135 lines (134 with data), 15.7 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline \n",
"import random\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import math"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [],
"source": [
"nsteps = 1000\n",
"rg = np.array(range(nsteps))\n",
"velocity = np.zeros(nsteps)\n",
"heading = np.zeros(nsteps)"
]
},
{
"cell_type": "code",
"execution_count": 123,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7f08374c60b8>]"
]
},
"execution_count": 123,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEbhJREFUeJzt3X+QXWV9x/H3Nz8BfxBCdjRNgoGa2lJGkK78GNrC1KJILfmjOIVxKioa24FRO8602E6l+p8zrb8qg2aU+mMErMBoSqkMVUZrWykbxBgSo0HFLMayAiaCENi93/5xT/C6JLl7d+/dc8+z79fMndxzzsPe79nn8tlzn/OccyMzkSSVZVHdBUiS+s9wl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBVoSV0vvGrVqly/fn1dLy9JjbR169afZuZIt3a1hfv69esZGxur6+UlqZEi4oGZtHNYRpIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAtU2z12SDuWnjx3g+rt+xORUq+5SBmZ0/Up+/ze6Xoc0J4a7pKFy27f38v47vgtARM3FDMifn/vrhrukheWJp6YAuO89r+I5y42o2XLMXdJQOTDZHo5ZtsR4mouuv72IWBcRd0bEjoi4LyLefog2EREfjojdEbEtIk4fTLmSSvfUZItFAUsWFTomM09m8plnEnhnZt4TEc8DtkbEHZm5o6PNq4EN1eNM4NrqX0nqyYHJKZYtWUSUOuA+T7oeuWfm3sy8p3r+c2AnsGZas43Ap7PtG8CKiFjd92olFe+pyRbLlyyuu4zG62lQKyLWAy8D7pq2aQ2wp2N5nGf/ASAiNkXEWESMTUxM9FappAXhqamW4+19MOPfYEQ8F7gZeEdm7p/Ni2Xm5swczczRkZHBTgOS1EwHnm6xbLHhPlczmmcUEUtpB/tnM/OWQzR5EFjXsby2WifN2VQrefixA3WXMTCrnrucRZ48fMaBqRbLlxruc9U13KN9VuMTwM7MfP9hmm0BroyIG2mfSN2XmXv7V6YWsr++eRs3bR2vu4yBedM5J/LuPz657jKGhkfu/TGTI/dzgD8Dvh0R91br/gY4ASAzPwrcBlwI7AZ+Abyx/6Vqodq77wlOWHkMbz33pLpL6bt/GRvnU//zQ26+p9w/Xr16/MAkp6w5tu4yGq9ruGfm14EjfmbMzASu6FdRUqdWC174/KN43ZkvqruUvjt17YqiP5XM1rkv8ZzcXHltr4beVCaLCv2UfsqaYz1K1UAU+r+MSpKZLPKCFqknhruG3lQrWexsEqknhruGXivxUnSpR4a7hl4rk8Vmu9QTw11Dr+WYu9Qzw11Db6qFV3BKPTLcNfRarcRsl3pjuGvotdLZMlKvDHcNvalMZ8tIPTLcNfQyYbHhLvXEcNfQm3LMXeqZ4a6h18p0tozUI8NdQ689W8Zwl3phuGvotRxzl3pmuGvolXzLX2lQ/F9GQ89b/kq9M9w19KYcc5d6Zrhr6LUSr1CVemS4a+i1WokH7lJvDHcNvfb93E13qReGu4belBcxST0z3DX0WoknVKUeGe4aet7PXeqd4a6h5/3cpd4Z7hpqmUkr8X7uUo8Mdw21zPa/zpaRerOk7gI0O488/hSTrVbdZQzcVKud7o7KSL0x3Bvo1m0/5srrv1l3GfNq+VI/ZEq9MNwb6Cf7ngTg715zMsuXlB96SxYFF5zywrrLkBrFcG+gg0MVl56xjmOW2YWSnq38w74CVdnuhT2SDstwb6BWNYXEbJd0OIZ7A2UenEFiuks6NMO9gRyWkdSN4d5ArXTut6QjM9wb6OCXV3hJvqTDMdwbyFvgSuqma7hHxHUR8VBEbD/M9vMiYl9E3Fs93t3/MtWpld4CV9KRzeQKmE8CHwE+fYQ2/5mZr+lLRerKuyRK6qbrkXtmfg14ZB5q0QylR+6SuujXmPvZEfGtiPj3iPjtwzWKiE0RMRYRYxMTE3166YXHL4yW1E0/wv0e4EWZeSrwT8AXDtcwMzdn5mhmjo6MjPThpRcmT6hK6mbO4Z6Z+zPzser5bcDSiFg158p0WFPVVEhJOpw5h3tEvDCqs3sRcUb1Mx+e68/V4WUmixx0l3QEXWfLRMQNwHnAqogYB64GlgJk5keBi4G/iIhJ4Angkjx48xMNhMMykrrpGu6ZeWmX7R+hPVVS88R57pK68QrVBnKeu6RuDPcGSqdCSurCcG+gqZbDMpKOzHBvIIdlJHVjuDdQeypk3VVIGmZGRAO1Z8t45C7p8Az3BnKeu6RuDPcGcp67pG4M9wZyWEZSN4Z7A7VaDstIOjLDvYFa6V0hJR2Z4d5AnlCV1I3h3kDOc5fUjRHRQH7NnqRuDPcGmvL2A5K6MNwbKJ3nLqmLrl/WMWweOzDJQ/ufrLuMWj1+YNITqpKOqHHh/tVdE1xx/T11l1G739vgd5BLOrzGhftpJ6zgQ5ecVncZtTtt3Yq6S5A0xBoX7mtWHM2a09bUXYYkDTVPqEpSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBuoZ7RFwXEQ9FxPbDbI+I+HBE7I6IbRFxev/LlCT1YiZH7p8ELjjC9lcDG6rHJuDauZclSZqLruGemV8DHjlCk43Ap7PtG8CKiFjdrwIlSb3rx5j7GmBPx/J4tU6SVJN5PaEaEZsiYiwixiYmJubzpSVpQelHuD8IrOtYXlute5bM3JyZo5k5OjIy0oeXliQdSj/CfQvw+mrWzFnAvszc24efK0mapSXdGkTEDcB5wKqIGAeuBpYCZOZHgduAC4HdwC+ANw6qWEnSzHQN98y8tMv2BK7oW0WSpDnzClVJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVKAZhXtEXBARuyJid0RcdYjtb4iIiYi4t3q8uf+lSpJmakm3BhGxGLgGOB8YB+6OiC2ZuWNa089l5pUDqFGS1KOZHLmfAezOzO9n5lPAjcDGwZYlSZqLmYT7GmBPx/J4tW66P4mIbRFxU0Ss60t1kqRZ6dcJ1X8F1mfmS4E7gE8dqlFEbIqIsYgYm5iY6NNLS5Kmm0m4Pwh0HomvrdY9IzMfzswD1eLHgd851A/KzM2ZOZqZoyMjI7OpV5I0AzMJ97uBDRFxYkQsAy4BtnQ2iIjVHYsXATv7V6IkqVddZ8tk5mREXAncDiwGrsvM+yLivcBYZm4B3hYRFwGTwCPAGwZYsySpi8jMWl54dHQ0x8bGanltSWqqiNiamaPd2nmFqiQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQXq+mUdkgbo/q/A1z8I1PO9CkPrty6CM95SdxWNZrhLddp5KzzwX7D25XVXMjwmdsEvHjXc58hwl+qUU3D0SnjTl+quZHjc8lZ44L/rrqLxHHOX6pQtWLS47iqGy9Er4Mmf1V1F43nkLtWp1YLwGOtXHLUCDuyHJx6FKPQP3+JlsPSogb6E4S7VKafKDbDZOub49r/vW19rGQN1zjvg/PcM9CUMd6lO2YJFHrn/ipe+FkiYerruSgZnzekDfwnDXapTa8phmemOPg7OfGvdVTSe7yqpTtlyWEYDYbhLdUqP3DUYvqukOrWmnAqpgTDcpTplOiyjgTDcpTrlFETUXYUKZLhLdfIKVQ2I4S7VyamQGhDfVVKdvEJVA2K4S3VyWEYDYrhLdfLGYRoQ31VSndJw12D4rpLq5BWqGhDfVVKdvEJVA2K4S3XyxmEaEMNdqpPDMhqQGb2rIuKCiNgVEbsj4qpDbF8eEZ+rtt8VEev7XahUJKdCakC6fllHRCwGrgHOB8aBuyNiS2bu6Gh2OfBoZr44Ii4B3gf86SAKFu3pc4/c3x6vXQgWLYbjX1zmPVicCqkBmck3MZ0B7M7M7wNExI3ARqAz3DcCf189vwn4SEREZmYfa23bvxf2fqvvP7ZRvnU97Phi3VXMrz/6R3j5m+uuov8cltGAzCTc1wB7OpbHgTMP1yYzJyNiH3A88NPORhGxCdgEcMIJJ8yu4j3fgM+/YXb/bUmOXtkOvIXglrfAvvG6qxgMh2U0IPP6HaqZuRnYDDA6Ojq7o/oTz4W33NnPsppp5Ulw9Iq6q5gf//ZOOPDzuqsYDG8cpgGZSbg/CKzrWF5brTtUm/GIWAIcCzzclwqnO2Zl+6GF46jnw5P7665iMJwKqQGZySHD3cCGiDgxIpYBlwBbprXZAlxWPb8Y+MpAxtu1MC1/XrlH7o65a0C6HrlXY+hXArcDi4HrMvO+iHgvMJaZW4BPAJ+JiN3AI7T/AEj9sfxY+MFX4Zrpp3oKsP/HjrlrIGY05p6ZtwG3TVv37o7nTwKv7W9pUuXMTbD95rqrGIyRl8CpHgup/+b1hKo0KydvbD8kzZiDfZJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCRV23gImICeCBWf7nq5h2O+EFwH1eGNznhWEu+/yizBzp1qi2cJ+LiBjLzNG665hP7vPC4D4vDPOxzw7LSFKBDHdJKlBTw31z3QXUwH1eGNznhWHg+9zIMXdJ0pE19chdknQEjQv3iLggInZFxO6IuKruevolItZFxJ0RsSMi7ouIt1frV0bEHRHxverf46r1EREfrn4P2yLi9Hr3YHYiYnFEfDMibq2WT4yIu6r9+lz11Y5ExPJqeXe1fX2ddc9FRKyIiJsi4jsRsTMizi65nyPiL6v39PaIuCEijiqxnyPiuoh4KCK2d6zruV8j4rKq/fci4rJDvdZMNCrcI2IxcA3wauBk4NKIOLneqvpmEnhnZp4MnAVcUe3bVcCXM3MD8OVqGdq/gw3VYxNw7fyX3BdvB3Z2LL8P+EBmvhh4FLi8Wn858Gi1/gNVu6b6EPClzPxN4FTa+19kP0fEGuBtwGhmnkL7qzovocx+/iRwwbR1PfVrRKwErgbOBM4Arj74B6FnmdmYB3A2cHvH8ruAd9Vd14D29YvA+cAuYHW1bjWwq3r+MeDSjvbPtGvKA1hbveH/ALgVCNoXdiyZ3t+0v8P37Or5kqpd1L0Ps9jnY4EfTK+91H4G1gB7gJVVv90KvKrUfgbWA9tn26/ApcDHOtb/SrteHo06cueXb5SDxqt1Rak+ir4MuAt4QWburTb9BHhB9byE38UHgb8CWtXy8cDPMnOyWu7cp2f2t9q+r2rfNCcCE8A/V8NRH4+I51BoP2fmg8A/AD8C9tLut62U388H9dqvfevvpoV78SLiucDNwDsyc3/ntmz/KS9ielNEvAZ4KDO31l3LPFsCnA5cm5kvAx7nlx/VgeL6+ThgI+0/ar8GPIdnD10sCPPdr00L9weBdR3La6t1RYiIpbSD/bOZeUu1+v8iYnW1fTXwULW+6b+Lc4CLIuKHwI20h2Y+BKyIiINf3N65T8/sb7X9WODh+Sy4T8aB8cy8q1q+iXbYl9rPfwj8IDMnMvNp4BbafV96Px/Ua7/2rb+bFu53AxuqM+3LaJ+Y2VJzTX0REQF8AtiZme/v2LQFOHjG/DLaY/EH17++Out+FrCv4+Pf0MvMd2Xm2sxcT7sfv5KZrwPuBC6umk3f34O/h4ur9o07us3MnwB7IuIl1apXADsotJ9pD8ecFRHHVO/xg/tbdD936LVfbwdeGRHHVZ96Xlmt613dJyBmccLiQuC7wP3A39ZdTx/363dpf2TbBtxbPS6kPd74ZeB7wH8AK6v2QXvm0P3At2nPRqh9P2a57+cBt1bPTwL+F9gNfB5YXq0/qlreXW0/qe6657C/pwFjVV9/ATiu5H4G3gN8B9gOfAZYXmI/AzfQPq/wNO1PaJfPpl+BN1X7vxt442zr8QpVSSpQ04ZlJEkzYLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklSg/wfmugDUrOh2IgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"velocity[0] = 1.25\n",
"heading[0] = 0\n",
"\n",
"change = np.cumsum(np.random.poisson(200, 5))\n",
"#change_head = \n",
"\n",
"for i in range(1,1000):\n",
" velocity[i] = velocity[i-1]\n",
" heading[i] = heading[i-1]\n",
"\n",
" if i in change:\n",
" velocity[i] += random.choice([-1,1]) * random.uniform(-0.5,0.5)\n",
" heading[i] += random.choice([-1,1]) * random.uniform(-math.pi/8,math.pi/8)\n",
"plt.plot(velocity)\n",
"plt.plot(heading)"
]
},
{
"cell_type": "code",
"execution_count": 124,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7f0837419940>,\n",
" <matplotlib.lines.Line2D at 0x7f0837419a90>]"
]
},
"execution_count": 124,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAElVJREFUeJzt3X2wXHV9x/H3N/cmAYHyYG41JoGLEHHQEaVXHoRpmbYoMg7MWFqhTkVkmrEjIzpOO9LOiDqdjk47WhkYNEVKtQqO6NiUpkVErK1TkcRSniISsJrEWAJoEHlIcvfbP/Zc3VyS7H3Yk7Pnl/drZid7Htj9nj2Hzz37Pb/djcxEklSWBU0XIEkaPMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVKDRpp54yZIlOT4+3tTTS1IrrV+//rHMHOu3XmPhPj4+zrp165p6eklqpYj44UzWsy0jSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCtQ33CNiRUTcEREPRMT9EXH5HtaJiLgqIjZGxD0RcXI95UqSZmIm49x3Ae/LzO9GxGHA+oi4LTMf6FnnjcDK6nYqcG31ryTNymNPPcfn7/wRuyY7TZdSm4nxo/jNl/X9HNK89A33zNwKbK3u/zwiNgDLgN5wPx/4THZ/kPXbEXFERCyt/ltJmrG1927lY7d9H4CIhoupyTt/67jmw71XRIwDrwHunLZoGbCpZ3pzNc9wlzQrz+3snrHf/6E3cMjixj5E33ozvqAaEYcCXwLek5lPzuXJImJVRKyLiHXbtm2by0NIKtyOqh2zcMTxHvMxo1cvIhbSDfbPZeaX97DKFmBFz/Tyat5uMnN1Zk5k5sTYWL1vSSS1045dU+FeaE9mP+n7niciAvg0sCEzP7aX1dYAl0XETXQvpG63365BueN7j/Iv95Z7OF342hVMjB/VdBlDY+dkh4UjQZTacN9PZtLQOgP4I+DeiLi7mvfnwNEAmflJYC1wLrAReBq4ZPCl6kB1/bd+wJ2PPMHYYYubLmXgfvLks3Q6abj36Ia7LZn5mslomf8E9vkntBol865BFSX1muwkJ604nC++83VNlzJwr//4v/PMzsmmyxgqOyfTcB8AX0ENvclOFvsW/eCFI4b7NDsmOywaNZrmy1dQQy8TRgoN94MWjvDMDsO9145dHRZ55j5vvoIaepOZLCj0SD140QjPeua+m6kLqpqfQv+XUUk6mSwo9Mz94IUjPO2Z+268oDoYvoIaep1O2eFuz313O3Z5QXUQ/Gyvhl4nYWRBoeG+aIQtP3uGV3/4q02XMjSeenYXr1x2eNNltJ7hrqE32UkKzXbeeuoxLBxZQHc0saacdcKvN11C6xnuGnol99xPfMmv8cHzXtF0GSqQjS0NvU5msW0ZqS6Gu4ZeJyn2zF2qi+GuodfpJAs8c5dmxXDX0JvMci+oSnUx3DX0OpnFfv2AVBfDXUOv06HYLw6T6mK4a+h1R8s0XYXULv4vo6E3WfDXD0h1Mdw19DqJo2WkWTLcNfQ6jpaRZs1w19BztIw0e4a7hl7JP7Mn1cVw19DLgr/yV6qL4a6hV/JX/kp1Mdw19Drpd8tIs2W4a+iV/H3uUl0Mdw29TuJoGWmWDHcNPXvu0uwZ7hpqU78tas9dmh3DXUNtslOFu20ZaVb8gewWuv/H2/mrtRvYOZlNl1K7qTN3x7lLs2O4t9B/Pfw439r4OK8dP7L80IvgzOOXcObxS5quRGoVw72FOtXZ7A2XnMIhi92Fkp7PnnsLVW1o+9CS9spwb6GpM3ezXdLeGO4tVGV7+f12SXNmuLdQx+GBkvow3FtocuqDPWa7pL0w3Fto6oKqP2AhaW8M9xZKf1NUUh99wz0iro+IRyPivr0sPysitkfE3dXtA4MvU738ClxJ/czkEzA3AFcDn9nHOv+RmW8aSEXqq5NeTJW0b33P3DPzm8AT+6EWzVD3l4markLSMBtURJweEf8TEf8aEa8Y0GNqLzod2zKS9m0QX0zyXeCYzHwqIs4FvgKs3NOKEbEKWAVw9NFHD+CpD0y2ZST1M+8z98x8MjOfqu6vBRZGxB6/wi8zV2fmRGZOjI2NzfepD1idTL96QNI+zTvcI+LFUQ24johTqsd8fL6Pq71Lz9wl9dG3LRMRNwJnAUsiYjNwJbAQIDM/CVwA/ElE7AKeAS7MqV9YUC06jnOX1EffcM/Mi/osv5ruUEntJ51MvzRM0j45oK6FOulXD0jaN8O9hbpDIZuuQtIwM9xbyK8fkNSP4d5CjnOX1I/h3kKOc5fUj+HeQo5zl9SP4d5CDoWU1I/h3kKTHdsykvbNcG8h2zKS+jHcW8ivH5DUj+HeQo5zl9SP4d5Cfv2ApH4M9xbKTEbcc5L2wYhoIT+hKqkfw72FukMhDXdJe2e4t5CjZST1Y7i3kOPcJfXT95eYhs23H3mcq25/qOkyGnXflu2c8OLDmi5D0hBrXbh3Mtk52Wm6jEad8OLDOO+klzRdhqQh1rpwf91xS3jdcUuaLkOShpo9d0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBeob7hFxfUQ8GhH37WV5RMRVEbExIu6JiJMHX6YkaTZmcuZ+A3DOPpa/EVhZ3VYB186/LEnSfPQN98z8JvDEPlY5H/hMdn0bOCIilg6qQEnS7A2i574M2NQzvbma9zwRsSoi1kXEum3btg3gqSVJe7JfL6hm5urMnMjMibGxsf351JJ0QBlEuG8BVvRML6/mSZIaMohwXwO8rRo1cxqwPTO3DuBxJUlzNNpvhYi4ETgLWBIRm4ErgYUAmflJYC1wLrAReBq4pK5iJUkz0zfcM/OiPssTeNfAKpIkzZufUJWkAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBTLcJalAhrskFchwl6QCGe6SVCDDXZIKZLhLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SCmS4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUIMNdkgpkuEtSgQx3SSqQ4S5JBRqdyUoRcQ7wCWAEuC4zPzJt+duBvwa2VLOuzszrBlinVKYH1sA3PgJk05UMl1e8GX7rT5uuotX6hntEjADXAGcDm4G7ImJNZj4wbdUvZOZlNdQoleuRb8Bj34cTzmm6kuGx6S7YsMZwn6eZnLmfAmzMzEcAIuIm4HxgerhLmrWEgw6Ht/xj04UMj5vfAT++u+kqWm8mPfdlwKae6c3VvOl+LyLuiYibI2LFnh4oIlZFxLqIWLdt27Y5lCsVJhPCS1+7WXQI7Hy66Spab1BH1T8D45n5KuA24B/2tFJmrs7MicycGBsbG9BTSy2WHYhouorhsuhQ2PGLpqtovZmE+xag90x8Ob+6cApAZj6emc9Vk9cBvzGY8qTSJWC472bRIbDjqe67Gs3ZTHrudwErI+JYuqF+IfCHvStExNLM3FpNngdsGGiVUqlsyzzfwhd039E89FUYWdh0NfU44hh44XG1PkXfcM/MXRFxGXAr3aGQ12fm/RHxYWBdZq4B3h0R5wG7gCeAt9dYs1SOTNsy0x36ou6/n/+DZuuo0xnvgbM/VOtTzGice2auBdZOm/eBnvtXAFcMtjTpQGBb5nlOuhDGXg6dnU1XUp/Dltb+FDMKd0k1sS3zfAtGYLmX7ebLo0pqUnY8cVctDHepUbZlVA/DXWqSbRnVxKNKapIfYlJNDHepUbZlVA/DXWqSbRnVxKNKapJtGdXEcJcaZVtG9TDcpSbZllFNPKqkJtmWUU0Md6lxhrsGz3CXmpQd2zKqhUeV1KRMT9xVC8NdapQXVFUPjyqpSdnBU3fVwXCXmuQvMakmhrvUKNsyqodHldQk2zKqieEuNcm2jGpiuEuNsi2jenhUSU2yLaOaGO5Sk2zLqCaGu9Q02zKqgUeV1CTbMqqJ4S41ybaMamK4S40y3FUPw11qkm0Z1cRwl5pkW0Y1MdylRvkhJtXDo0pqkm0Z1cRwl5pkW0Y1MdylRtmWUT08qqQm2ZZRTQx3qUm2ZVQTw11qlG0Z1cOjSmpSJrZlVIcZhXtEnBMRD0bExoh4/x6WL46IL1TL74yI8UEXKhXJtoxqMtpvhYgYAa4BzgY2A3dFxJrMfKBntUuBn2bm8RFxIfBR4C11FKzKzmeqi3EHgFgACw9uuoqaGO6qR99wB04BNmbmIwARcRNwPtAb7ucDH6zu3wxcHRGRmTnAWjXl3pvhS5c2XcX+9ebr4FW/33QVg+doGdVkJuG+DNjUM70ZOHVv62TmrojYDrwQeGwQRe5m83q46+8G/rCtsmU9HHwknPnepiupXyZ87Up44uGmK6mHbRnVZCbhPjARsQpYBXD00UfP7UGefgx++K0BVtVSE++AMy5vuor94+t/Cbuea7qKemTH0TKqxUzCfQuwomd6eTVvT+tsjohR4HDg8ekPlJmrgdUAExMTc2vZvOwN3ZsOHKMHlRvuOFpG9ZjJKcNdwMqIODYiFgEXAmumrbMGuLi6fwHwdfvtGpjRRbDr2aarqEc6zl316HvmXvXQLwNuBUaA6zPz/oj4MLAuM9cAnwY+GxEbgSfo/gGQBmP0IJgs9Mw9O/bcVYsZ9dwzcy2wdtq8D/TcfxYocCiDhsLoYtsy0iz5flDDb6TgcLcto5p4VGn4lXzm7lBI1cRw1/AbXVzuBVXbMqrJfh3nLs3J6GLY9B24Zvpn5wrw862euasWhruG32v/uPuJ3BKNnQAnObhMg2e4a/ideF73JmnG7LlLUoEMd0kqkOEuSQUy3CWpQIa7JBXIcJekAhnuklQgw12SChRN/aZGRGwDfjjH/3wJdfw+63Bzmw8MbvOBYT7bfExmjvVbqbFwn4+IWJeZE03XsT+5zQcGt/nAsD+22baMJBXIcJekArU13Fc3XUAD3OYDg9t8YKh9m1vZc5ck7Vtbz9wlSfvQunCPiHMi4sGI2BgR72+6nkGJiBURcUdEPBAR90fE5dX8oyLitoh4qPr3yGp+RMRV1etwT0Sc3OwWzE1EjETEf0fELdX0sRFxZ7VdX4iIRdX8xdX0xmr5eJN1z0dEHBERN0fE9yJiQ0ScXvJ+joj3Vsf0fRFxY0QcVOJ+jojrI+LRiLivZ96s92tEXFyt/1BEXDzXeloV7hExAlwDvBE4EbgoIk5stqqB2QW8LzNPBE4D3lVt2/uB2zNzJXB7NQ3d12BldVsFXLv/Sx6Iy4ENPdMfBT6emccDPwUureZfCvy0mv/xar22+gTwb5n5cuAkuttf5H6OiGXAu4GJzHwlMAJcSJn7+QbgnGnzZrVfI+Io4ErgVOAU4MqpPwizlpmtuQGnA7f2TF8BXNF0XTVt6z8BZwMPAkureUuBB6v7nwIu6ln/l+u15QYsrw743wZuoftL0Y8Bo9P3N3ArcHp1f7RaL5rehjls8+HAD6bXXup+BpYBm4Cjqv12C/CGUvczMA7cN9f9ClwEfKpn/m7rzebWqjN3fnWgTNlczStK9Vb0NcCdwIsyc2u16CfAi6r7JbwWfwv8GdCppl8I/Cwzd1XTvdv0y+2tlm+v1m+bY4FtwN9X7ajrIuIQCt3PmbkF+BvgR8BWuvttPeXv5ymz3a8D299tC/fiRcShwJeA92Tmk73LsvunvIjhTRHxJuDRzFzfdC372ShwMnBtZr4G+AW/eqsOFLefjwTOp/tH7SXAITy/dXFA2N/7tW3hvgVY0TO9vJpXhIhYSDfYP5eZX65m/19ELK2WLwUerea3/bU4AzgvIv4XuIlua+YTwBERMfXD7b3b9MvtrZYfDjy+PwsekM3A5sy8s5q+mW7Yl7qffxf4QWZuy8ydwJfp7vvS9/OU2e7Xge3vtoX7XcDK6kr7IroXZtY0XNNAREQAnwY2ZObHehatAaaumF9Mtxc/Nf9t1VX304DtPW//hl5mXpGZyzNznO5+/HpmvhW4A7igWm369k69DhdU67fu7DYzfwJsiogTqlm/AzxAofuZbjvmtIh4QXWMT21v0fu5x2z3663A6yPiyOpdz+urebPX9AWIOVywOBf4PvAw8BdN1zPA7TqT7lu2e4C7q9u5dPuNtwMPAV8DjqrWD7ojhx4G7qU7GqHx7Zjjtp8F3FLdfynwHWAj8EVgcTX/oGp6Y7X8pU3XPY/tfTWwrtrXXwGOLHk/Ax8CvgfcB3wWWFzifgZupHtdYSfdd2iXzmW/Au+otn8jcMlc6/ETqpJUoLa1ZSRJM2C4S1KBDHdJKpDhLkkFMtwlqUCGuyQVyHCXpAIZ7pJUoP8H3IZVYsglcu8AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def rect(row):\n",
" r = row[0]\n",
" theta = row[1]\n",
" x = r * math.cos(theta)\n",
" y = r * math.sin(theta)\n",
" return np.array([x,y])\n",
"\n",
"trajectory_polar = np.vstack((velocity,heading)).transpose()\n",
"trajectory_cart = np.apply_along_axis(rect, 1, trajectory_polar)\n",
"plt.plot(trajectory_cart)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}