[794894]: / arm_model / model.py

Download this file

652 lines (546 with data), 25.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import sympy as sp
# import scipy as scp
import numpy as np
import pylab as plt
from sympy import cos, sin
from sympy.physics.mechanics import dynamicsymbols
from pydy.codegen.ode_function_generators import generate_ode_function
from util import coordinate_limiting_force, coriolis_matrix, \
apply_generalized_force, substitute
from logger import Logger
from functools import reduce
# ------------------------------------------------------------------------
# ArmModel
# ------------------------------------------------------------------------
class ArmModel:
"""A planar toy model composed of 3 degrees of freedom and 9 muscles.
The forces that act on the model are: gravity (tau_g), Coriolis and
centrifugal (tau_c), coordinate limiting forces (tau_l) and viscous joints
(tau_b). We assume the following:
M qddot + tau_c + tau_g = tau + tau_l + tau_b
M qddot = forcing
forcing = tau - f, f = tau_c + tau_g - tau_l - tau_b
or
M qddot + f = tau
Furthermore, we use 9 linear muscles. The musculotendon lengths and their
derivatives are given by lm, lmd, lmdd. The muscle's moment arm matrix (R)
is given by:
R = d lm(q) / qdot
such as that
lmd = R qdot, lmdd = R qddot + Rdot qdot
tau = -R^T f_m
Notes
-----
(a) The model can represent a 2-link (used for validation) or 3-link system
by changing nd = 2/3. Unfortunately, the muscle geometry is defined for the
3-body case.
(b) The Newton's 3rd law is applied for each force and torque. For example,
for the first body: tau_1 - tau_2 is applied.
(c) For the derivation of the equations of motion we used the Euler-Lagrange
Method assuming:
M qddot + C qdot + d V / dq = tau, V: potential energy, C: Coriolis Matrix
"""
def __init__(self, use_gravity=0, use_coordinate_limits=1, use_viscosity=1):
"""
"""
self.logger = Logger('ArmModel')
# n: DoFs, md: muscles
self.nd = 3
self.md = 9
# used for selecting since we use 1-based indexing
self.s = self.nd + 1
# used for iterating
self.dim = list(range(1, self.s))
# enable/disable gravity in EoM [0/1] (simulation too slow)
self.use_gravity = use_gravity
# enable/disable coordinate limits in EoM [0/1]
self.use_coordinate_limits = use_coordinate_limits
# enable/disable viscous joints in EoM [0/1]
self.use_viscosity = use_viscosity
# true if constants are not substituted
self.sub_constants = True
# default model state
self.state0 = np.array([
np.deg2rad(45.0), # q1
np.deg2rad(45.0), # q2
np.deg2rad(45.0), # q3
np.deg2rad(0.00), # u1
np.deg2rad(0.00), # u2
np.deg2rad(0.00) # u3
])
# reference pose used for calculating the optimal fiber length
self.reference_pose = np.array([
np.deg2rad(60.0), # q1
np.deg2rad(70.0), # q2
np.deg2rad(50.0), # q3
])
self.logger.debug('Constructing model...')
# construct model
self.__construct_symbols()
self.__construct_kinematics()
self.__construct_coordinate_limiting_forces()
self.__construct_kinetics()
self.__construct_drawables()
self.__construct_muscle_geometry()
self.__define_muscle_parameters()
self.__construct_rhs()
def __construct_symbols(self):
"""Define the symbols used by the analytical model.
"""
self.logger.debug('__construct_symbols')
# define model constants 10 a's and b's are used but indexed from 1-9
# thus 0 is not used (for correspondence with the paper)
self.a = sp.Matrix(sp.symbols('a0:10'))
self.b = sp.Matrix(sp.symbols('b0:10'))
# segment lengths
self.L = sp.Matrix(sp.symbols('L0:4'))
# distance to segment's CoM
self.Lc = sp.Matrix(sp.symbols('Lc0:4'))
# body parameters
# inertia
self.Iz = sp.Matrix(sp.symbols('Iz0:4'))
# mass
self.m = sp.Matrix(sp.symbols('m0:4'))
# time
self.t = sp.symbols('t')
# gravity
self.g = sp.symbols('g')
# q's are used instead of $\theta$
self.q = sp.Matrix(dynamicsymbols('theta0:4'))
self.u = sp.Matrix(dynamicsymbols('u:4'))
self.dq = sp.Matrix([sp.diff(x, self.t) for x in self.q])
self.ddq = sp.Matrix([sp.diff(x, self.t) for x in self.dq])
# tau acting forces
self.tau = sp.Matrix(dynamicsymbols('tau0:4'))
# define a dictionary that maps symbols to values
# parameters are derived from [1]
self.constants = dict({self.a[1]: 0.055, self.a[2]: 0.055, self.a[3]:
0.220, self.a[4]: 0.24, self.a[5]: 0.040,
self.a[6]: 0.040, self.a[7]: 0.220, self.a[8]:
0.06, self.a[9]: 0.26, self.b[1]: 0.080,
self.b[2]: 0.11, self.b[3]: 0.030, self.b[4]:
0.03, self.b[5]: 0.045, self.b[6]: 0.045,
self.b[7]: 0.048, self.b[8]: 0.050, self.b[9]:
0.03, self.L[1]: 0.310, self.L[2]: 0.270,
self.L[3]: 0.150, self.Lc[1]: 0.165, self.Lc[2]:
0.135, self.Lc[3]: 0.075, self.m[1]: 1.93,
self.m[2]: 1.32, self.m[3]: 0.35, self.Iz[1]:
0.0141, self.Iz[2]: 0.0120, self.Iz[3]: 0.001,
self.g: 9.81})
# pickle workaround
for q in self.q:
q.__class__.__module__ = '__main__'
for dq in self.dq:
dq.__class__.__module__ = '__main__'
for ddq in self.ddq:
ddq.__class__.__module__ = '__main__'
for u in self.u:
u.__class__.__module__ = '__main__'
for tau in self.tau:
tau.__class__.__module__ = '__main__'
# max isometrix force
# TODO all muscles are equally strong
fmax = 50
self.Fmax = sp.diag(fmax, fmax, fmax,
fmax, 0.5 * fmax, 0.5 * fmax,
fmax, fmax, 0.5 * fmax)
def __construct_kinematics(self):
"""Define points of interest for the derivation of the EoM. These are used for
constructing the EoM.
"""
self.logger.debug('__construct_kinematics')
L = self.L
Lc = self.Lc
q = self.q
# define the spatial coordinates for the Lc in terms of Lc s' and q's
# arm
xc1 = sp.Matrix([Lc[1] * cos(q[1]),
Lc[1] * sin(q[1]),
0,
0,
0,
q[1]])
# forearm
xc2 = sp.Matrix([L[1] * cos(q[1]) + Lc[2] * cos(q[1] + q[2]),
L[1] * sin(q[1]) + Lc[2] * sin(q[1] + q[2]),
0,
0,
0,
q[1] + q[2]])
# hand
xc3 = sp.Matrix([L[1] * cos(q[1]) + L[2] * cos(q[1] + q[2]) +
Lc[3] * cos(q[1] + q[2] + q[3]),
L[1] * sin(q[1]) + L[2] * sin(q[1] + q[2]) +
Lc[3] * sin(q[1] + q[2] + q[3]),
0,
0,
0,
q[1] + q[2] + q[3]])
self.xc = [sp.Matrix([0]), xc1, xc2, xc3]
# CoM velocities
self.vc = [sp.diff(x, self.t) for x in self.xc]
# calculate CoM Jacobian
self.Jc = [x.jacobian(self.QDot()) for x in self.vc]
def __construct_kinetics(self):
"""Construct model's dynamics (M, tau_c, tau_g).
"""
self.logger.debug('__construct_kinetics')
# generate the mass matrix [6 x 6] for each body
self.M = [sp.diag(self.m[i], self.m[i], self.m[i], 0, 0,
self.Iz[i]) for i in self.dim]
# dummy 0 for 1-based indexing
self.M.insert(0, 0)
# map spatial to generalized inertia
self.M = [self.Jc[i].T * self.M[i] * self.Jc[i]
for i in self.dim]
# sum the mass product of each body
self.M = reduce(lambda x, y: x + y, self.M)
self.M = sp.trigsimp(self.M)
# Coriolis matrix
self.C = sp.trigsimp(coriolis_matrix(self.M, self.Q(), self.QDot()))
# Coriolis forces
self.tau_c = sp.trigsimp(self.C * sp.Matrix(self.QDot()))
# potential energy due to gravity force
self.V = 0
for i in self.dim:
self.V = self.V + self.m[i] * self.g * self.xc[i][1]
self.tau_g = sp.Matrix([sp.diff(self.V, x) for x in self.Q()])
def __construct_coordinate_limiting_forces(self):
"""Construct coordinate limiting forces.
"""
self.logger.debug('__construct_coordinate_limiting_forces')
a = 5
b = 50
q_low = [None, np.deg2rad(5), np.deg2rad(5), np.deg2rad(5)]
q_up = [None, np.deg2rad(175), np.pi, np.deg2rad(100)]
self.__tau_l = [coordinate_limiting_force(self.q[i], q_low[i], q_up[i], a,
b) for i in range(1, self.s)]
def __construct_drawables(self):
"""Construct points of interest (e.g. muscle insertion, CoM, joint centers).
"""
self.logger.debug('__construct_drawables')
a = self.a
b = self.b
q = self.q
L = self.L
# define muscle a
self.ap = [[-a[1], sp.Rational(0)], # a1
[a[2], sp.Rational(0)], # a2
[a[3] * cos(q[1]), a[3] * sin(q[1])], # a3
[a[4] * cos(q[1]), a[4] * sin(q[1])], # a4
[-a[5], sp.Rational(0)], # a5
[a[6], sp.Rational(0)], # a6
[L[1] * cos(q[1]) + a[7] * cos(q[1] + q[2]),
L[1] * sin(q[1]) + a[7] * sin(q[1] + q[2])], # a7
[L[1] * cos(q[1]) + a[8] * cos(q[1] + q[2]),
L[1] * sin(q[1]) + a[8] * sin(q[1] + q[2])], # a8
[a[9] * cos(q[1]), a[9] * sin(q[1])] # a9
]
# define muscle b
self.bp = [[b[1] * cos(q[1]), b[1] * sin(q[1])], # b1
[b[2] * cos(q[1]), b[2] * sin(q[1])], # b2
[L[1] * cos(q[1]) + b[3] * cos(q[1] + q[2]),
L[1] * sin(q[1]) + b[3] * sin(q[1] + q[2])], # b3
[L[1] * cos(q[1]) - b[4] * cos(q[1] + q[2]),
L[1] * sin(q[1]) - b[4] * sin(q[1] + q[2])], # b4
[L[1] * cos(q[1]) + b[5] * cos(q[1] + q[2]),
L[1] * sin(q[1]) + b[5] * sin(q[1] + q[2])], # b5
[L[1] * cos(q[1]) - b[6] * cos(q[1] + q[2]),
L[1] * sin(q[1]) - b[6] * sin(q[1] + q[2])], # b6
[L[1] * cos(q[1]) + L[2] * cos(q[1] + q[2]) + b[7] * cos(q[1] + q[2] + q[3]),
L[1] * sin(q[1]) + L[2] * sin(q[1] + q[2]) + b[7] * sin(q[1] + q[2] + q[3])], # b7
[L[1] * cos(q[1]) + L[2] * cos(q[1] + q[2]) - b[8] * cos(q[1] + q[2] + q[3]),
L[1] * sin(q[1]) + L[2] * sin(q[1] + q[2]) - b[8] * sin(q[1] + q[2] + q[3])], # b8
[L[1] * cos(q[1]) + L[2] * cos(q[1] + q[2]) + b[9] * cos(q[1] + q[2] + q[3]),
L[1] * sin(q[1]) + L[2] * sin(q[1] + q[2]) + b[9] * sin(q[1] + q[2] + q[3])] # b9
]
# define CoM
self.bc = [[self.xc[1][0], self.xc[1][1]],
[self.xc[2][0], self.xc[2][1]],
[self.xc[3][0], self.xc[3][1]]
]
# joint center
self.jc = [[sp.Rational(0), sp.Rational(0)],
[L[1] * cos(q[1]), L[1] * sin(q[1])],
[L[1] * cos(q[1]) + L[2] * cos(q[1] + q[2]),
L[1] * sin(q[1]) + L[2] * sin(q[1] + q[2])]
]
# end effector
if self.nd == 3:
self.ee = sp.Matrix([L[1] * cos(q[1]) + L[2] * cos(q[1] + q[2]) +
L[3] * cos(q[1] + q[2] + q[3]), L[1] *
sin(q[1]) + L[2] * sin(q[1] + q[2]) + L[3] *
sin(q[1] + q[2] + q[3])])
elif self.nd == 2:
self.ee = sp.Matrix([L[1] * cos(q[1]) + L[2] * cos(q[1] + q[2]),
L[1] * sin(q[1]) + L[2] * sin(q[1] + q[2])
])
def __construct_muscle_geometry(self):
"""Construct muscle length function and moment arm.
"""
self.logger.debug('__construct_geometry')
a = self.a
b = self.b
L = self.L
q = self.q
# muscle length ($l(q)$)
self.lm = sp.Matrix([
(a[1] ** 2 + b[1] ** 2 + 2 * a[1] *
b[1] * cos(q[1])) ** sp.Rational(1, 2),
(a[2] ** 2 + b[2] ** 2 - 2 * a[2] *
b[2] * cos(q[1])) ** sp.Rational(1, 2),
((L[1] - a[3]) ** 2 + b[3] ** 2 + 2 * (L[1] - a[3])
* b[3] * cos(q[2])) ** sp.Rational(1, 2),
((L[1] - a[4]) ** 2 + b[4] ** 2 - 2 * (L[1] - a[4])
* b[4] * cos(q[2])) ** sp.Rational(1, 2),
(a[5] ** 2 + b[5] ** 2 + L[1] ** 2 + 2 * a[5] * L[1] * cos(q[1]) +
2 * b[5] * L[1] * cos(q[2]) + 2 * a[5] * b[5] * cos(q[1] + q[2])) ** sp.Rational(1, 2),
(a[6] ** 2 + b[6] ** 2 + L[1] ** 2 - 2 * a[6] * L[1] * cos(q[1]) -
2 * b[6] * L[1] * cos(q[2]) + 2 * a[6] * b[6] * cos(q[1] + q[2])) ** sp.Rational(1, 2),
((L[2] - a[7]) ** 2 + b[7] ** 2 + 2 * (L[2] - a[7])
* b[7] * cos(q[3])) ** sp.Rational(1, 2),
((L[2] - a[8]) ** 2 + b[8] ** 2 - 2 * (L[2] - a[8])
* b[8] * cos(q[3])) ** sp.Rational(1, 2),
((L[1] - a[9]) ** 2 + b[9] ** 2 + L[2] ** 2 + 2 * (L[1] - a[9]) * L[2] * cos(q[2]) +
2 * b[9] * L[2] * cos(q[3]) +
2 * (L[1] - a[9]) * b[9] * cos(q[2] + q[3])) ** sp.Rational(1, 2)
])
self.lmd = sp.diff(self.lm, self.t)
self.lmdd = sp.diff(self.lmd, self.t)
# calculate the moment arm matrix and its derivatives
self.R = sp.trigsimp(self.lm.jacobian(self.Q()))
self.RDot = sp.diff(self.R, self.t)
self.RDotQDot = self.RDot * sp.Matrix(self.U())
def __define_muscle_parameters(self):
"""Define muscle parameters, such as optimal fiber length (reference pose) and
tendon stiffness.
"""
self.logger.debug('__define_muscle_parameters')
parameters = self.model_parameters(q=self.reference_pose,
in_deg=False)
self.lm0 = self.lm.subs(parameters)
# the derivative of a matrix with a vector is a rank 3 tensor (3D
# array), [dM/dq1, dM/dq2, ...]
self.RTDq = sp.derive_by_array(self.R.transpose(), self.Q())
def __construct_rhs(self):
"""Construct a callable function that can be used to integrate the mode.
rhs = rhs(x, t, controller specifieds, parameters values)
"""
self.logger.debug('__construct_rhs')
self.logger.debug('Use Gravity: ' + str(self.use_gravity))
self.logger.debug('Use Coordinate Limits: ' +
str(self.use_coordinate_limits))
self.logger.debug('Use Viscous Joints: ' + str(self.use_viscosity))
# forces
# Newton's 3rd law
b = 0.05
tau = sp.Matrix(apply_generalized_force(self.Tau()))
self.tau_l = sp.Matrix(apply_generalized_force(self.__tau_l))
self.tau_b = -b * sp.Matrix(apply_generalized_force(self.U()))
# tau = sp.Matrix(self.Tau())
# self.tau_l = sp.Matrix(self.__tau_l)
# self.tau_b = -b *sp.Matrix(self.U())
# M qdd + tau_c + tau_g = tau + tau_l + tau_b-> M qdd = forcing
# f = tau_c + tau_g - tau_l - tau_b
self.f = self.tau_c \
+ self.use_gravity * self.tau_g \
- self.use_coordinate_limits * self.tau_l \
- self.use_viscosity * self.tau_b
self.forcing = tau - self.f
# substitute dq with u (required for code-gen)
for i in range(0, self.forcing.shape[0]):
self.forcing = self.forcing.subs(self.dq[i + 1], self.u[i + 1])
# rhs
self.coordinates = sp.Matrix(self.Q())
self.speeds = sp.Matrix(self.U())
self.coordinates_derivatives = self.speeds
self.specifieds = sp.Matrix(self.Tau())
self.rhs = generate_ode_function(
self.forcing,
self.coordinates,
self.speeds,
list(self.constants.keys()),
mass_matrix=self.M,
coordinate_derivatives=self.coordinates_derivatives,
specifieds=self.specifieds)
# ------------------------------------------------------------------------
# ArmModel public interface
# ------------------------------------------------------------------------
def Q(self):
'Get active coordinates (q) [1, s].'
return self.q[1:self.s]
def QDot(self):
'Get active speeds (qdot) [1, s].'
return self.dq[1:self.s]
def U(self):
'Get active speeds (qdot = u) [1, s].'
return self.u[1:self.s]
def Tau(self):
'Get active speeds (tau) [1, s].'
return self.tau[1:self.s]
def model_parameters(self, **kwargs):
"""Get the model parameters dictionary given q, u, in_deg=[True/False].
Parameters
----------
kwargs: q=q, u=u, in_deg=[True/False]
"""
expected_args = ["q", "u", "in_deg"]
kwargsdict = {}
for key in list(kwargs.keys()):
if key in expected_args:
kwargsdict[key] = kwargs[key]
else:
raise Exception("Unexpected Argument")
return self.__model_parameters(kwargsdict)
def __model_parameters(self, dic):
"""A private implementation of model_parameters.
Parameters
----------
dic: dictionary containing {q, u, in_deg}
"""
constants = {}
if self.sub_constants:
constants = self.constants.copy()
q = self.Q()
dq = self.QDot()
u = self.U()
in_deg = False
if "in_deg" in list(dic.keys()):
in_deg = dic["in_deg"]
if "q" in list(dic.keys()):
qs = dic["q"]
if in_deg:
qs = np.deg2rad(dic["q"])
constants.update({q[i]: qs[i] for i in range(0, self.nd)})
if "u" in list(dic.keys()):
us = dic["u"]
constants.update({dq[i]: us[i] for i in range(0, self.nd)})
constants.update({u[i]: us[i] for i in range(0, self.nd)})
return constants
def pre_substitute_parameters(self):
"""Substitute model parameters into the variables of the model to improve speed.
"""
self.logger.debug('pre_substitute_parameters')
self.sub_constants = False
constants = self.constants
self.M = self.M.subs(constants)
self.tau_c = self.tau_c.subs(constants)
self.tau_g = self.tau_g.subs(constants)
self.tau_l = self.tau_l.subs(constants)
self.tau_b = self.tau_b.subs(constants)
self.f = self.f.subs(constants)
self.lm = self.lm.subs(constants)
self.lmd = self.lmd.subs(constants)
self.lmdd = self.lmdd.subs(constants)
self.R = self.R.subs(constants)
self.RDot = self.RDot.subs(constants)
self.RDotQDot = self.RDotQDot.subs(constants)
self.RTDq = self.RTDq.subs(constants)
self.ap = substitute(self.ap, constants)
self.bp = substitute(self.bp, constants)
self.bc = substitute(self.bc, constants)
self.jc = substitute(self.jc, constants)
self.ee = substitute(self.ee, constants)
# self.L = self.L.subs(constants)
# self.Lc = self.Lc.subs(constants)
# self.Iz = self.Iz.subs(constants)
self.xc = substitute(self.xc, constants)
self.vc = substitute(self.vc, constants)
self.Jc = substitute(self.Jc, constants)
# self.m = self.m.subs(constants)
# self.g = self.g.subs(constants)
def draw_model(self, q, in_deg, ax=None, scale=0.8, use_axis_limits=True, alpha=1.0,
text=True):
"""Draws the 3D toy model.
Parameters
----------
q: coordinate values in degrees or rad
in_deg: True/False
ax: axis 1D
scale: if figure is small this helps in visualizing details
use_axis_limits: use axis limits from max length
"""
if self.nd == 2:
self.logger.debug('draw_model supports 3DoFs case')
return
constants = self.model_parameters(q=q, in_deg=in_deg)
joints = substitute(self.jc, constants)
muscle_a = substitute(self.ap, constants)
muscle_b = substitute(self.bp, constants)
end_effector = substitute(self.ee, constants)
CoM = substitute(self.bc, constants)
linewidth = 4 * scale
gd_markersize = 14 * scale
jc_markersize = 12 * scale
mo_markersize = 7 * scale
ef_markersize = 15 * scale
fontsize = 12 * scale
if ax == None:
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
# arm
ax.plot([joints[0, 0], joints[1, 0]], [joints[0, 1], joints[1, 1]],
'r', linewidth=linewidth, alpha=alpha)
# forearm
ax.plot([muscle_b[5, 0], joints[2, 0]], [muscle_b[5, 1], joints[2, 1]],
'r', linewidth=linewidth, alpha=alpha)
# hand
ax.plot([muscle_b[7, 0], end_effector[0]], [muscle_b[7, 1], end_effector[1]],
'r', linewidth=linewidth, alpha=alpha)
# muscles
for i in range(0, muscle_a.shape[0]):
ax.plot([muscle_a[i, 0], muscle_b[i, 0]], [
muscle_a[i, 1], muscle_b[i, 1]], 'b', alpha=alpha)
if text:
ax.text(muscle_a[i, 0], muscle_a[i, 1],
r'$a_' + str(i + 1) + '$', fontsize=fontsize, alpha=alpha)
ax.text(muscle_b[i, 0], muscle_b[i, 1],
r'$b_' + str(i + 1) + '$', fontsize=fontsize, alpha=alpha)
ax.text((muscle_b[i, 0] + muscle_a[i, 0]) / 2.0,
(muscle_b[i, 1] + muscle_a[i, 1]) / 2.0,
r'$l_' + str(i + 1) + '$', fontsize=fontsize, alpha=alpha)
# joint centers
ax.plot(joints[:, 0], joints[:, 1], 'or',
markersize=gd_markersize, alpha=alpha)
if text:
for i in range(0, joints.shape[0]):
ax.text(joints[i, 0], joints[i, 1], r'$J_' +
str(i + 1) + '$', fontsize=fontsize, alpha=alpha)
# CoM
ax.plot(CoM[:, 0], CoM[:, 1], 'oy',
markersize=jc_markersize, alpha=alpha)
if text:
for i in range(0, CoM.shape[0]):
ax.text(CoM[i, 0], CoM[i, 1], r'$Lc_' +
str(i + 1) + '$', fontsize=fontsize, alpha=alpha)
# end effector
ax.plot(end_effector[0], end_effector[1],
'<b', markersize=ef_markersize, alpha=alpha)
# muscle origin
ax.plot(muscle_a[:, 0], muscle_a[:, 1], 'dy',
markersize=mo_markersize, alpha=alpha)
# muscle insertion
ax.plot(muscle_b[:, 0], muscle_b[:, 1], 'db',
markersize=mo_markersize, alpha=alpha)
ax.axis('equal')
ax.set_title('Model Pose')
ax.set_xlabel('$x \; (m)$')
ax.set_ylabel('$y \; (m)$')
# axis limits
if use_axis_limits:
L_max = self.constants[self.L[1]] + \
self.constants[self.L[2]] + self.constants[self.L[3]]
ax.set_xlim([-L_max, L_max])
ax.set_ylim([-L_max / 2, 1.5 * L_max])
# ------------------------------------------------------------------------
# ArmModel tests
# ------------------------------------------------------------------------
def test_muscle_geometry(self):
"""Evaluate the muscle geometry for a random pose against the ground truth.
"""
ma = self.ap
mb = self.bp
lmt = sp.Matrix([sp.trigsimp(
sp.sqrt(pow(ma[i][0] - mb[i][0], 2) +
pow(ma[i][1] - mb[i][1], 2))) for i in range(0, len(ma))])
pose = self.model_parameters(q=np.random.random(3), in_deg=False)
assert_if_same(self.lm.subs(pose), lmt.subs(pose))