Download this file

89 lines (67 with data), 3.0 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
from osim.env import OsimEnv
import pprint
import numpy as np
from keras.models import load_model
class Arm3dEnv(OsimEnv):
model_path = os.path.join(os.path.dirname(__file__), '../osim/models/ue_RL.osim')
time_limit = 200
current_objective = np.array([0,0,0])
def is_done(self):
# End the simulation if the pelvis is too low
state_desc = self.get_state_desc()
return False
def get_observation(self):
state_desc = self.get_state_desc()
# Augmented environment from the L2R challenge
res = []
# Map some of the state variables to the observation vector
for body_part in state_desc["body_pos_rot"].keys():
res = res + state_desc["body_pos_rot"][body_part][2:]
res = res + state_desc["body_pos"][body_part][0:2]
res = res + state_desc["body_vel_rot"][body_part][2:]
res = res + state_desc["body_vel"][body_part][0:2]
res = res + state_desc["body_acc_rot"][body_part][2:]
res = res + state_desc["body_acc"][body_part][0:2]
for joint in state_desc["joint_pos"].keys():
res = res + state_desc["joint_pos"][joint]
res = res + state_desc["joint_vel"][joint]
res = res + state_desc["joint_acc"][joint]
res = res + state_desc["misc"]["mass_center_pos"] + state_desc["misc"]["mass_center_vel"] + state_desc["misc"]["mass_center_acc"]
res += self.current_objective.tolist()
res = np.array(res)
res[np.isnan(res)] = 0
return res
def get_observation_space_size(self):
return 168
def reset_objective(self):
self.current_objective = np.random.uniform(-0.5,0.5,3)
def reset(self):
print(self.reward())
self.reset_objective()
return super(Arm3dEnv, self).reset()
def reward(self):
# Get the current state and the last state
prev_state_desc = self.get_prev_state_desc()
if not prev_state_desc:
return 0
state_desc = self.get_state_desc()
res = 0
# # Penalize movement of the pelvis
# res = -(prev_state_desc["misc"]["mass_center_pos"][0] - state_desc["misc"]["mass_center_pos"][0])**2\
# -(prev_state_desc["misc"]["mass_center_pos"][1] - state_desc["misc"]["mass_center_pos"][1])**2
# # Penalize very low position of the pelvis
# res += -(state_desc["joint_pos"]["ground_pelvis"][2] < 0.8)
return -np.linalg.norm(np.array(state_desc["markers"]["Handle"]["pos"]) - self.current_objective)
env = Arm3dEnv(visualize=True, integrator_accuracy=1e-4)
if __name__ == '__main__':
observation = env.reset()
# returns a compiled model
# identical to the previous one
model = load_model('/home/lukasz/nnregression.h5')
print(model.summary())
for i in range(200):
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:
env.reset()