[87e8bf]: / docs / source / tutorials / 4b_reflex / ReflexCtrInterface.py

Download this file

477 lines (366 with data), 21.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
# Author(s): Seungmoon Song <seungmoon.song@gmail.com>, Chun Kwang Tan <riodren.tan@gmail.com>
"""
adapted from:
- Song and Geyer. "A neural circuitry that emphasizes
spinal feedback generates diverse behaviours of human locomotion." The
Journal of physiology, 2015.
"""
from __future__ import division # '/' always means non-truncating division
import numpy as np
from reflexCtr import LocoCtrl
import myosuite
from myosuite.utils import gym
import numpy as np
import os
from myosuite.utils.quat_math import quat2euler
from myosuite.utils.quat_math import euler2quat
class MyoLegReflex(object):
DEFAULT_INIT_POSE = {}
DEFAULT_INIT_POSE['model_pose'] = {'yaw':np.deg2rad(0),'pitch':np.deg2rad(15),'roll':np.deg2rad(0)}
DEFAULT_INIT_POSE['model_height'] = 0.92
DEFAULT_INIT_POSE['joint_angles'] = {
'hip_flexion_r': np.deg2rad(180-190),
'hip_flexion_l': np.deg2rad(180-155),
'knee_angle_r': np.deg2rad(180-165),
'knee_angle_l': np.deg2rad(180-180),
'ankle_angle_r': np.deg2rad(90-90),
'ankle_angle_l': np.deg2rad(90-100),
}
DEFAULT_INIT_POSE['velocity'] = {'cartesian':[1.5, 0.0, 0.0]}
def __init__(self, init_dict=DEFAULT_INIT_POSE, dt=0.01, mode='3D', sim_time=2.0, seed=0): # Default mode was '3D', currently defaulting to 2D (13 Mar 2023)
self.dt = dt
self.t = 0
self.mode = mode
self.n_par = len(LocoCtrl.cp_keys)
control_dimension = 3
self.cp_map = LocoCtrl.cp_map
self.ReflexCtrl = LocoCtrl(self.dt, control_dimension=control_dimension, params=np.ones(self.n_par))
# Myosuite setup
self.sim_time = sim_time
self.timestep_limit = int(self.sim_time/self.dt)
self.init_dict = init_dict
self.seed = seed
self.env = gym.make('myoLegStandRandom-v0', normalize_act=False)
print(f"Seed added - ", seed)
self.env.reset()
self.env.seed(seed)
self.muscle_labels = {}
self.muscles_dict = {}
self.muscle_Fmax = {}
self.muscle_L0 = {}
self.init_pelvis = np.zeros(3,) # Variable to hold the initial position of the pelvis (for reward calculations)
self.footstep = {}
self.footstep['n'] = 0
self.footstep['new'] = False
self.footstep['r_contact'] = 0
self.footstep['l_contact'] = 0
# Accessor for LocoCtrl
self.cp = self.ReflexCtrl.cp
# -----------------------------------------------------------------------------------------------------------------
def reset(self):
self.env.reset()
self.env.seed(self.seed)
self.ReflexCtrl.reset()
self._set_muscle_groups()
self._set_initial_pose(self.init_dict)
# -----------------------------------------------------------------------------------------------------------------
def update(self):
self.t += self.dt
self.ReflexCtrl.update(self.get_obs_dict())
return self.ReflexCtrl.stim.copy()
# -----------------------------------------------------------------------------------------------------------------
def set_control_params(self, params):
self.ReflexCtrl.set_control_params(params)
# -----------------------------------------------------------------------------------------------------------------
def set_control_params_RL(self, s_leg, params):
self.ReflexCtrl.set_control_params_RL(s_leg, params)
# -----------------------------------------------------------------------------------------------------------------
def get_obs_dict(self):
# Function translate Myosuite joint angle conventions into the conventions used by the reflex controller
# refer to LocoCtrl.s_b_keys and LocoCtrl.s_l_keys
# coordinate in body frame
# [0] x: forward
# [1] y: leftward
# [2] z: upward
# Getting values directly from the Mujoco env, and translating them into the controller convention
# Measurement is in world coordinates
pel_euler = quat2euler(self.env.sim.data.body('pelvis').xquat.copy())
pelvis_roll = pel_euler[0] - (np.pi/2)
pelvis_pitch = pel_euler[2] * (-1)
pelvis_yaw = pel_euler[1] * (-1)
# Pelvis velocities and angular velocities
temp_seg_vel = self.env.sim.data.object_velocity('pelvis','body', local_frame=False).copy()
lin_seg_vel = temp_seg_vel[0]
dx_local, dy_local = self.rotate_frame(lin_seg_vel[0], lin_seg_vel[1], pelvis_yaw)
pelvis_vel = np.hstack((np.array([dx_local, dy_local, lin_seg_vel[2]]),
temp_seg_vel[1] ))
# GRF from foot contact sensor values
# GRF from foot contact sensor values
temp_right = (self.env.sim.data.sensor('r_foot').data[0].copy() + self.env.sim.data.sensor('r_toes').data[0].copy())
temp_left = (self.env.sim.data.sensor('l_foot').data[0].copy() + self.env.sim.data.sensor('l_toes').data[0].copy())
sensor_data = {'body':{}, 'r_leg':{}, 'l_leg':{}}
sensor_data['body']['theta'] = [pelvis_roll, # around local x axis
pelvis_pitch] # around local y axis
sensor_data['body']['d_pos'] = [pelvis_vel[0], # local x (+) forward
pelvis_vel[1]] # local y (+) leftward
sensor_data['body']['dtheta'] = [pelvis_vel[3], # around local x axis
pelvis_vel[4]] # around local y axis
sensor_data['r_leg']['load_ipsi'] = temp_right / (np.sum(self.env.sim.model.body_mass)*9.8)
sensor_data['l_leg']['load_ipsi'] = temp_left / (np.sum(self.env.sim.model.body_mass)*9.8)
for s_leg, s_legc in zip(['r_leg', 'l_leg'], ['l_leg', 'r_leg']):
sensor_data[s_leg]['contact_ipsi'] = 1 if sensor_data[s_leg]['load_ipsi'] > 0.1 else 0
sensor_data[s_leg]['contact_contra'] = 1 if sensor_data[s_legc]['load_ipsi'] > 0.1 else 0
sensor_data[s_leg]['load_contra'] = sensor_data[s_legc]['load_ipsi']
sensor_data[s_leg]['phi_hip'] = (np.pi - self.env.sim.data.jnt(f"hip_flexion_{s_leg[0]}").qpos[0].copy())
sensor_data[s_leg]['phi_knee'] = (np.pi - self.env.sim.data.jnt(f"knee_angle_{s_leg[0]}").qpos[0].copy())
sensor_data[s_leg]['phi_ankle'] = (0.5*np.pi - self.env.sim.data.jnt(f"ankle_angle_{s_leg[0]}").qpos[0].copy())
sensor_data[s_leg]['dphi_knee'] = self.env.sim.data.jnt(f"knee_angle_{s_leg[0]}").qvel[0].copy()
# alpha = hip - 0.5*knee
sensor_data[s_leg]['alpha'] = sensor_data[s_leg]['phi_hip'] - 0.5*sensor_data[s_leg]['phi_knee']
dphi_hip = self.env.sim.data.jnt(f"hip_flexion_{s_leg[0]}").qvel[0].copy()
sensor_data[s_leg]['dalpha'] = dphi_hip - 0.5*sensor_data[s_leg]['dphi_knee']
sensor_data[s_leg]['alpha_f'] = (-1*self.env.sim.data.jnt(f"hip_adduction_{s_leg[0]}").qpos[0].copy()) + 0.5*np.pi
temp_mus_force = self.env.sim.data.actuator_force.copy()
sensor_data[s_leg]['F_RF'] = -1*np.mean( temp_mus_force[self.muscles_dict[s_leg]['RF']] / (self.muscle_Fmax[s_leg]['RF']) )
sensor_data[s_leg]['F_VAS'] = -1*np.mean( temp_mus_force[self.muscles_dict[s_leg]['VAS']] / (self.muscle_Fmax[s_leg]['VAS']) )
sensor_data[s_leg]['F_GAS'] = -1*np.mean( temp_mus_force[self.muscles_dict[s_leg]['GAS']] / (self.muscle_Fmax[s_leg]['GAS']) )
sensor_data[s_leg]['F_SOL'] = -1*np.mean( temp_mus_force[self.muscles_dict[s_leg]['SOL']] / (self.muscle_Fmax[s_leg]['SOL']) )
return sensor_data
# ---------------------------------------------------------------------------------------------------
# Integration of code with Myosuite control codes
def run_reflex_step(self):
# Run a step of the Mujoco env and Reflex controller
is_done = False
new_act = self.reflex2mujoco(self.update())
self.env.step(new_act)
self.update_footstep()
# Have to collect observations after step, otherwise brain cmd would not have any values
out_dict = self.get_obs_dict()
temp_pel_euler = quat2euler(self.env.sim.data.body('root').xquat.copy())
# Check if the simulation is still alive (height of pelvs still above threshold, has not fallen down yet)
if self.env.sim.data.body('pelvis').xpos[2] < 0.65: # (Emprical testing) Even for very bent knee walking, height of pelvis is about 0.78
is_done = True
if temp_pel_euler[1] < np.deg2rad(-30) or temp_pel_euler[1] > np.deg2rad(30):
# Punish for too much pitch of pelvis
is_done = True
return [ out_dict, is_done, np.round(self.env.sim.data.time,2), new_act]
# ---------- Initialization Functions ----------
def _set_muscle_groups(self):
# ----- Gluteus group -----
glu_r = [self.env.sim.model.actuator('glmax1_r').id,
self.env.sim.model.actuator('glmax2_r').id,
self.env.sim.model.actuator('glmax3_r').id,
self.env.sim.model.actuator('glmed3_r').id]
glu_l = [self.env.sim.model.actuator('glmax1_l').id,
self.env.sim.model.actuator('glmax2_l').id,
self.env.sim.model.actuator('glmax3_l').id,
self.env.sim.model.actuator('glmed3_l').id]
glu_r_lbl = ['glmax1_r','glmax2_r','glmax3_r','glmed3_r']
glu_l_lbl = ['glmax1_l','glmax2_l','glmax3_l','glmed3_l']
# ----- Hamstring (semitendinosus and semimembranosus) -----
ham_r = [self.env.sim.model.actuator('semimem_r').id,
self.env.sim.model.actuator('semiten_r').id,
self.env.sim.model.actuator('bflh_r').id]
ham_l = [self.env.sim.model.actuator('semimem_l').id,
self.env.sim.model.actuator('semiten_l').id,
self.env.sim.model.actuator('bflh_l').id]
ham_r_lbl = ['semimem_r','semiten_r','bflh_r']
ham_l_lbl = ['semimem_l','semiten_l','bflh_l']
# ----- BF short head (biceps femoris) -----
bfsh_r = [self.env.sim.model.actuator('bfsh_r').id]
bfsh_l = [self.env.sim.model.actuator('bfsh_l').id]
bfsh_r_lbl = ['bfsh_r']
bfsh_l_lbl = ['bfsh_l']
# ----- Gastrocnemius -----
gas_r = [self.env.sim.model.actuator('gaslat_r').id,
self.env.sim.model.actuator('gasmed_r').id]
gas_l = [self.env.sim.model.actuator('gaslat_l').id,
self.env.sim.model.actuator('gasmed_l').id]
gas_r_lbl = ['gaslat_r','gasmed_r']
gas_l_lbl = ['gaslat_l','gasmed_l']
# ----- Soleus -----
sol_r = [self.env.sim.model.actuator('soleus_r').id,
self.env.sim.model.actuator('perbrev_r').id,
self.env.sim.model.actuator('perlong_r').id,
self.env.sim.model.actuator('tibpost_r').id]
sol_l = [self.env.sim.model.actuator('soleus_l').id,
self.env.sim.model.actuator('perbrev_l').id,
self.env.sim.model.actuator('perlong_l').id,
self.env.sim.model.actuator('tibpost_l').id]
sol_r_lbl = ['soleus_r','perbrev_r','perlong_r','tibpost_r']
sol_l_lbl = ['soleus_l','perbrev_l','perlong_l','tibpost_l']
# ----- Hip Flexors (psoas and iliacus) -----
hfl_r = [self.env.sim.model.actuator('psoas_r').id,
self.env.sim.model.actuator('iliacus_r').id]
hfl_l = [self.env.sim.model.actuator('psoas_l').id,
self.env.sim.model.actuator('iliacus_l').id]
hfl_r_lbl = ['psoas_r','iliacus_r']
hfl_l_lbl = ['psoas_l','iliacus_l']
# ----- Hip Abductors (piriformis, satorius and tensor fasciae latae) -----
hab_r = [self.env.sim.model.actuator('piri_r').id,
self.env.sim.model.actuator('sart_r').id,
self.env.sim.model.actuator('glmed1_r').id,
self.env.sim.model.actuator('glmed2_r').id,
self.env.sim.model.actuator('glmin1_r').id,
self.env.sim.model.actuator('glmin2_r').id,
self.env.sim.model.actuator('glmin3_r').id]
hab_l = [self.env.sim.model.actuator('piri_l').id,
self.env.sim.model.actuator('sart_l').id,
self.env.sim.model.actuator('glmed1_l').id,
self.env.sim.model.actuator('glmed2_l').id,
self.env.sim.model.actuator('glmin1_l').id,
self.env.sim.model.actuator('glmin2_l').id,
self.env.sim.model.actuator('glmin3_l').id]
hab_r_lbl = ['piri_r','sart_r','glmed1_r','glmed2_r','glmin1_r','glmin2_r','glmin3_r']
hab_l_lbl = ['piri_l','sart_l','glmed1_l','glmed2_l','glmin1_l','glmin2_l','glmin3_l']
# ----- Hip Abbuctors (adductor [brevis, longus, magnus], gracilis) -----
had_r = [self.env.sim.model.actuator('addbrev_r').id,
self.env.sim.model.actuator('addlong_r').id,
self.env.sim.model.actuator('addmagDist_r').id,
self.env.sim.model.actuator('addmagIsch_r').id,
self.env.sim.model.actuator('addmagMid_r').id,
self.env.sim.model.actuator('addmagProx_r').id,
self.env.sim.model.actuator('grac_r').id]
had_l = [self.env.sim.model.actuator('addbrev_l').id,
self.env.sim.model.actuator('addlong_l').id,
self.env.sim.model.actuator('addmagDist_l').id,
self.env.sim.model.actuator('addmagIsch_l').id,
self.env.sim.model.actuator('addmagMid_l').id,
self.env.sim.model.actuator('addmagProx_l').id,
self.env.sim.model.actuator('grac_l').id]
had_r_lbl = ['addbrev_r','addlong_r','addmagDist_r','addmagIsch_r','addmagMid_r','addmagProx_r','grac_r']
had_l_lbl = ['addbrev_l','addlong_l','addmagDist_l','addmagIsch_l','addmagMid_l','addmagProx_l','grac_l']
# ----- rectus femoris -----
rf_r = [self.env.sim.model.actuator('recfem_r').id]
rf_l = [self.env.sim.model.actuator('recfem_l').id]
rf_r_lbl = ['recfem_r']
rf_l_lbl = ['recfem_l']
# ----- Vastius group -----
vas_r = [self.env.sim.model.actuator('vasint_r').id,
self.env.sim.model.actuator('vaslat_r').id,
self.env.sim.model.actuator('vasmed_r').id]
vas_l = [self.env.sim.model.actuator('vasint_l').id,
self.env.sim.model.actuator('vaslat_l').id,
self.env.sim.model.actuator('vasmed_l').id]
vas_r_lbl = ['vasint_r','vaslat_r','vasmed_r']
vas_l_lbl = ['vasint_l','vaslat_l','vasmed_l']
# ----- tibialis anterior -----
ta_r = [self.env.sim.model.actuator('tibant_r').id]
ta_l = [self.env.sim.model.actuator('tibant_l').id]
ta_r_lbl = ['tibant_r']
ta_l_lbl = ['tibant_l']
self.muscles_dict['r_leg'] = {}
self.muscles_dict['r_leg']['HAB'] = hab_r
self.muscles_dict['r_leg']['HAD'] = had_r
self.muscles_dict['r_leg']['GLU'] = glu_r
self.muscles_dict['r_leg']['HAM'] = ham_r
self.muscles_dict['r_leg']['BFSH'] = bfsh_r
self.muscles_dict['r_leg']['GAS'] = gas_r
self.muscles_dict['r_leg']['SOL'] = sol_r
self.muscles_dict['r_leg']['HFL'] = hfl_r
self.muscles_dict['r_leg']['RF'] = rf_r
self.muscles_dict['r_leg']['VAS'] = vas_r
self.muscles_dict['r_leg']['TA'] = ta_r
self.muscles_dict['l_leg'] = {}
self.muscles_dict['l_leg']['HAB'] = hab_l
self.muscles_dict['l_leg']['HAD'] = had_l
self.muscles_dict['l_leg']['GLU'] = glu_l
self.muscles_dict['l_leg']['HAM'] = ham_l
self.muscles_dict['l_leg']['BFSH'] = bfsh_l
self.muscles_dict['l_leg']['GAS'] = gas_l
self.muscles_dict['l_leg']['SOL'] = sol_l
self.muscles_dict['l_leg']['HFL'] = hfl_l
self.muscles_dict['l_leg']['RF'] = rf_l
self.muscles_dict['l_leg']['VAS'] = vas_l
self.muscles_dict['l_leg']['TA'] = ta_l
# Muscle labels
self.muscle_labels['r_leg'] = {}
self.muscle_labels['r_leg']['HAB'] = hab_r_lbl
self.muscle_labels['r_leg']['HAD'] = had_r_lbl
self.muscle_labels['r_leg']['GLU'] = glu_r_lbl
self.muscle_labels['r_leg']['HAM'] = ham_r_lbl
self.muscle_labels['r_leg']['BFSH'] = bfsh_r_lbl
self.muscle_labels['r_leg']['GAS'] = gas_r_lbl
self.muscle_labels['r_leg']['SOL'] = sol_r_lbl
self.muscle_labels['r_leg']['HFL'] = hfl_r_lbl
self.muscle_labels['r_leg']['RF'] = rf_r_lbl
self.muscle_labels['r_leg']['VAS'] = vas_r_lbl
self.muscle_labels['r_leg']['TA'] = ta_r_lbl
self.muscle_labels['l_leg'] = {}
self.muscle_labels['l_leg']['HAB'] = hab_l_lbl
self.muscle_labels['l_leg']['HAD'] = had_l_lbl
self.muscle_labels['l_leg']['GLU'] = glu_l_lbl
self.muscle_labels['l_leg']['HAM'] = ham_l_lbl
self.muscle_labels['l_leg']['BFSH'] = bfsh_l_lbl
self.muscle_labels['l_leg']['GAS'] = gas_l_lbl
self.muscle_labels['l_leg']['SOL'] = sol_l_lbl
self.muscle_labels['l_leg']['HFL'] = hfl_l_lbl
self.muscle_labels['l_leg']['RF'] = rf_l_lbl
self.muscle_labels['l_leg']['VAS'] = vas_l_lbl
self.muscle_labels['l_leg']['TA'] = ta_l_lbl
#L0 = (actuator_lengthrange)
temp_L0 = (self.env.sim.model.actuator_lengthrange[:,0] - self.env.sim.model.tendon_lengthspring[:,0]) / self.env.sim.model.actuator_biasprm[:,0]
# --- Muscle Fmax normalizations ---
for x in self.muscles_dict:
self.muscle_Fmax[x] = {}
self.muscle_L0[x] = {}
for y in self.muscles_dict[x]:
self.muscle_Fmax[x][y] = self.env.sim.model.actuator_biasprm[self.muscles_dict[x][y], 2].copy()
#print(x, ' ', y, ' with', np.sum(self.env.sim.model.actuator_biasprm[self.muscles_dict[x][y],2]))
self.muscle_L0[x][y] = temp_L0[self.muscles_dict[x][y]]
def _set_initial_pose(self, init_dict):
# Sets the initial pose of the Myoleg model based on an input dictionary of values
# Setting the starting position for reward calculation
self.init_pelvis = self.env.sim.data.body('pelvis').xpos.copy()
# Converting from Euler to quaternions
temp_quat_util = euler2quat([init_dict['model_pose']['roll'],
init_dict['model_pose']['pitch'],
init_dict['model_pose']['yaw']])
self.env.sim.data.qpos[3] = temp_quat_util[0] # Setting no roll, pitch and yaw
self.env.sim.data.qpos[4] = temp_quat_util[1]
self.env.sim.data.qpos[5] = temp_quat_util[2]
self.env.sim.data.qpos[6] = temp_quat_util[3]
# Setting initial velocity
# Pushes the free root joint, which propagates the velocities to all the joints and segments
self.env.sim.data.qvel[0] = init_dict['velocity']['cartesian'][0]
self.env.sim.data.qvel[1] = init_dict['velocity']['cartesian'][1]
self.env.sim.data.qvel[2] = init_dict['velocity']['cartesian'][2]
# Reusing the dict from above
# Values in radians
for joint_name in init_dict['joint_angles'].keys():
self.env.sim.data.joint(joint_name).qpos[0] = init_dict['joint_angles'][joint_name]
if 'height_offset' in init_dict.keys():
height_offset = init_dict['height_offset']
else:
height_offset = 0
# Lowering the height of the model by manipulating the free root joint
self.env.sim.data.qpos[0] = 0 # X pos of free root joint
self.env.sim.data.qpos[1] = 0 # Y pos of free root joint
self.env.sim.data.qpos[2] = init_dict['model_height'] + height_offset
# From documentation: https://openai.github.io/mujoco-py/build/html/reference.html
# Run forward() after modifying and joint angles or velocities
self.env.sim.forward()
# ---------- Internal functions ----------
def update_footstep(self):
# Getting only the heel contacts. Works better at detecting new steps, as compared to using both heel and toe
r_contact = True if (self.env.sim.data.sensor('r_foot').data[0].copy()) > 0.1*(np.sum(self.env.sim.model.body_mass)*9.8) else False
l_contact = True if (self.env.sim.data.sensor('l_foot').data[0].copy()) > 0.1*(np.sum(self.env.sim.model.body_mass)*9.8) else False
self.footstep['new'] = False
if ( (not self.footstep['r_contact'] and r_contact) or (not self.footstep['l_contact'] and l_contact) ):
self.footstep['new'] = True
self.footstep['n'] += 1
self.footstep['r_contact'] = r_contact
self.footstep['l_contact'] = l_contact
def reflex2mujoco(self, output):
mus_act = np.zeros((80,))
mus_act[:] = 0 # Using non-normalized values of muscle activations
legs = ['r_leg', 'l_leg']
musc_idx = self.muscles_dict['r_leg'].keys()
for s_leg in legs:
for musc in musc_idx:
mus_act[self.muscles_dict[s_leg][musc]] = output[s_leg][musc]
return mus_act
def rotate_frame(self, x, y, theta):
x_rot = np.cos(theta)*x - np.sin(theta)*y
y_rot = np.sin(theta)*x + np.cos(theta)*y
return x_rot, y_rot