[077a87]: / envs / target / v_tgt_field.py

Download this file

372 lines (310 with data), 16.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Author(s): Seungmoon Song <seungmoon.song@gmail.com>
"""
...
"""
from __future__ import division # '/' always means non-truncating division
import numpy as np
from scipy import interpolate
class VTgtField(object):
nn_get = np.array([11, 11]) # vtgt_field_local data is nn_get*nn_get = 121
ver = {}
# v00: constant forward velocities
ver['ver00'] = {}
ver['ver00']['res_map'] = np.array([2, 2])
ver['ver00']['rng_xy0'] = np.array([[-20, 20], [-20, 20]])
ver['ver00']['rng_get'] = np.array([[-5, 5], [-5, 5]])
ver['ver00']['v_amp_rng'] = {}
ver['ver00']['rng_p_sink_r_th'] = {}
ver['ver00']['r_target'] = {}
ver['ver00']['v_amp'] = np.array([1.4, 0])
ver['ver00']['n_new_target'] = 1
# v01: consecutive sinks forward for walking
ver['ver01'] = {}
ver['ver01']['res_map'] = np.array([2, 2])
ver['ver01']['rng_xy0'] = np.array([[-20, 20], [-20, 20]])
ver['ver01']['rng_get'] = np.array([[-5, 5], [-5, 5]])
ver['ver01']['v_amp_rng'] = np.array([.8, 1.8])
ver['ver01']['rng_p_sink_r_th'] = np.array([[5, 7], [0, 0]])
ver['ver01']['r_target'] = .3
ver['ver01']['n_new_target'] = float("inf")
# v02: consecutive sinks for walking (-90 < th < 90)
ver['ver02'] = {}
ver['ver02']['res_map'] = np.array([2, 2])
ver['ver02']['rng_xy0'] = np.array([[-20, 20], [-20, 20]])
ver['ver02']['rng_get'] = np.array([[-5, 5], [-5, 5]])
ver['ver02']['v_amp_rng'] = np.array([.8, 1.8])
ver['ver02']['rng_p_sink_r_th'] = np.array([[5, 7], [-90*np.pi/180, 90*np.pi/180]])
ver['ver02']['r_target'] = .3
ver['ver02']['n_new_target'] = float("inf")
# v03: consecutive sinks for walking (-180 < th < 180)
# vs. v02: larger range; n_target = 2
ver['ver03'] = {}
ver['ver03']['res_map'] = np.array([2, 2])
ver['ver03']['rng_xy0'] = np.array([[-20, 20], [-20, 20]])
ver['ver03']['rng_get'] = np.array([[-5, 5], [-5, 5]])
ver['ver03']['v_amp_rng'] = np.array([.8, 1.8])
ver['ver03']['rng_p_sink_r_th'] = np.array([[5, 7], [-180*np.pi/180, 180*np.pi/180]])
ver['ver03']['r_target'] = .3
ver['ver03']['n_new_target'] = 2
vtgt_space = np.array([ [-10] * 2*11*11, [10] * 2*11*11 ])
# -----------------------------------------------------------------------------------------------------------------
def __init__(self, visualize=True, version=1, dt=.01, dt_visualize=0.5, seed=None):
self.dt = dt
self.visualize = visualize
self.dt_visualize = dt_visualize
self.di_visualize = int(dt_visualize/dt)
if seed:
np.random.seed(seed)
# -----------------------------------------------------------------------------------------------------------------
def reset(self, version=1, seed=None, pose_agent=np.array([0, 0, 0])):
self.t = 0
self.i = 0
self.i_target = 1
self.t_target = 0
if version not in [0, 1, 2, 3]:
raise ValueError("vtgt version should be in [0, 1, 2].")
self.ver['version'] = version
# set parameters
s_ver = 'ver{}'.format(str(version).rjust(2,'0'))
self.rng_xy0 = self.ver[s_ver]['rng_xy0']
self.v_amp_rng = self.ver[s_ver]['v_amp_rng']
self.rng_p_sink_r_th = self.ver[s_ver]['rng_p_sink_r_th']
self.r_target = self.ver[s_ver]['r_target']
self.rng_get = self.ver[s_ver]['rng_get']
self.res_map = self.ver[s_ver]['res_map']
self.n_new_target = self.ver[s_ver]['n_new_target']
self.res_get = np.array([ (self.rng_get[0,1]-self.rng_get[0,0]+1)/self.nn_get[0],
(self.rng_get[1,1]-self.rng_get[1,0]+1)/self.nn_get[1]])
self.pose_agent = pose_agent
self.rng_xy = (self.pose_agent[0:2] + self.rng_xy0.T).T
if self.ver['version'] is 0:
# map coordinate and vtgt
self.vtgt_obj = VTgtConst(v_tgt=self.ver['ver00']['v_amp'],
rng_xy=self.rng_xy, res_map=self.res_map,
rng_get=self.rng_get, res_get=self.res_get)
self.create_vtgt_const(v_tgt=self.ver['ver00']['v_amp'])
elif self.ver['version'] in [1, 2, 3]:
# map coordinate and vtgt
self.vtgt_obj = VTgtSink(rng_xy=self.rng_xy, res_map=self.res_map,
rng_get=self.rng_get, res_get=self.res_get)
if seed:
np.random.seed(seed)
# create first sink
del_p_sink_r = np.random.uniform(self.rng_p_sink_r_th[0,0], self.rng_p_sink_r_th[0,1])
del_p_sink_th = np.random.uniform(self.rng_p_sink_r_th[1,0], self.rng_p_sink_r_th[1,1])
del_p_sink_x = np.cos(del_p_sink_th)*del_p_sink_r
del_p_sink_y = np.sin(del_p_sink_th)*del_p_sink_r
self.path_th = del_p_sink_th
self.p_sink = self.pose_agent[0:2] + np.array([del_p_sink_x, del_p_sink_y])
self.create_vtgt_sink(self.v_amp_rng)
if self.visualize:
import matplotlib.pyplot as plt
if hasattr(self, 'vis'):
self.vis['plt'].close(self.vis['hndl'])
self.vis = {}
self.vis['plt'] = plt
self.vis['hndl'], self.vis['axes'] = self.vis['plt'].subplots(2,1, figsize=(5, 6))
X = self.vtgt_obj.map[0]
Y = self.vtgt_obj.map[1]
U = self.vtgt_obj.vtgt[0]
V = self.vtgt_obj.vtgt[1]
R = np.sqrt(U**2 + V**2)
self.vis['q0'] = self.vis['axes'][0].quiver(X, Y, U, V, R)
self.vis['axes'][0].axis('equal')
self.vis['axes'][0].set_title('v$_{tgt}$ (global)')
self.vis['axes'][0].set_xlabel('x')
self.vis['axes'][0].set_ylabel('y')
v_tgt_field = self.vtgt_obj.get_vtgt_field_local(pose_agent)
X, Y = self.vtgt_obj._generate_grid(self.vtgt_obj.rng_get, self.vtgt_obj.res_get)
U = v_tgt_field[0]
V = v_tgt_field[1]
R = np.sqrt(U**2 + V**2)
self.vis['q1'] = self.vis['axes'][1].quiver(X, Y, U, V, R)
self.vis['axes'][1].axis('equal')
self.vis['axes'][1].set_title('v$_{tgt}$ (body)')
self.vis['axes'][1].set_xlabel('forward')
self.vis['axes'][1].set_ylabel('leftward')
self.vis['plt'].tight_layout()
self.vis['plt'].pause(0.0001)
# -----------------------------------------------------------------------------------------------------------------
def create_vtgt_const(self, v_tgt):
self.vtgt_obj.create_vtgt_const(v_tgt)
# -----------------------------------------------------------------------------------------------------------------
def create_vtgt_sink(self, v_amp_rng):
d_sink = np.linalg.norm(self.p_sink - self.pose_agent[0:2])
v_phase0 = np.random.uniform(-np.pi, np.pi)
self.t0_target = np.random.uniform(2, 4)
self.vtgt_obj.create_vtgt_sink(self.p_sink, d_sink, v_amp_rng, v_phase0=v_phase0)
# -----------------------------------------------------------------------------------------------------------------
def update(self, pose):
self.t += self.dt
self.i += 1
self.pose_agent = pose
if not hasattr(self, 'p_sink'):
flag_target_achieved = 0
else:
if np.linalg.norm(self.p_sink - self.pose_agent[0:2]) < self.r_target:
self.t_target += self.dt
else: # reset t_target if agent goes out of
self.t_target = 0
flag_target_achieved = 0
if (self.t_target > self.t0_target # stayed at the target
and self.i_target <= self.n_new_target): # on a new target
if self.i_target < self.n_new_target: # if ... create new target
del_p_sink_r = np.random.uniform(self.rng_p_sink_r_th[0,0], self.rng_p_sink_r_th[0,1])
del_p_sink_th = np.random.uniform(self.rng_p_sink_r_th[1,0], self.rng_p_sink_r_th[1,1])
self.path_th += del_p_sink_th
del_p_sink_x = np.cos(self.path_th)*del_p_sink_r
del_p_sink_y = np.sin(self.path_th)*del_p_sink_r
self.p_sink += np.array([del_p_sink_x, del_p_sink_y])
self.rng_xy = (self.pose_agent[0:2] + self.rng_xy0.T).T
self.vtgt_obj.create_map(self.rng_xy)
self.create_vtgt_sink(self.v_amp_rng)
self.i_target += 1
self.t_target = 0
flag_target_achieved = 1
v_tgt_field = self.vtgt_obj.get_vtgt_field_local(pose)
if self.visualize:
if flag_target_achieved:
self.vis['q0'].remove()
X = self.vtgt_obj.map[0]
Y = self.vtgt_obj.map[1]
U = self.vtgt_obj.vtgt[0]
V = self.vtgt_obj.vtgt[1]
R = np.sqrt(U**2 + V**2)
self.vis['q0'] = self.vis['axes'][0].quiver(X, Y, U, V, R)
self.vis['axes'][0].axis('equal')
if self.di_visualize == 1 or self.i%self.di_visualize==1 or self.t == self.dt:
self.vis['axes'][0].plot(pose[0], pose[1], 'k.')
X, Y = self.vtgt_obj._generate_grid(self.vtgt_obj.rng_get, self.vtgt_obj.res_get)
U = v_tgt_field[0]
V = v_tgt_field[1]
R = np.sqrt(U**2 + V**2)
self.vis['q1'].remove()
self.vis['q1'] = self.vis['axes'][1].quiver(X, Y, U, V, R)
self.vis['axes'][1].plot(0, 0, 'k.')
self.vis['axes'][1].axis('equal')
self.vis['plt'].pause(0.0001)
return v_tgt_field, flag_target_achieved
# -----------------------------------------------------------------------------------------------------------------
def get_vtgt(self, xy):
return self.vtgt_obj.get_vtgt(xy)
# -----------------------------------------------------------------------------------------------------------------
def get_vtgt_field_local(self, pose):
return self.vtgt_obj.get_vtgt_field_local(pose)
class VTgt0(object):
# -----------------------------------------------------------------------------------------------------------------
def __init__(self, rng_xy=np.array([[-30, 30], [-30, 30]]), res_map=np.array([2, 2]),
rng_get=np.array([[-5, 5], [-5, 5]]), res_get=np.array([2, 2]) ):
# set parameters
self.res_map = res_map
self.res_get = res_get
self.rng_get = rng_get
# map coordinate and vtgt
self.create_map(rng_xy)
self.vtgt = -1*self.map
# -----------------------------------------------------------------------------------------------------------------
def __del__(self):
nn = "empty"
# -----------------------------------------------------------------------------------------------------------------
def create_map(self, rng_xy):
self.map_rng_xy = rng_xy
self.map = self._generate_grid(rng_xy, self.res_map)
# -----------------------------------------------------------------------------------------------------------------
def _generate_grid(self, rng_xy=np.array([[-10, 10], [-10, 10]]), res=np.array([2, 2])):
xo = .5*(rng_xy[0,0]+rng_xy[0,1])
x_del = (rng_xy[0,1]-xo)*res[0]
yo = .5*(rng_xy[1,0]+rng_xy[1,1])
y_del = (rng_xy[1,1]-yo)*res[1]
grid = np.mgrid[-x_del:x_del+1, -y_del:y_del+1]
grid[0] = grid[0]/res[0] + xo
grid[1] = grid[1]/res[1] + yo
return grid
# -----------------------------------------------------------------------------------------------------------------
def get_vtgt(self, xy): # in the global frame
vtgt_x = self.vtgt_interp_x(xy[0], xy[1])
vtgt_y = self.vtgt_interp_y(xy[0], xy[1])
return np.array([vtgt_x, vtgt_y])
# -----------------------------------------------------------------------------------------------------------------
def get_vtgt_field_local(self, pose):
xy = pose[0:2]
th = pose[2]
# create query map
get_map0 = self._generate_grid(self.rng_get, self.res_get)
get_map_x = np.cos(th)*get_map0[0,:,:] - np.sin(th)*get_map0[1,:,:] + xy[0]
get_map_y = np.sin(th)*get_map0[0,:,:] + np.cos(th)*get_map0[1,:,:] + xy[1]
# get vtgt
vtgt_x0 = np.reshape(np.array([self.vtgt_interp_x(x, y) \
for x, y in zip(get_map_x.flatten(), get_map_y.flatten())]),
get_map_x.shape)
vtgt_y0 = np.reshape(np.array([self.vtgt_interp_y(x, y) \
for x, y in zip(get_map_x.flatten(), get_map_y.flatten())]),
get_map_y.shape)
vtgt_x = np.cos(-th)*vtgt_x0 - np.sin(-th)*vtgt_y0
vtgt_y = np.sin(-th)*vtgt_x0 + np.cos(-th)*vtgt_y0
# debug
"""
if xy[0] > 10:
import matplotlib.pyplot as plt
plt.figure(100)
plt.axes([.025, .025, .95, .95])
plt.plot(get_map_x, get_map_y, '.')
plt.axis('equal')
plt.figure(101)
plt.axes([.025, .025, .95, .95])
R = np.sqrt(vtgt_x0**2 + vtgt_y0**2)
plt.quiver(get_map_x, get_map_y, vtgt_x0, vtgt_y0, R)
plt.axis('equal')
plt.show()
"""
return np.stack((vtgt_x, vtgt_y))
class VTgtSink(VTgt0):
# -----------------------------------------------------------------------------------------------------------------
def __init__(self, rng_xy=np.array([[-30, 30], [-30, 30]]), res_map=np.array([2, 2]),
rng_get=np.array([[-5, 5], [-5, 5]]), res_get=np.array([2, 2]) ):
super(VTgtSink, self).__init__(rng_xy=rng_xy, res_map=res_map,
rng_get=rng_get, res_get=res_get)
self.vtgt = -1*self.map
# -----------------------------------------------------------------------------------------------------------------
def create_vtgt_sink(self, p_sink, d_sink, v_amp_rng, v_phase0=np.random.uniform(-np.pi, np.pi)):
# set vtgt orientations
rng_xy = (-p_sink + self.map_rng_xy.T).T
self.vtgt = -self._generate_grid(rng_xy, self.res_map)
# set vtgt amplitudes
self._set_sink_vtgt_amp(p_sink, d_sink, v_amp_rng, v_phase0)
self.vtgt_interp_x = interpolate.interp2d(self.map[0,:,0], self.map[1,0,:], self.vtgt[0].T, kind='linear')
self.vtgt_interp_y = interpolate.interp2d(self.map[0,:,0], self.map[1,0,:], self.vtgt[1].T, kind='linear')
# -----------------------------------------------------------------------------------------------------------------
def _set_sink_vtgt_amp(self, p_sink, d_sink, v_amp_rng, v_phase0, d_dec = 1):
# d_dec: start to decelerate within d_dec of sink
for i_x, x in enumerate(self.map[0,:,0]):
for i_y, y in enumerate(self.map[1,0,:]):
d = np.linalg.norm([ x-p_sink[0], y-p_sink[1] ])
if d > d_sink + d_dec:
v_amp = v_amp_rng[1]
elif d > d_dec:
v_phase = v_phase0 + d/d_sink*2*np.pi
v_amp = .5*np.diff(v_amp_rng)*np.sin(v_phase) + np.mean(v_amp_rng)
else:
v_phase = v_phase0 + d_dec/d_sink*2*np.pi
v_amp0 = .5*np.diff(v_amp_rng)*np.sin(v_phase) + np.mean(v_amp_rng)
v_amp = d*v_amp0
amp_norm = np.linalg.norm(self.vtgt[:,i_x,i_y])
self.vtgt[0,i_x,i_y] = v_amp*self.vtgt[0,i_x,i_y]/amp_norm
self.vtgt[1,i_x,i_y] = v_amp*self.vtgt[1,i_x,i_y]/amp_norm
class VTgtConst(VTgt0):
# -----------------------------------------------------------------------------------------------------------------
def __init__(self, v_tgt=np.array([1.4, 0]),
rng_xy=np.array([[-30, 30], [-30, 30]]), res_map=np.array([2, 2]),
rng_get=np.array([[-5, 5], [-5, 5]]), res_get=np.array([2, 2]) ):
super(VTgtConst, self).__init__(rng_xy=rng_xy, res_map=res_map,
rng_get=rng_get, res_get=res_get)
self.vtgt = 1*self.map
self.vtgt[0].fill(v_tgt[0])
self.vtgt[1].fill(v_tgt[1])
# -----------------------------------------------------------------------------------------------------------------
def create_vtgt_const(self, v_tgt):
self.vtgt[0].fill(v_tgt[0])
self.vtgt[1].fill(v_tgt[1])
self.vtgt_interp_x = interpolate.interp2d(self.map[0,:,0], self.map[1,0,:], self.vtgt[0].T, kind='linear')
self.vtgt_interp_y = interpolate.interp2d(self.map[0,:,0], self.map[1,0,:], self.vtgt[1].T, kind='linear')