numpy as np |
|
|
31 |
from scipy import ndimage as ndi |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
def CofM(array): |
|
|
35 |
''' |
|
|
36 |
Get center of mass for a row of a binary 2D image. |
|
|
37 |
Parameters |
|
|
38 |
---------- |
|
|
39 |
array : 1D array |
|
|
40 |
Individual row of a 2D image. |
|
|
41 |
Returns |
|
|
42 |
------- |
|
|
43 |
centerPixels : |
|
|
44 |
Average location of 1s in the row |
|
|
45 |
Notes |
|
|
46 |
----- |
|
|
47 |
Calculates the average location of cartilage for the row of image being analyzed. |
|
|
48 |
Returns 0 if there are no pixels |
|
|
49 |
|
|
|
50 |
''' |
|
|
51 |
pixels = np.where(array==1) |
|
|
52 |
centerPixels = np.mean(pixels) |
|
|
53 |
nans = np.isnan(centerPixels) |
|
|
54 |
if nans == True: |
|
|
55 |
centerPixels = 0 |
|
|
56 |
return(centerPixels) |
|
|
57 |
|
|
|
58 |
def get_y_CofM(flattenedSeg): |
|
|
59 |
''' |
|
|
60 |
Get CofM of femoral cartilage for each row of the flattened segmentation. |
|
|
61 |
Parameters |
|
|
62 |
---------- |
|
|
63 |
flattenedSeg : 2D array |
|
|
64 |
Axial flattened, and filled in femoral cartilage segmentation. |
|
|
65 |
Returns |
|
|
66 |
------- |
|
|
67 |
yCofM : |
|
|
68 |
Find the CofM for each row of the image. |
|
|
69 |
Notes |
|
|
70 |
----- |
|
|
71 |
Get the x/y coordinates for the CofM for each row of the flattened segmentation. |
|
|
72 |
|
|
|
73 |
''' |
|
|
74 |
locationFemur = np.where(flattenedSeg==1) |
|
|
75 |
yCofM = np.zeros((flattenedSeg.shape[0], 2), dtype=int) |
|
|
76 |
|
|
|
77 |
# only calculate for rows with cartilage. |
|
|
78 |
minRow = np.min(locationFemur[0]) |
|
|
79 |
maxRow = np.max(locationFemur[0]) |
|
|
80 |
|
|
|
81 |
# iterate over rows of image, get CofM, store CofM for row. |
|
|
82 |
for x in range(minRow, maxRow): |
|
|
83 |
yCofM[x, 0] = x #store the x-coordinate (row) we calcualted CofM for. |
|
|
84 |
yCofM[x, 1] = int(CofM(flattenedSeg[x, :])) # store the CofM value (make it an integer for indexing) |
|
|
85 |
yCofM = yCofM[minRow+10:maxRow-10,:] # remove 10 most medial and most lateral pixels of femoral cartilage. |
|
|
86 |
return(yCofM) |
|
|
87 |
|
|
|
88 |
def absolute_CofM(flattenedSeg): |
|
|
89 |
''' |
|
|
90 |
Get absolute CofM of all the femoral cartilage pixels |
|
|
91 |
Parameters |
|
|
92 |
---------- |
|
|
93 |
flattenedSeg : 2D array |
|
|
94 |
Axial flattened, and filled in femoral cartilage segmentation. |
|
|
95 |
Returns |
|
|
96 |
------- |
|
|
97 |
centerX : |
|
|
98 |
The CofM in the X direction for the segmentation |
|
|
99 |
centerY : |
|
|
100 |
The CofM in the Y direction for the segmentation |
|
|
101 |
Notes |
|
|
102 |
----- |
|
|
103 |
Get the x/y coordinates for the CofM for the whole flattened segmentation |
|
|
104 |
|
|
|
105 |
''' |
|
|
106 |
femurPoints = np.where(flattenedSeg==1) |
|
|
107 |
centerX = np.mean(femurPoints[0]) |
|
|
108 |
centerY = np.mean(femurPoints[1]) |
|
|
109 |
return(centerX, centerY) |
|
|
110 |
|
|
|
111 |
def findNotch(flattenedSeg, trochleaPositionX=1000): |
|
|
112 |
''' |
|
|
113 |
Get the X Y position of the trochlear notch - where medial/lateral sides of the femur meet. |
|
|
114 |
Parameters |
|
|
115 |
---------- |
|
|
116 |
flattenedSeg : 2D array |
|
|
117 |
Axial flattened, and filled in femoral cartilage segmentation. |
|
|
118 |
Returns |
|
|
119 |
------- |
|
|
120 |
trochleaPositionY : |
|
|
121 |
Y position of trochlear notch |
|
|
122 |
trochleaPositionX : |
|
|
123 |
X position of trochlear notch |
|
|
124 |
Notes |
|
|
125 |
----- |
|
|
126 |
Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the |
|
|
127 |
femoral cartilage. |
|
|
128 |
|
|
|
129 |
''' |
|
|
130 |
# Goal is to find the most anterior point that is between the medial/lateral condyles |
|
|
131 |
|
|
|
132 |
# First guess at the troch notch in the 1st axis (med/lat axis) is the location with the smallest value for |
|
|
133 |
# the 2nd axis CofM. This is because in axis 1, negative is anterior and we expect the most anterior CofM should |
|
|
134 |
# roughly align with the trochlear notch. |
|
|
135 |
y_CofM = get_y_CofM(flattenedSeg) |
|
|
136 |
first_guess = y_CofM[np.argmin(y_CofM[:,1]), 0] |
|
|
137 |
# the second guess is just the CofM of the whole cartilage. |
|
|
138 |
centerX, centerY = absolute_CofM(flattenedSeg) |
|
|
139 |
second_guess = centerX |
|
|
140 |
|
|
|
141 |
# We use the 2 guesses to help define a search space for the trochlear notch. |
|
|
142 |
min_search = int(np.min((first_guess,second_guess))-20) |
|
|
143 |
max_search = int(np.max((first_guess,second_guess))+20) |
|
|
144 |
|
|
|
145 |
# now, we iterate over all of the rows (axis 1) of the search space (moving in the medial/lateral direction) |
|
|
146 |
# we are looking for the row where the most posterior point (back of femur) is furthest anterior (notch). |
|
|
147 |
for y in range(min_search, max_search): |
|
|
148 |
# At each row, we find most posterior pixel labeled as cartilage. |
|
|
149 |
try: |
|
|
150 |
trochleaPosition_test = np.max(np.where(flattenedSeg[y,:]==1)) |
|
|
151 |
except ValueError: |
|
|
152 |
# if there is no cartilage we'll get a ValueError exception. |
|
|
153 |
# in that case, set this value to be the max it can be (the size of the first axis) |
|
|
154 |
trochleaPosition_test = flattenedSeg.shape[1] |
|
|
155 |
# if the most posterior point for this row is more anterior than the current trochleaPositionX, |
|
|
156 |
# then update this to be the new trochlear notch. |
|
|
157 |
if trochleaPosition_test < trochleaPositionX: |
|
|
158 |
trochleaPositionX = trochleaPosition_test |
|
|
159 |
trochleaPositionY = y |
|
|
160 |
|
|
|
161 |
return(trochleaPositionY, trochleaPositionX+1) |
|
|
162 |
|
|
|
163 |
def getAnteriorOfWeightBearing(segArray, femurIndex=1): |
|
|
164 |
''' |
|
|
165 |
Prepare full segmentation and extract the trochlear notch location. |
|
|
166 |
Parameters |
|
|
167 |
---------- |
|
|
168 |
flattenedSeg : 2D array |
|
|
169 |
Axial flattened, and filled in femoral cartilage segmentation. |
|
|
170 |
femurIndex : int |
|
|
171 |
Index of the label used to localize the femur in the array. |
|
|
172 |
Returns |
|
|
173 |
------- |
|
|
174 |
trochleaPositionY : |
|
|
175 |
Y position of trochlear notch |
|
|
176 |
trochleaPositionX : |
|
|
177 |
X position of trochlear notch |
|
|
178 |
Notes |
|
|
179 |
----- |
|
|
180 |
Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the femoral cartilage. |
|
|
181 |
First flatten and fill any holes in the segmentation. |
|
|
182 |
|
|
|
183 |
''' |
|
|
184 |
|
|
|
185 |
femurSegmentation = np.zeros_like(segArray) |
|
|
186 |
femurSegmentation[segArray == femurIndex] = 1 |
|
|
187 |
flattenedSegmentation = np.amax(femurSegmentation, axis=1) |
|
|
188 |
flattened_seg_filled = ndi.binary_fill_holes(flattenedSegmentation) |
|
|
189 |
trochY, trochX = findNotch(flattened_seg_filled) |
|
|
190 |
return(trochY, trochX) |
|
|
191 |
|
|
|
192 |
def getCartilageSubRegions(segArray, anteriorWBslice, posteriorWBslice, trochY, |
|
|
193 |
femurLabel=1, medTibiaLabel=2, latTibiaLabel=3, antFemurMask=5, |
|
|
194 |
medWbFemurMask=6, latWbFemurMask=7, medPostFemurMask=8, latPostFemurMask=9): |
|
|
195 |
''' |
|
|
196 |
Take cartilage segmentation, and decompose femoral cartilage into subregions of interest. |
|
|
197 |
Parameters |
|
|
198 |
---------- |
|
|
199 |
segArray : array |
|
|
200 |
3D array with segmentation for the cartialge regions. |
|
|
201 |
anteriorWBslice : int |
|
|
202 |
Slice that seperates the anterior and weight bearing femoral cartilage. |
|
|
203 |
posteriorWBslice : int |
|
|
204 |
Slice that seperates the weight bearing and posterior femoral cartilage. |
|
|
205 |
trochY : int |
|
|
206 |
Slice that differentiates medial / lateral femur - trochlear notch Y component. |
|
|
207 |
femurLabel : int |
|
|
208 |
Label that femur is in the segArray |
|
|
209 |
medTibiaLabel : int |
|
|
210 |
Label that medial tibia is in the segArray |
|
|
211 |
latTibiaLabel : int |
|
|
212 |
Label that lateral tibia is in the segArray |
|
|
213 |
antFemurMask : int |
|
|
214 |
Label anterior femur should be labeled in final segmentation. |
|
|
215 |
medWbFemurMask : int |
|
|
216 |
Label medial weight bearing femur should be labeled in final segmentation. |
|
|
217 |
latWbFemurMask : int |
|
|
218 |
Label lateral weight bearing femur should be labeled in final segmentation. |
|
|
219 |
medPostFemurMask : int |
|
|
220 |
Label medial posterior femur should be labeled in final segmentation. |
|
|
221 |
latPostFemurMask : int |
|
|
222 |
Label lateral posterior femur should be labeled in final segmentation. |
|
|
223 |
Returns |
|
|
224 |
------- |
|
|
225 |
final_segmentation : array |
|
|
226 |
3D array with the updated segmentations - including weightbearing, medial/latera, anterior, and posterior. |
|
|
227 |
Notes |
|
|
228 |
----- |
|
|
229 |
|
|
|
230 |
''' |
|
|
231 |
|
|
|
232 |
#array to store final segmentation |
|
|
233 |
final_segmentation = np.zeros_like(segArray) |
|
|
234 |
|
|
|
235 |
#create masks for ant/wb/posterior femur |
|
|
236 |
anterior_femur_mask = np.zeros_like(segArray) |
|
|
237 |
anterior_femur_mask[:,:,:anteriorWBslice] = 1 |
|
|
238 |
|
|
|
239 |
wb_femur_mask = np.zeros_like(segArray) |
|
|
240 |
wb_femur_mask[:,:,anteriorWBslice:posteriorWBslice] = 1 |
|
|
241 |
|
|
|
242 |
posterior_femur_mask = np.zeros_like(segArray) |
|
|
243 |
posterior_femur_mask[:,:,posteriorWBslice:] = 1 |
|
|
244 |
|
|
|
245 |
#create seg of just femur - and then break it into the sub-regions |
|
|
246 |
femurSegArray = np.zeros_like(segArray) |
|
|
247 |
femurSegArray[segArray==femurLabel] = 1 |
|
|
248 |
|
|
|
249 |
#find the center of the medial/lateral tibia - use to distinguish M/L femur ROIs |
|
|
250 |
locationMedialTibia = np.asarray(np.where(segArray==medTibiaLabel)) |
|
|
251 |
locationLateralTibia = np.asarray(np.where(segArray==latTibiaLabel)) |
|
|
252 |
|
|
|
253 |
centerMedialTibia = locationMedialTibia.mean(axis=1) |
|
|
254 |
centerLateralTibia = locationLateralTibia.mean(axis=1) |
|
|
255 |
|
|
|
256 |
med_femur_mask = np.zeros_like(segArray) |
|
|
257 |
lat_femur_mask = np.zeros_like(segArray) |
|
|
258 |
if centerMedialTibia[0] > trochY: |
|
|
259 |
med_femur_mask[trochY:,:,:] = 1 |
|
|
260 |
lat_femur_mask[:trochY,:,:] = 1 |
|
|
261 |
else: |
|
|
262 |
med_femur_mask[:trochY,:,:] = 1 |
|
|
263 |
lat_femur_mask[trochY:,:,:] = 1 |
|
|
264 |
|
|
|
265 |
final_segmentation[segArray!=femurLabel] = segArray[segArray!=femurLabel] |
|
|
266 |
final_segmentation += (femurSegArray * anterior_femur_mask) * antFemurMask |
|
|
267 |
final_segmentation += (femurSegArray * wb_femur_mask * med_femur_mask) * medWbFemurMask |
|
|
268 |
final_segmentation += (femurSegArray * wb_femur_mask * lat_femur_mask) * latWbFemurMask |
|
|
269 |
final_segmentation += (femurSegArray * posterior_femur_mask * med_femur_mask) * medPostFemurMask |
|
|
270 |
final_segmentation += (femurSegArray * posterior_femur_mask * lat_femur_mask) * latPostFemurMask |
|
|
271 |
|
|
|
272 |
return(final_segmentation) |
|
|
273 |
|
|
|
274 |
def verify_and_correct_med_lat_tib_cart( |
|
|
275 |
seg_array, #sitk.GetArrayViewFromImage(seg) |
|
|
276 |
tib_label=6, |
|
|
277 |
med_tib_cart_label=2, |
|
|
278 |
lat_tib_cart_label=3, |
|
|
279 |
ml_axis=0 |
|
|
280 |
): |
|
|
281 |
''' |
|
|
282 |
Verify that the medial and lateral tibial cartilage are correctly labeled. |
|
|
283 |
Parameters |
|
|
284 |
---------- |
|
|
285 |
seg_array : array |
|
|
286 |
3D array with segmentation for the cartilage/bone regions. |
|
|
287 |
tib_label : int |
|
|
288 |
Label that tibial cartilage is in the seg_array |
|
|
289 |
med_tib_cart_label : int |
|
|
290 |
Label that medial tibial cartilage is in the seg_array |
|
|
291 |
lat_tib_cart_label : int |
|
|
292 |
Label that lateral tibial cartilage is in the seg_array |
|
|
293 |
ml_axis : int |
|
|
294 |
Medial/lateral axis of the acquired knee MRI. |
|
|
295 |
|
|
|
296 |
Returns |
|
|
297 |
------- |
|
|
298 |
seg_array : array |
|
|
299 |
3D array with segmentation for the cartilage/bone regions. |
|
|
300 |
The tibial cartilage regions will have been updated to ensure |
|
|
301 |
all tib cart on med/lat sides are correctly classified. |
|
|
302 |
|
|
|
303 |
''' |
|
|
304 |
#get binary array for tibia |
|
|
305 |
array_tib = np.zeros_like(seg_array) |
|
|
306 |
array_tib[seg_array == tib_label] = 1 |
|
|
307 |
#get binary array for tib cart |
|
|
308 |
array_tib_cart = np.zeros_like(seg_array) |
|
|
309 |
array_tib_cart[(seg_array == lat_tib_cart_label) + (seg_array == med_tib_cart_label)] = 1 |
|
|
310 |
|
|
|
311 |
#get the locatons of med/lat cartilage & get their centroids |
|
|
312 |
med_cart_locs = np.asarray(np.where(seg_array == med_tib_cart_label)) |
|
|
313 |
lat_cart_locs = np.asarray(np.where(seg_array == lat_tib_cart_label)) |
|
|
314 |
middle_med_cart = med_cart_locs[ml_axis,:].mean() |
|
|
315 |
middle_lat_cart = lat_cart_locs[ml_axis,:].mean() |
|
|
316 |
|
|
|
317 |
#get location of tibia to get centroid of tibial plateau |
|
|
318 |
tib_locs = np.asarray(np.where(seg_array == tib_label)) |
|
|
319 |
middle_tib = tib_locs[ml_axis, :].mean() |
|
|
320 |
center_tibia_slice = int(middle_tib) |
|
|
321 |
|
|
|
322 |
# infer the direction(s) for medial/lateral |
|
|
323 |
med_direction = np.sign(middle_med_cart - middle_tib) |
|
|
324 |
lat_direction = np.sign(middle_lat_cart - middle_tib) |
|
|
325 |
if med_direction == lat_direction: |
|
|
326 |
raise Exception('Middle of med and lat tibial cartilage on same side of centerline!') |
|
|
327 |
|
|
|
328 |
#create med/lat cartilage masks - binary for updating seg masks |
|
|
329 |
med_tib_cart_mask = np.zeros_like(seg_array) |
|
|
330 |
lat_tib_cart_mask = np.zeros_like(seg_array) |
|
|
331 |
|
|
|
332 |
if med_direction > 0: |
|
|
333 |
med_tib_cart_mask[center_tibia_slice:,...] = 1 |
|
|
334 |
lat_tib_cart_mask[:center_tibia_slice,...] = 1 |
|
|
335 |
elif med_direction < 0: |
|
|
336 |
med_tib_cart_mask[:center_tibia_slice,...] = 1 |
|
|
337 |
lat_tib_cart_mask[center_tibia_slice:,...] = 1 |
|
|
338 |
|
|
|
339 |
# create new med/lat cartilage arrays |
|
|
340 |
new_med_cart_array = array_tib_cart * med_tib_cart_mask |
|
|
341 |
new_lat_cart_array = array_tib_cart * lat_tib_cart_mask |
|
|
342 |
|
|
|
343 |
#make copy of original segmentation array & update |
|
|
344 |
# med/lat tibial cartilage labels |
|
|
345 |
new_seg_array = seg_array.copy() |
|
|
346 |
new_seg_array[new_med_cart_array == 1] = med_tib_cart_label |
|
|
347 |
new_seg_array[new_lat_cart_array == 1] = lat_tib_cart_label |
|
|
348 |
|
|
|
349 |
return new_seg_array |
|
|
350 |
|
|
|
351 |
def get_knee_segmentation_with_femur_subregions(seg_image, |
|
|
352 |
fem_cart_label_idx=1, |
|
|
353 |
wb_region_percent_dist=0.6, |
|
|
354 |
# femur_label=1, |
|
|
355 |
med_tibia_label=2, |
|
|
356 |
lat_tibia_label=3, |
|
|
357 |
ant_femur_mask=11, |
|
|
358 |
med_wb_femur_mask=12, |
|
|
359 |
lat_wb_femur_mask=13, |
|
|
360 |
med_post_femur_mask=14, |
|
|
361 |
lat_post_femur_mask=15, |
|
|
362 |
verify_med_lat_tib_cart=True, |
|
|
363 |
tibia_label=6, |
|
|
364 |
ml_axis=0 |
|
|
365 |
): |
|
|
366 |
""" |
|
|
367 |
Give seg image of knee. Return seg image with all sub-regions of femur included. |
|
|
368 |
|
|
|
369 |
Parameters |
|
|
370 |
---------- |
|
|
371 |
seg_image : SimpleITK.Image |
|
|
372 |
SimpleITK image of the segmentation to be processed. |
|
|
373 |
fem_cart_label_idx : int, optional |
|
|
374 |
Label of femoral cartilage, by default 1 |
|
|
375 |
wb_region_percent_dist : float, optional |
|
|
376 |
How large weightbearing region is (from not to posterior of condyles), by default 0.6 |
|
|
377 |
femur_label : int, optional |
|
|
378 |
Seg label for the femur cartilage, by default 1 |
|
|
379 |
med_tibia_label : int, optional |
|
|
380 |
Seg label for the medial tibia cartilage, by default 2 |
|
|
381 |
lat_tibia_label : int, optional |
|
|
382 |
Seg label for the lateral tibia cartilage, by default 3 |
|
|
383 |
ant_femur_mask : int, optional |
|
|
384 |
Seg label for the anterior femur region, by default 11 |
|
|
385 |
med_wb_femur_mask : int, optional |
|
|
386 |
Seg label for medial weight-bearing femur, by default 12 |
|
|
387 |
lat_wb_femur_mask : int, optional |
|
|
388 |
Seg label for lateral weight-bearing femur, by default 13 |
|
|
389 |
med_post_femur_mask : int, optional |
|
|
390 |
Seg label for medial posterior femur, by default 14 |
|
|
391 |
lat_post_femur_mask : int, optional |
|
|
392 |
Seg label for lateral posterior femur, by default 15 |
|
|
393 |
verify_med_lat_tib_cart : bool, optional |
|
|
394 |
Whether to verify that medial and lateral tibial cartilage is on same side of centerline, by default True |
|
|
395 |
tibia_label : int, optional |
|
|
396 |
Seg label for the tibia, by default 6 |
|
|
397 |
ml_axis : int, optional |
|
|
398 |
Medial/lateral axis of the acquired knee MRI, by default 0 |
|
|
399 |
|
|
|
400 |
Returns |
|
|
401 |
------- |
|
|
402 |
SimpleITK.Image |
|
|
403 |
Image of the new/updated segmentation |
|
|
404 |
""" |
|
|
405 |
troch_notch_y, troch_notch_x = getAnteriorOfWeightBearing(sitk.GetArrayViewFromImage(seg_image), |
|
|
406 |
femurIndex=fem_cart_label_idx) |
|
|
407 |
loc_fem_z, loc_fem_y, loc_fem_x = np.where(sitk.GetArrayViewFromImage(seg_image) == fem_cart_label_idx) |
|
|
408 |
post_femur_slice = np.max(loc_fem_x) |
|
|
409 |
posterior_wb_slice = np.round((post_femur_slice - troch_notch_x) * wb_region_percent_dist + troch_notch_x).astype(int) |
|
|
410 |
new_seg_array = getCartilageSubRegions(sitk.GetArrayViewFromImage(seg_image), |
|
|
411 |
anteriorWBslice=troch_notch_x, |
|
|
412 |
posteriorWBslice=posterior_wb_slice, |
|
|
413 |
trochY=troch_notch_y, |
|
|
414 |
femurLabel=fem_cart_label_idx, |
|
|
415 |
medTibiaLabel=med_tibia_label, |
|
|
416 |
latTibiaLabel=lat_tibia_label, |
|
|
417 |
antFemurMask=ant_femur_mask, |
|
|
418 |
medWbFemurMask=med_wb_femur_mask, |
|
|
419 |
latWbFemurMask=lat_wb_femur_mask, |
|
|
420 |
medPostFemurMask=med_post_femur_mask, |
|
|
421 |
latPostFemurMask=lat_post_femur_mask |
|
|
422 |
) |
|
|
423 |
|
|
|
424 |
if verify_med_lat_tib_cart: |
|
|
425 |
new_seg_array = verify_and_correct_med_lat_tib_cart(new_seg_array, |
|
|
426 |
tib_label=tibia_label, |
|
|
427 |
med_tib_cart_label=med_tibia_label, |
|
|
428 |
lat_tib_cart_label=lat_tibia_label, |
|
|
429 |
ml_axis=ml_axis) |
|
|
430 |
seg_label_image = sitk.GetImageFromArray(new_seg_array) |
|
|
431 |
seg_label_image.CopyInformation(seg_image) |
|
|
432 |
return seg_label_image</code></pre> |
|
|
433 |
</details> |
|
|
434 |
</section> |
|
|
435 |
<section> |
|
|
436 |
</section> |
|
|
437 |
<section> |
|
|
438 |
</section> |
|
|
439 |
<section> |
|
|
440 |
<h2 class="section-title" id="header-functions">Functions</h2> |
|
|
441 |
<dl> |
|
|
442 |
<dt id="pymskt.image.cartilage_processing.CofM"><code class="name flex"> |
|
|
443 |
<span>def <span class="ident">CofM</span></span>(<span>array)</span> |
|
|
444 |
</code></dt> |
|
|
445 |
<dd> |
|
|
446 |
<div class="desc"><p>Get center of mass for a row of a binary 2D image. |
|
|
447 |
Parameters</p> |
|
|
448 |
<hr> |
|
|
449 |
<dl> |
|
|
450 |
<dt><strong><code>array</code></strong> : <code>1D array</code></dt> |
|
|
451 |
<dd>Individual row of a 2D image.</dd> |
|
|
452 |
</dl> |
|
|
453 |
<h2 id="returns">Returns</h2> |
|
|
454 |
<dl> |
|
|
455 |
<dt><strong><code>centerPixels</code></strong></dt> |
|
|
456 |
<dd>Average location of 1s in the row</dd> |
|
|
457 |
</dl> |
|
|
458 |
<h2 id="notes">Notes</h2> |
|
|
459 |
<p>Calculates the average location of cartilage for the row of image being analyzed. |
|
|
460 |
Returns 0 if there are no pixels</p></div> |
|
|
461 |
<details class="source"> |
|
|
462 |
<summary> |
|
|
463 |
<span>Expand source code</span> |
|
|
464 |
</summary> |
|
|
465 |
<pre><code class="python">def CofM(array): |
|
|
466 |
''' |
|
|
467 |
Get center of mass for a row of a binary 2D image. |
|
|
468 |
Parameters |
|
|
469 |
---------- |
|
|
470 |
array : 1D array |
|
|
471 |
Individual row of a 2D image. |
|
|
472 |
Returns |
|
|
473 |
------- |
|
|
474 |
centerPixels : |
|
|
475 |
Average location of 1s in the row |
|
|
476 |
Notes |
|
|
477 |
----- |
|
|
478 |
Calculates the average location of cartilage for the row of image being analyzed. |
|
|
479 |
Returns 0 if there are no pixels |
|
|
480 |
|
|
|
481 |
''' |
|
|
482 |
pixels = np.where(array==1) |
|
|
483 |
centerPixels = np.mean(pixels) |
|
|
484 |
nans = np.isnan(centerPixels) |
|
|
485 |
if nans == True: |
|
|
486 |
centerPixels = 0 |
|
|
487 |
return(centerPixels)</code></pre> |
|
|
488 |
</details> |
|
|
489 |
</dd> |
|
|
490 |
<dt id="pymskt.image.cartilage_processing.absolute_CofM"><code class="name flex"> |
|
|
491 |
<span>def <span class="ident">absolute_CofM</span></span>(<span>flattenedSeg)</span> |
|
|
492 |
</code></dt> |
|
|
493 |
<dd> |
|
|
494 |
<div class="desc"><p>Get absolute CofM of all the femoral cartilage pixels |
|
|
495 |
Parameters</p> |
|
|
496 |
<hr> |
|
|
497 |
<dl> |
|
|
498 |
<dt><strong><code>flattenedSeg</code></strong> : <code>2D array</code></dt> |
|
|
499 |
<dd>Axial flattened, and filled in femoral cartilage segmentation.</dd> |
|
|
500 |
</dl> |
|
|
501 |
<h2 id="returns">Returns</h2> |
|
|
502 |
<dl> |
|
|
503 |
<dt><strong><code>centerX</code></strong></dt> |
|
|
504 |
<dd>The CofM in the X direction for the segmentation</dd> |
|
|
505 |
<dt><strong><code>centerY</code></strong></dt> |
|
|
506 |
<dd>The CofM in the Y direction for the segmentation</dd> |
|
|
507 |
</dl> |
|
|
508 |
<h2 id="notes">Notes</h2> |
|
|
509 |
<p>Get the x/y coordinates for the CofM for the whole flattened segmentation</p></div> |
|
|
510 |
<details class="source"> |
|
|
511 |
<summary> |
|
|
512 |
<span>Expand source code</span> |
|
|
513 |
</summary> |
|
|
514 |
<pre><code class="python">def absolute_CofM(flattenedSeg): |
|
|
515 |
''' |
|
|
516 |
Get absolute CofM of all the femoral cartilage pixels |
|
|
517 |
Parameters |
|
|
518 |
---------- |
|
|
519 |
flattenedSeg : 2D array |
|
|
520 |
Axial flattened, and filled in femoral cartilage segmentation. |
|
|
521 |
Returns |
|
|
522 |
------- |
|
|
523 |
centerX : |
|
|
524 |
The CofM in the X direction for the segmentation |
|
|
525 |
centerY : |
|
|
526 |
The CofM in the Y direction for the segmentation |
|
|
527 |
Notes |
|
|
528 |
----- |
|
|
529 |
Get the x/y coordinates for the CofM for the whole flattened segmentation |
|
|
530 |
|
|
|
531 |
''' |
|
|
532 |
femurPoints = np.where(flattenedSeg==1) |
|
|
533 |
centerX = np.mean(femurPoints[0]) |
|
|
534 |
centerY = np.mean(femurPoints[1]) |
|
|
535 |
return(centerX, centerY)</code></pre> |
|
|
536 |
</details> |
|
|
537 |
</dd> |
|
|
538 |
<dt id="pymskt.image.cartilage_processing.findNotch"><code class="name flex"> |
|
|
539 |
<span>def <span class="ident">findNotch</span></span>(<span>flattenedSeg, trochleaPositionX=1000)</span> |
|
|
540 |
</code></dt> |
|
|
541 |
<dd> |
|
|
542 |
<div class="desc"><p>Get the X Y position of the trochlear notch - where medial/lateral sides of the femur meet. |
|
|
543 |
Parameters</p> |
|
|
544 |
<hr> |
|
|
545 |
<dl> |
|
|
546 |
<dt><strong><code>flattenedSeg</code></strong> : <code>2D array</code></dt> |
|
|
547 |
<dd>Axial flattened, and filled in femoral cartilage segmentation.</dd> |
|
|
548 |
</dl> |
|
|
549 |
<h2 id="returns">Returns</h2> |
|
|
550 |
<dl> |
|
|
551 |
<dt><strong><code>trochleaPositionY</code></strong></dt> |
|
|
552 |
<dd>Y position of trochlear notch</dd> |
|
|
553 |
<dt><strong><code>trochleaPositionX</code></strong></dt> |
|
|
554 |
<dd>X position of trochlear notch</dd> |
|
|
555 |
</dl> |
|
|
556 |
<h2 id="notes">Notes</h2> |
|
|
557 |
<p>Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the |
|
|
558 |
femoral cartilage.</p></div> |
|
|
559 |
<details class="source"> |
|
|
560 |
<summary> |
|
|
561 |
<span>Expand source code</span> |
|
|
562 |
</summary> |
|
|
563 |
<pre><code class="python">def findNotch(flattenedSeg, trochleaPositionX=1000): |
|
|
564 |
''' |
|
|
565 |
Get the X Y position of the trochlear notch - where medial/lateral sides of the femur meet. |
|
|
566 |
Parameters |
|
|
567 |
---------- |
|
|
568 |
flattenedSeg : 2D array |
|
|
569 |
Axial flattened, and filled in femoral cartilage segmentation. |
|
|
570 |
Returns |
|
|
571 |
------- |
|
|
572 |
trochleaPositionY : |
|
|
573 |
Y position of trochlear notch |
|
|
574 |
trochleaPositionX : |
|
|
575 |
X position of trochlear notch |
|
|
576 |
Notes |
|
|
577 |
----- |
|
|
578 |
Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the |
|
|
579 |
femoral cartilage. |
|
|
580 |
|
|
|
581 |
''' |
|
|
582 |
# Goal is to find the most anterior point that is between the medial/lateral condyles |
|
|
583 |
|
|
|
584 |
# First guess at the troch notch in the 1st axis (med/lat axis) is the location with the smallest value for |
|
|
585 |
# the 2nd axis CofM. This is because in axis 1, negative is anterior and we expect the most anterior CofM should |
|
|
586 |
# roughly align with the trochlear notch. |
|
|
587 |
y_CofM = get_y_CofM(flattenedSeg) |
|
|
588 |
first_guess = y_CofM[np.argmin(y_CofM[:,1]), 0] |
|
|
589 |
# the second guess is just the CofM of the whole cartilage. |
|
|
590 |
centerX, centerY = absolute_CofM(flattenedSeg) |
|
|
591 |
second_guess = centerX |
|
|
592 |
|
|
|
593 |
# We use the 2 guesses to help define a search space for the trochlear notch. |
|
|
594 |
min_search = int(np.min((first_guess,second_guess))-20) |
|
|
595 |
max_search = int(np.max((first_guess,second_guess))+20) |
|
|
596 |
|
|
|
597 |
# now, we iterate over all of the rows (axis 1) of the search space (moving in the medial/lateral direction) |
|
|
598 |
# we are looking for the row where the most posterior point (back of femur) is furthest anterior (notch). |
|
|
599 |
for y in range(min_search, max_search): |
|
|
600 |
# At each row, we find most posterior pixel labeled as cartilage. |
|
|
601 |
try: |
|
|
602 |
trochleaPosition_test = np.max(np.where(flattenedSeg[y,:]==1)) |
|
|
603 |
except ValueError: |
|
|
604 |
# if there is no cartilage we'll get a ValueError exception. |
|
|
605 |
# in that case, set this value to be the max it can be (the size of the first axis) |
|
|
606 |
trochleaPosition_test = flattenedSeg.shape[1] |
|
|
607 |
# if the most posterior point for this row is more anterior than the current trochleaPositionX, |
|
|
608 |
# then update this to be the new trochlear notch. |
|
|
609 |
if trochleaPosition_test < trochleaPositionX: |
|
|
610 |
trochleaPositionX = trochleaPosition_test |
|
|
611 |
trochleaPositionY = y |
|
|
612 |
|
|
|
613 |
return(trochleaPositionY, trochleaPositionX+1)</code></pre> |
|
|
614 |
</details> |
|
|
615 |
</dd> |
|
|
616 |
<dt id="pymskt.image.cartilage_processing.getAnteriorOfWeightBearing"><code class="name flex"> |
|
|
617 |
<span>def <span class="ident">getAnteriorOfWeightBearing</span></span>(<span>segArray, femurIndex=1)</span> |
|
|
618 |
</code></dt> |
|
|
619 |
<dd> |
|
|
620 |
<div class="desc"><p>Prepare full segmentation and extract the trochlear notch location. |
|
|
621 |
Parameters</p> |
|
|
622 |
<hr> |
|
|
623 |
<dl> |
|
|
624 |
<dt><strong><code>flattenedSeg</code></strong> : <code>2D array</code></dt> |
|
|
625 |
<dd>Axial flattened, and filled in femoral cartilage segmentation.</dd> |
|
|
626 |
<dt><strong><code>femurIndex</code></strong> : <code>int</code></dt> |
|
|
627 |
<dd>Index of the label used to localize the femur in the array.</dd> |
|
|
628 |
</dl> |
|
|
629 |
<h2 id="returns">Returns</h2> |
|
|
630 |
<dl> |
|
|
631 |
<dt><strong><code>trochleaPositionY</code></strong></dt> |
|
|
632 |
<dd>Y position of trochlear notch</dd> |
|
|
633 |
<dt><strong><code>trochleaPositionX</code></strong></dt> |
|
|
634 |
<dd>X position of trochlear notch</dd> |
|
|
635 |
</dl> |
|
|
636 |
<h2 id="notes">Notes</h2> |
|
|
637 |
<p>Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the femoral cartilage. |
|
|
638 |
First flatten and fill any holes in the segmentation.</p></div> |
|
|
639 |
<details class="source"> |
|
|
640 |
<summary> |
|
|
641 |
<span>Expand source code</span> |
|
|
642 |
</summary> |
|
|
643 |
<pre><code class="python">def getAnteriorOfWeightBearing(segArray, femurIndex=1): |
|
|
644 |
''' |
|
|
645 |
Prepare full segmentation and extract the trochlear notch location. |
|
|
646 |
Parameters |
|
|
647 |
---------- |
|
|
648 |
flattenedSeg : 2D array |
|
|
649 |
Axial flattened, and filled in femoral cartilage segmentation. |
|
|
650 |
femurIndex : int |
|
|
651 |
Index of the label used to localize the femur in the array. |
|
|
652 |
Returns |
|
|
653 |
------- |
|
|
654 |
trochleaPositionY : |
|
|
655 |
Y position of trochlear notch |
|
|
656 |
trochleaPositionX : |
|
|
657 |
X position of trochlear notch |
|
|
658 |
Notes |
|
|
659 |
----- |
|
|
660 |
Get the x/y coordinates for the trochlear notch. This is an iterative method that assumes things about the shape the femoral cartilage. |
|
|
661 |
First flatten and fill any holes in the segmentation. |
|
|
662 |
|
|
|
663 |
''' |
|
|
664 |
|
|
|
665 |
femurSegmentation = np.zeros_like(segArray) |
|
|
666 |
femurSegmentation[segArray == femurIndex] = 1 |
|
|
667 |
flattenedSegmentation = np.amax(femurSegmentation, axis=1) |
|
|
668 |
flattened_seg_filled = ndi.binary_fill_holes(flattenedSegmentation) |
|
|
669 |
trochY, trochX = findNotch(flattened_seg_filled) |
|
|
670 |
return(trochY, trochX)</code></pre> |
|
|
671 |
</details> |
|
|
672 |
</dd> |
|
|
673 |
<dt id="pymskt.image.cartilage_processing.getCartilageSubRegions"><code class="name flex"> |
|
|
674 |
<span>def <span class="ident">getCartilageSubRegions</span></span>(<span>segArray, anteriorWBslice, posteriorWBslice, trochY, femurLabel=1, medTibiaLabel=2, latTibiaLabel=3, antFemurMask=5, medWbFemurMask=6, latWbFemurMask=7, medPostFemurMask=8, latPostFemurMask=9)</span> |
|
|
675 |
</code></dt> |
|
|
676 |
<dd> |
|
|
677 |
<div class="desc"><p>Take cartilage segmentation, and decompose femoral cartilage into subregions of interest.<br> |
|
|
678 |
Parameters</p> |
|
|
679 |
<hr> |
|
|
680 |
<dl> |
|
|
681 |
<dt><strong><code>segArray</code></strong> : <code>array</code></dt> |
|
|
682 |
<dd>3D array with segmentation for the cartialge regions.</dd> |
|
|
683 |
<dt><strong><code>anteriorWBslice</code></strong> : <code>int</code></dt> |
|
|
684 |
<dd>Slice that seperates the anterior and weight bearing femoral cartilage.</dd> |
|
|
685 |
<dt><strong><code>posteriorWBslice</code></strong> : <code>int</code></dt> |
|
|
686 |
<dd>Slice that seperates the weight bearing and posterior femoral cartilage.</dd> |
|
|
687 |
<dt><strong><code>trochY</code></strong> : <code>int</code></dt> |
|
|
688 |
<dd>Slice that differentiates medial / lateral femur - trochlear notch Y component.</dd> |
|
|
689 |
<dt><strong><code>femurLabel</code></strong> : <code>int</code></dt> |
|
|
690 |
<dd>Label that femur is in the segArray</dd> |
|
|
691 |
<dt><strong><code>medTibiaLabel</code></strong> : <code>int</code></dt> |
|
|
692 |
<dd>Label that medial tibia is in the segArray</dd> |
|
|
693 |
<dt><strong><code>latTibiaLabel</code></strong> : <code>int</code></dt> |
|
|
694 |
<dd>Label that lateral tibia is in the segArray</dd> |
|
|
695 |
<dt><strong><code>antFemurMask</code></strong> : <code>int</code></dt> |
|
|
696 |
<dd>Label anterior femur should be labeled in final segmentation.</dd> |
|
|
697 |
<dt><strong><code>medWbFemurMask</code></strong> : <code>int</code></dt> |
|
|
698 |
<dd>Label medial weight bearing femur should be labeled in final segmentation.</dd> |
|
|
699 |
<dt><strong><code>latWbFemurMask</code></strong> : <code>int</code></dt> |
|
|
700 |
<dd>Label lateral weight bearing femur should be labeled in final segmentation.</dd> |
|
|
701 |
<dt><strong><code>medPostFemurMask</code></strong> : <code>int</code></dt> |
|
|
702 |
<dd>Label medial posterior femur should be labeled in final segmentation.</dd> |
|
|
703 |
<dt><strong><code>latPostFemurMask</code></strong> : <code>int</code></dt> |
|
|
704 |
<dd>Label lateral posterior femur should be labeled in final segmentation.</dd> |
|
|
705 |
</dl> |
|
|
706 |
<h2 id="returns">Returns</h2> |
|
|
707 |
<dl> |
|
|
708 |
<dt><strong><code>final_segmentation</code></strong> : <code>array</code></dt> |
|
|
709 |
<dd>3D array with the updated segmentations - including weightbearing, medial/latera, anterior, and posterior.</dd> |
|
|
710 |
</dl> |
|
|
711 |
<h2 id="notes">Notes</h2></div> |
|
|
712 |
<details class="source"> |
|
|
713 |
<summary> |
|
|
714 |
<span>Expand source code</span> |
|
|
715 |
</summary> |
|
|
716 |
<pre><code class="python">def getCartilageSubRegions(segArray, anteriorWBslice, posteriorWBslice, trochY, |
|
|
717 |
femurLabel=1, medTibiaLabel=2, latTibiaLabel=3, antFemurMask=5, |
|
|
718 |
medWbFemurMask=6, latWbFemurMask=7, medPostFemurMask=8, latPostFemurMask=9): |
|
|
719 |
''' |
|
|
720 |
Take cartilage segmentation, and decompose femoral cartilage into subregions of interest. |
|
|
721 |
Parameters |
|
|
722 |
---------- |
|
|
723 |
segArray : array |
|
|
724 |
3D array with segmentation for the cartialge regions. |
|
|
725 |
anteriorWBslice : int |
|
|
726 |
Slice that seperates the anterior and weight bearing femoral cartilage. |
|
|
727 |
posteriorWBslice : int |
|
|
728 |
Slice that seperates the weight bearing and posterior femoral cartilage. |
|
|
729 |
trochY : int |
|
|
730 |
Slice that differentiates medial / lateral femur - trochlear notch Y component. |
|
|
731 |
femurLabel : int |
|
|
732 |
Label that femur is in the segArray |
|
|
733 |
medTibiaLabel : int |
|
|
734 |
Label that medial tibia is in the segArray |
|
|
735 |
latTibiaLabel : int |
|
|
736 |
Label that lateral tibia is in the segArray |
|
|
737 |
antFemurMask : int |
|
|
738 |
Label anterior femur should be labeled in final segmentation. |
|
|
739 |
medWbFemurMask : int |
|
|
740 |
Label medial weight bearing femur should be labeled in final segmentation. |
|
|
741 |
latWbFemurMask : int |
|
|
742 |
Label lateral weight bearing femur should be labeled in final segmentation. |
|
|
743 |
medPostFemurMask : int |
|
|
744 |
Label medial posterior femur should be labeled in final segmentation. |
|
|
745 |
latPostFemurMask : int |
|
|
746 |
Label lateral posterior femur should be labeled in final segmentation. |
|
|
747 |
Returns |
|
|
748 |
------- |
|
|
749 |
final_segmentation : array |
|
|
750 |
3D array with the updated segmentations - including weightbearing, medial/latera, anterior, and posterior. |
|
|
751 |
Notes |
|
|
752 |
----- |
|
|
753 |
|
|
|
754 |
''' |
|
|
755 |
|
|
|
756 |
#array to store final segmentation |
|
|
757 |
final_segmentation = np.zeros_like(segArray) |
|
|
758 |
|
|
|
759 |
#create masks for ant/wb/posterior femur |
|
|
760 |
anterior_femur_mask = np.zeros_like(segArray) |
|
|
761 |
anterior_femur_mask[:,:,:anteriorWBslice] = 1 |
|
|
762 |
|
|
|
763 |
wb_femur_mask = np.zeros_like(segArray) |
|
|
764 |
wb_femur_mask[:,:,anteriorWBslice:posteriorWBslice] = 1 |
|
|
765 |
|
|
|
766 |
posterior_femur_mask = np.zeros_like(segArray) |
|
|
767 |
posterior_femur_mask[:,:,posteriorWBslice:] = 1 |
|
|
768 |
|
|
|
769 |
#create seg of just femur - and then break it into the sub-regions |
|
|
770 |
femurSegArray = np.zeros_like(segArray) |
|
|
771 |
femurSegArray[segArray==femurLabel] = 1 |
|
|
772 |
|
|
|
773 |
#find the center of the medial/lateral tibia - use to distinguish M/L femur ROIs |
|
|
774 |
locationMedialTibia = np.asarray(np.where(segArray==medTibiaLabel)) |
|
|
775 |
locationLateralTibia = np.asarray(np.where(segArray==latTibiaLabel)) |
|
|
776 |
|
|
|
777 |
centerMedialTibia = locationMedialTibia.mean(axis=1) |
|
|
778 |
centerLateralTibia = locationLateralTibia.mean(axis=1) |
|
|
779 |
|
|
|
780 |
med_femur_mask = np.zeros_like(segArray) |
|
|
781 |
lat_femur_mask = np.zeros_like(segArray) |
|
|
782 |
if centerMedialTibia[0] > trochY: |
|
|
783 |
med_femur_mask[trochY:,:,:] = 1 |
|
|
784 |
lat_femur_mask[:trochY,:,:] = 1 |
|
|
785 |
else: |
|
|
786 |
med_femur_mask[:trochY,:,:] = 1 |
|
|
787 |
lat_femur_mask[trochY:,:,:] = 1 |
|
|
788 |
|
|
|
789 |
final_segmentation[segArray!=femurLabel] = segArray[segArray!=femurLabel] |
|
|
790 |
final_segmentation += (femurSegArray * anterior_femur_mask) * antFemurMask |
|
|
791 |
final_segmentation += (femurSegArray * wb_femur_mask * med_femur_mask) * medWbFemurMask |
|
|
792 |
final_segmentation += (femurSegArray * wb_femur_mask * lat_femur_mask) * latWbFemurMask |
|
|
793 |
final_segmentation += (femurSegArray * posterior_femur_mask * med_femur_mask) * medPostFemurMask |
|
|
794 |
final_segmentation += (femurSegArray * posterior_femur_mask * lat_femur_mask) * latPostFemurMask |
|
|
795 |
|
|
|
796 |
return(final_segmentation)</code></pre> |
|
|
797 |
</details> |
|
|
798 |
</dd> |
|
|
799 |
<dt id="pymskt.image.cartilage_processing.get_knee_segmentation_with_femur_subregions"><code class="name flex"> |
|
|
800 |
<span>def <span class="ident">get_knee_segmentation_with_femur_subregions</span></span>(<span>seg_image, fem_cart_label_idx=1, wb_region_percent_dist=0.6, med_tibia_label=2, lat_tibia_label=3, ant_femur_mask=11, med_wb_femur_mask=12, lat_wb_femur_mask=13, med_post_femur_mask=14, lat_post_femur_mask=15, verify_med_lat_tib_cart=True, tibia_label=6, ml_axis=0)</span> |
|
|
801 |
</code></dt> |
|
|
802 |
<dd> |
|
|
803 |
<div class="desc"><p>Give seg image of knee. Return seg image with all sub-regions of femur included. </p> |
|
|
804 |
<h2 id="parameters">Parameters</h2> |
|
|
805 |
<dl> |
|
|
806 |
<dt><strong><code>seg_image</code></strong> : <code>SimpleITK.Image</code></dt> |
|
|
807 |
<dd>SimpleITK image of the segmentation to be processed.</dd> |
|
|
808 |
<dt><strong><code>fem_cart_label_idx</code></strong> : <code>int</code>, optional</dt> |
|
|
809 |
<dd>Label of femoral cartilage, by default 1</dd> |
|
|
810 |
<dt><strong><code>wb_region_percent_dist</code></strong> : <code>float</code>, optional</dt> |
|
|
811 |
<dd>How large weightbearing region is (from not to posterior of condyles), by default 0.6</dd> |
|
|
812 |
<dt><strong><code>femur_label</code></strong> : <code>int</code>, optional</dt> |
|
|
813 |
<dd>Seg label for the femur cartilage, by default 1</dd> |
|
|
814 |
<dt><strong><code>med_tibia_label</code></strong> : <code>int</code>, optional</dt> |
|
|
815 |
<dd>Seg label for the medial tibia cartilage, by default 2</dd> |
|
|
816 |
<dt><strong><code>lat_tibia_label</code></strong> : <code>int</code>, optional</dt> |
|
|
817 |
<dd>Seg label for the lateral tibia cartilage, by default 3</dd> |
|
|
818 |
<dt><strong><code>ant_femur_mask</code></strong> : <code>int</code>, optional</dt> |
|
|
819 |
<dd>Seg label for the anterior femur region, by default 11</dd> |
|
|
820 |
<dt><strong><code>med_wb_femur_mask</code></strong> : <code>int</code>, optional</dt> |
|
|
821 |
<dd>Seg label for medial weight-bearing femur, by default 12</dd> |
|
|
822 |
<dt><strong><code>lat_wb_femur_mask</code></strong> : <code>int</code>, optional</dt> |
|
|
823 |
<dd>Seg label for lateral weight-bearing femur, by default 13</dd> |
|
|
824 |
<dt><strong><code>med_post_femur_mask</code></strong> : <code>int</code>, optional</dt> |
|
|
825 |
<dd>Seg label for medial posterior femur, by default 14</dd> |
|
|
826 |
<dt><strong><code>lat_post_femur_mask</code></strong> : <code>int</code>, optional</dt> |
|
|
827 |
<dd>Seg label for lateral posterior femur, by default 15</dd> |
|
|
828 |
<dt><strong><code>verify_med_lat_tib_cart</code></strong> : <code>bool</code>, optional</dt> |
|
|
829 |
<dd>Whether to verify that medial and lateral tibial cartilage is on same side of centerline, by default True</dd> |
|
|
830 |
<dt><strong><code>tibia_label</code></strong> : <code>int</code>, optional</dt> |
|
|
831 |
<dd>Seg label for the tibia, by default 6</dd> |
|
|
832 |
<dt><strong><code>ml_axis</code></strong> : <code>int</code>, optional</dt> |
|
|
833 |
<dd>Medial/lateral axis of the acquired knee MRI, by default 0</dd> |
|
|
834 |
</dl> |
|
|
835 |
<h2 id="returns">Returns</h2> |
|
|
836 |
<dl> |
|
|
837 |
<dt><code>SimpleITK.Image</code></dt> |
|
|
838 |
<dd>Image of the new/updated segmentation</dd> |
|
|
839 |
</dl></div> |
|
|
840 |
<details class="source"> |
|
|
841 |
<summary> |
|
|
842 |
<span>Expand source code</span> |
|
|
843 |
</summary> |
|
|
844 |
<pre><code class="python">def get_knee_segmentation_with_femur_subregions(seg_image, |
|
|
845 |
fem_cart_label_idx=1, |
|
|
846 |
wb_region_percent_dist=0.6, |
|
|
847 |
# femur_label=1, |
|
|
848 |
med_tibia_label=2, |
|
|
849 |
lat_tibia_label=3, |
|
|
850 |
ant_femur_mask=11, |
|
|
851 |
med_wb_femur_mask=12, |
|
|
852 |
lat_wb_femur_mask=13, |
|
|
853 |
med_post_femur_mask=14, |
|
|
854 |
lat_post_femur_mask=15, |
|
|
855 |
verify_med_lat_tib_cart=True, |
|
|
856 |
tibia_label=6, |
|
|
857 |
ml_axis=0 |
|
|
858 |
): |
|
|
859 |
""" |
|
|
860 |
Give seg image of knee. Return seg image with all sub-regions of femur included. |
|
|
861 |
|
|
|
862 |
Parameters |
|
|
863 |
---------- |
|
|
864 |
seg_image : SimpleITK.Image |
|
|
865 |
SimpleITK image of the segmentation to be processed. |
|
|
866 |
fem_cart_label_idx : int, optional |
|
|
867 |
Label of femoral cartilage, by default 1 |
|
|
868 |
wb_region_percent_dist : float, optional |
|
|
869 |
How large weightbearing region is (from not to posterior of condyles), by default 0.6 |
|
|
870 |
femur_label : int, optional |
|
|
871 |
Seg label for the femur cartilage, by default 1 |
|
|
872 |
med_tibia_label : int, optional |
|
|
873 |
Seg label for the medial tibia cartilage, by default 2 |
|
|
874 |
lat_tibia_label : int, optional |
|
|
875 |
Seg label for the lateral tibia cartilage, by default 3 |
|
|
876 |
ant_femur_mask : int, optional |
|
|
877 |
Seg label for the anterior femur region, by default 11 |
|
|
878 |
med_wb_femur_mask : int, optional |
|
|
879 |
Seg label for medial weight-bearing femur, by default 12 |
|
|
880 |
lat_wb_femur_mask : int, optional |
|
|
881 |
Seg label for lateral weight-bearing femur, by default 13 |
|
|
882 |
med_post_femur_mask : int, optional |
|
|
883 |
Seg label for medial posterior femur, by default 14 |
|
|
884 |
lat_post_femur_mask : int, optional |
|
|
885 |
Seg label for lateral posterior femur, by default 15 |
|
|
886 |
verify_med_lat_tib_cart : bool, optional |
|
|
887 |
Whether to verify that medial and lateral tibial cartilage is on same side of centerline, by default True |
|
|
888 |
tibia_label : int, optional |
|
|
889 |
Seg label for the tibia, by default 6 |
|
|
890 |
ml_axis : int, optional |
|
|
891 |
Medial/lateral axis of the acquired knee MRI, by default 0 |
|
|
892 |
|
|
|
893 |
Returns |
|
|
894 |
------- |
|
|
895 |
SimpleITK.Image |
|
|
896 |
Image of the new/updated segmentation |
|
|
897 |
""" |
|
|
898 |
troch_notch_y, troch_notch_x = getAnteriorOfWeightBearing(sitk.GetArrayViewFromImage(seg_image), |
|
|
899 |
femurIndex=fem_cart_label_idx) |
|
|
900 |
loc_fem_z, loc_fem_y, loc_fem_x = np.where(sitk.GetArrayViewFromImage(seg_image) == fem_cart_label_idx) |
|
|
901 |
post_femur_slice = np.max(loc_fem_x) |
|
|
902 |
posterior_wb_slice = np.round((post_femur_slice - troch_notch_x) * wb_region_percent_dist + troch_notch_x).astype(int) |
|
|
903 |
new_seg_array = getCartilageSubRegions(sitk.GetArrayViewFromImage(seg_image), |
|
|
904 |
anteriorWBslice=troch_notch_x, |
|
|
905 |
posteriorWBslice=posterior_wb_slice, |
|
|
906 |
trochY=troch_notch_y, |
|
|
907 |
femurLabel=fem_cart_label_idx, |
|
|
908 |
medTibiaLabel=med_tibia_label, |
|
|
909 |
latTibiaLabel=lat_tibia_label, |
|
|
910 |
antFemurMask=ant_femur_mask, |
|
|
911 |
medWbFemurMask=med_wb_femur_mask, |
|
|
912 |
latWbFemurMask=lat_wb_femur_mask, |
|
|
913 |
medPostFemurMask=med_post_femur_mask, |
|
|
914 |
latPostFemurMask=lat_post_femur_mask |
|
|
915 |
) |
|
|
916 |
|
|
|
917 |
if verify_med_lat_tib_cart: |
|
|
918 |
new_seg_array = verify_and_correct_med_lat_tib_cart(new_seg_array, |
|
|
919 |
tib_label=tibia_label, |
|
|
920 |
med_tib_cart_label=med_tibia_label, |
|
|
921 |
lat_tib_cart_label=lat_tibia_label, |
|
|
922 |
ml_axis=ml_axis) |
|
|
923 |
seg_label_image = sitk.GetImageFromArray(new_seg_array) |
|
|
924 |
seg_label_image.CopyInformation(seg_image) |
|
|
925 |
return seg_label_image</code></pre> |
|
|
926 |
</details> |
|
|
927 |
</dd> |
|
|
928 |
<dt id="pymskt.image.cartilage_processing.get_y_CofM"><code class="name flex"> |
|
|
929 |
<span>def <span class="ident">get_y_CofM</span></span>(<span>flattenedSeg)</span> |
|
|
930 |
</code></dt> |
|
|
931 |
<dd> |
|
|
932 |
<div class="desc"><p>Get CofM of femoral cartilage for each row of the flattened segmentation. |
|
|
933 |
Parameters</p> |
|
|
934 |
<hr> |
|
|
935 |
<dl> |
|
|
936 |
<dt><strong><code>flattenedSeg</code></strong> : <code>2D array</code></dt> |
|
|
937 |
<dd>Axial flattened, and filled in femoral cartilage segmentation.</dd> |
|
|
938 |
</dl> |
|
|
939 |
<h2 id="returns">Returns</h2> |
|
|
940 |
<dl> |
|
|
941 |
<dt><strong><code>yCofM</code></strong></dt> |
|
|
942 |
<dd>Find the CofM for each row of the image.</dd> |
|
|
943 |
</dl> |
|
|
944 |
<h2 id="notes">Notes</h2> |
|
|
945 |
<p>Get the x/y coordinates for the CofM for each row of the flattened segmentation.</p></div> |
|
|
946 |
<details class="source"> |
|
|
947 |
<summary> |
|
|
948 |
<span>Expand source code</span> |
|
|
949 |
</summary> |
|
|
950 |
<pre><code class="python">def get_y_CofM(flattenedSeg): |
|
|
951 |
''' |
|
|
952 |
Get CofM of femoral cartilage for each row of the flattened segmentation. |
|
|
953 |
Parameters |
|
|
954 |
---------- |
|
|
955 |
flattenedSeg : 2D array |
|
|
956 |
Axial flattened, and filled in femoral cartilage segmentation. |
|
|
957 |
Returns |
|
|
958 |
------- |
|
|
959 |
yCofM : |
|
|
960 |
Find the CofM for each row of the image. |
|
|
961 |
Notes |
|
|
962 |
----- |
|
|
963 |
Get the x/y coordinates for the CofM for each row of the flattened segmentation. |
|
|
964 |
|
|
|
965 |
''' |
|
|
966 |
locationFemur = np.where(flattenedSeg==1) |
|
|
967 |
yCofM = np.zeros((flattenedSeg.shape[0], 2), dtype=int) |
|
|
968 |
|
|
|
969 |
# only calculate for rows with cartilage. |
|
|
970 |
minRow = np.min(locationFemur[0]) |
|
|
971 |
maxRow = np.max(locationFemur[0]) |
|
|
972 |
|
|
|
973 |
# iterate over rows of image, get CofM, store CofM for row. |
|
|
974 |
for x in range(minRow, maxRow): |
|
|
975 |
yCofM[x, 0] = x #store the x-coordinate (row) we calcualted CofM for. |
|
|
976 |
yCofM[x, 1] = int(CofM(flattenedSeg[x, :])) # store the CofM value (make it an integer for indexing) |
|
|
977 |
yCofM = yCofM[minRow+10:maxRow-10,:] # remove 10 most medial and most lateral pixels of femoral cartilage. |
|
|
978 |
return(yCofM) </code></pre> |
|
|
979 |
</details> |
|
|
980 |
</dd> |
|
|
981 |
<dt id="pymskt.image.cartilage_processing.verify_and_correct_med_lat_tib_cart"><code class="name flex"> |
|
|
982 |
<span>def <span class="ident">verify_and_correct_med_lat_tib_cart</span></span>(<span>seg_array, tib_label=6, med_tib_cart_label=2, lat_tib_cart_label=3, ml_axis=0)</span> |
|
|
983 |
</code></dt> |
|
|
984 |
<dd> |
|
|
985 |
<div class="desc"><p>Verify that the medial and lateral tibial cartilage are correctly labeled. |
|
|
986 |
Parameters</p> |
|
|
987 |
<hr> |
|
|
988 |
<dl> |
|
|
989 |
<dt><strong><code>seg_array</code></strong> : <code>array</code></dt> |
|
|
990 |
<dd>3D array with segmentation for the cartilage/bone regions.</dd> |
|
|
991 |
<dt><strong><code>tib_label</code></strong> : <code>int</code></dt> |
|
|
992 |
<dd>Label that tibial cartilage is in the seg_array</dd> |
|
|
993 |
<dt><strong><code>med_tib_cart_label</code></strong> : <code>int</code></dt> |
|
|
994 |
<dd>Label that medial tibial cartilage is in the seg_array</dd> |
|
|
995 |
<dt><strong><code>lat_tib_cart_label</code></strong> : <code>int</code></dt> |
|
|
996 |
<dd>Label that lateral tibial cartilage is in the seg_array</dd> |
|
|
997 |
<dt><strong><code>ml_axis</code></strong> : <code>int</code></dt> |
|
|
998 |
<dd>Medial/lateral axis of the acquired knee MRI.</dd> |
|
|
999 |
</dl> |
|
|
1000 |
<h2 id="returns">Returns</h2> |
|
|
1001 |
<dl> |
|
|
1002 |
<dt><strong><code>seg_array</code></strong> : <code>array</code></dt> |
|
|
1003 |
<dd>3D array with segmentation for the cartilage/bone regions. |
|
|
1004 |
The tibial cartilage regions will have been updated to ensure |
|
|
1005 |
all tib cart on med/lat sides are correctly classified.</dd> |
|
|
1006 |
</dl></div> |
|
|
1007 |
<details class="source"> |
|
|
1008 |
<summary> |
|
|
1009 |
<span>Expand source code</span> |
|
|
1010 |
</summary> |
|
|
1011 |
<pre><code class="python">def verify_and_correct_med_lat_tib_cart( |
|
|
1012 |
seg_array, #sitk.GetArrayViewFromImage(seg) |
|
|
1013 |
tib_label=6, |
|
|
1014 |
med_tib_cart_label=2, |
|
|
1015 |
lat_tib_cart_label=3, |
|
|
1016 |
ml_axis=0 |
|
|
1017 |
): |
|
|
1018 |
''' |
|
|
1019 |
Verify that the medial and lateral tibial cartilage are correctly labeled. |
|
|
1020 |
Parameters |
|
|
1021 |
---------- |
|
|
1022 |
seg_array : array |
|
|
1023 |
3D array with segmentation for the cartilage/bone regions. |
|
|
1024 |
tib_label : int |
|
|
1025 |
Label that tibial cartilage is in the seg_array |
|
|
1026 |
med_tib_cart_label : int |
|
|
1027 |
Label that medial tibial cartilage is in the seg_array |
|
|
1028 |
lat_tib_cart_label : int |
|
|
1029 |
Label that lateral tibial cartilage is in the seg_array |
|
|
1030 |
ml_axis : int |
|
|
1031 |
Medial/lateral axis of the acquired knee MRI. |
|
|
1032 |
|
|
|
1033 |
Returns |
|
|
1034 |
------- |
|
|
1035 |
seg_array : array |
|
|
1036 |
3D array with segmentation for the cartilage/bone regions. |
|
|
1037 |
The tibial cartilage regions will have been updated to ensure |
|
|
1038 |
all tib cart on med/lat sides are correctly classified. |
|
|
1039 |
|
|
|
1040 |
''' |
|
|
1041 |
#get binary array for tibia |
|
|
1042 |
array_tib = np.zeros_like(seg_array) |
|
|
1043 |
array_tib[seg_array == tib_label] = 1 |
|
|
1044 |
#get binary array for tib cart |
|
|
1045 |
array_tib_cart = np.zeros_like(seg_array) |
|
|
1046 |
array_tib_cart[(seg_array == lat_tib_cart_label) + (seg_array == med_tib_cart_label)] = 1 |
|
|
1047 |
|
|
|
1048 |
#get the locatons of med/lat cartilage & get their centroids |
|
|
1049 |
med_cart_locs = np.asarray(np.where(seg_array == med_tib_cart_label)) |
|
|
1050 |
lat_cart_locs = np.asarray(np.where(seg_array == lat_tib_cart_label)) |
|
|
1051 |
middle_med_cart = med_cart_locs[ml_axis,:].mean() |
|
|
1052 |
middle_lat_cart = lat_cart_locs[ml_axis,:].mean() |
|
|
1053 |
|
|
|
1054 |
#get location of tibia to get centroid of tibial plateau |
|
|
1055 |
tib_locs = np.asarray(np.where(seg_array == tib_label)) |
|
|
1056 |
middle_tib = tib_locs[ml_axis, :].mean() |
|
|
1057 |
center_tibia_slice = int(middle_tib) |
|
|
1058 |
|
|
|
1059 |
# infer the direction(s) for medial/lateral |
|
|
1060 |
med_direction = np.sign(middle_med_cart - middle_tib) |
|
|
1061 |
lat_direction = np.sign(middle_lat_cart - middle_tib) |
|
|
1062 |
if med_direction == lat_direction: |
|
|
1063 |
raise Exception('Middle of med and lat tibial cartilage on same side of centerline!') |
|
|
1064 |
|
|
|
1065 |
#create med/lat cartilage masks - binary for updating seg masks |
|
|
1066 |
med_tib_cart_mask = np.zeros_like(seg_array) |
|
|
1067 |
lat_tib_cart_mask = np.zeros_like(seg_array) |
|
|
1068 |
|
|
|
1069 |
if med_direction > 0: |
|
|
1070 |
med_tib_cart_mask[center_tibia_slice:,...] = 1 |
|
|
1071 |
lat_tib_cart_mask[:center_tibia_slice,...] = 1 |
|
|
1072 |
elif med_direction < 0: |
|
|
1073 |
med_tib_cart_mask[:center_tibia_slice,...] = 1 |
|
|
1074 |
lat_tib_cart_mask[center_tibia_slice:,...] = 1 |
|
|
1075 |
|
|
|
1076 |
# create new med/lat cartilage arrays |
|
|
1077 |
new_med_cart_array = array_tib_cart * med_tib_cart_mask |
|
|
1078 |
new_lat_cart_array = array_tib_cart * lat_tib_cart_mask |
|
|
1079 |
|
|
|
1080 |
#make copy of original segmentation array & update |
|
|
1081 |
# med/lat tibial cartilage labels |
|
|
1082 |
new_seg_array = seg_array.copy() |
|
|
1083 |
new_seg_array[new_med_cart_array == 1] = med_tib_cart_label |
|
|
1084 |
new_seg_array[new_lat_cart_array == 1] = lat_tib_cart_label |
|
|
1085 |
|
|
|
1086 |
return new_seg_array</code></pre> |
|
|
1087 |
</details> |
|
|
1088 |
</dd> |
|
|
1089 |
</dl> |
|
|
1090 |
</section> |
|
|
1091 |
<section> |
|
|
1092 |
</section> |
|
|
1093 |
</article> |
|
|
1094 |
<nav id="sidebar"> |
|
|
1095 |
<h1>Index</h1> |
|
|
1096 |
<div class="toc"> |
|
|
1097 |
<ul></ul> |
|
|
1098 |
</div> |
|
|
1099 |
<ul id="index"> |
|
|
1100 |
<li><h3>Super-module</h3> |
|
|
1101 |
<ul> |
|
|
1102 |
<li><code><a title="pymskt.image" href="index.html">pymskt.image</a></code></li> |
|
|
1103 |
</ul> |
|
|
1104 |
</li> |
|
|
1105 |
<li><h3><a href="#header-functions">Functions</a></h3> |
|
|
1106 |
<ul class=""> |
|
|
1107 |
<li><code><a title="pymskt.image.cartilage_processing.CofM" href="#pymskt.image.cartilage_processing.CofM">CofM</a></code></li> |
|
|
1108 |
<li><code><a title="pymskt.image.cartilage_processing.absolute_CofM" href="#pymskt.image.cartilage_processing.absolute_CofM">absolute_CofM</a></code></li> |
|
|
1109 |
<li><code><a title="pymskt.image.cartilage_processing.findNotch" href="#pymskt.image.cartilage_processing.findNotch">findNotch</a></code></li> |
|
|
1110 |
<li><code><a title="pymskt.image.cartilage_processing.getAnteriorOfWeightBearing" href="#pymskt.image.cartilage_processing.getAnteriorOfWeightBearing">getAnteriorOfWeightBearing</a></code></li> |
|
|
1111 |
<li><code><a title="pymskt.image.cartilage_processing.getCartilageSubRegions" href="#pymskt.image.cartilage_processing.getCartilageSubRegions">getCartilageSubRegions</a></code></li> |
|
|
1112 |
<li><code><a title="pymskt.image.cartilage_processing.get_knee_segmentation_with_femur_subregions" href="#pymskt.image.cartilage_processing.get_knee_segmentation_with_femur_subregions">get_knee_segmentation_with_femur_subregions</a></code></li> |
|
|
1113 |
<li><code><a title="pymskt.image.cartilage_processing.get_y_CofM" href="#pymskt.image.cartilage_processing.get_y_CofM">get_y_CofM</a></code></li> |
|
|
1114 |
<li><code><a title="pymskt.image.cartilage_processing.verify_and_correct_med_lat_tib_cart" href="#pymskt.image.cartilage_processing.verify_and_correct_med_lat_tib_cart">verify_and_correct_med_lat_tib_cart</a></code></li> |
|
|
1115 |
</ul> |
|
|
1116 |
</li> |
|
|
1117 |
</ul> |
|
|
1118 |
</nav> |
|
|
1119 |
</main> |
|
|
1120 |
<footer id="footer"> |
|
|
1121 |
<p>Generated by <a href="https://pdoc3.github.io/pdoc" title="pdoc: Python API documentation generator"><cite>pdoc</cite> 0.10.0</a>.</p> |
|
|
1122 |
</footer> |
|
|
1123 |
</body> |
|
|
1124 |
</html> |