a b/docs/source/install.rst
1
Installation
2
============
3
4
.. _installation:
5
6
MyoSuite uses git submodules to resolve dependencies.
7
Please follow steps exactly as below to install correctly.
8
9
Requirements
10
~~~~~~~~~~~~
11
* python >= 3.8 (if needed follow instructions `here <https://docs.conda.io/en/latest/miniconda.html>`_ for installing python and conda)
12
* mujoco >= 2.3.6
13
14
15
Installing the pip package
16
~~~~~~~~~~~~~~~~~~~~~~~~~~
17
18
.. code-block:: bash
19
20
   conda create --name MyoSuite python=3.8
21
   conda activate MyoSuite
22
   pip install -U myosuite
23
24
25
(alternative) Installing from source
26
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27
28
To get started with MyoSuite, clone this repo with pre-populated submodule dependencies
29
30
.. code-block:: bash
31
32
   git clone --recursive https://github.com/facebookresearch/myosuite.git
33
   cd myosuite
34
   pip install -e .
35
36
Testing the installation
37
~~~~~~~~~~~~~~~~~~~~~~~~
38
39
You can test the installation using
40
41
.. code-block:: bash
42
43
   python -m myosuite.tests.test_myo
44
45
You can visualize the environments with random controls using the below command
46
47
.. code-block:: bash
48
49
   python -m myosuite.utils.examine_env --env_name myoElbowPose1D6MRandom-v0
50
   
51
.. note::
52
   On MacOS, the need of a launch_passive option might require that the Python script be run under `mjpython` i.e. 
53
   `mjpython -m myosuite.utils.examine_env --env_name myoElbowPose1D6MRandom-v0`
54
55
Examples
56
~~~~~~~~~
57
58
It is possible to create and interface with MyoSuite environments like any other OpenAI gym environments.
59
For example, to use the ``myoElbowPose1D6MRandom-v0`` environment it is possible simply to run:
60
61
.. code-block:: python
62
63
   from myosuite.utils import gym
64
   env = gym.make('myoElbowPose1D6MRandom-v0')
65
   env.reset()
66
   for _ in range(1000):
67
     env.mj_render()
68
     env.step(env.action_space.sample()) # take a random action
69
   env.close()
70
71
By default it will activate the simulator and the following visualization is expected:
72
73
.. image:: images/test_env.png
74
  :width: 300