|
a |
|
b/arm_model/controller.py |
|
|
1 |
import numpy as np |
|
|
2 |
import sympy as sp |
|
|
3 |
from logger import Logger |
|
|
4 |
from scipy.optimize import minimize |
|
|
5 |
from util import to_np_mat, to_np_vec, sigmoid, rotate, gaussian |
|
|
6 |
from simulation import SimulationReporter |
|
|
7 |
from delay import DelayArray |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
# ------------------------------------------------------------------------ |
|
|
11 |
# PID |
|
|
12 |
# ------------------------------------------------------------------------ |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
class PD: |
|
|
16 |
"""Proportional Derivative Controller. |
|
|
17 |
|
|
|
18 |
a = ad + Kp (xd - x) + Kd (ud - u) |
|
|
19 |
|
|
|
20 |
""" |
|
|
21 |
|
|
|
22 |
def __init__(self, Kp, Kd): |
|
|
23 |
""" |
|
|
24 |
Parameters |
|
|
25 |
---------- |
|
|
26 |
|
|
|
27 |
Kp: proportional gain |
|
|
28 |
|
|
|
29 |
Kd: derivative gain |
|
|
30 |
|
|
|
31 |
""" |
|
|
32 |
|
|
|
33 |
self.Kp = Kp |
|
|
34 |
self.Kd = Kd |
|
|
35 |
self.t = 0 |
|
|
36 |
|
|
|
37 |
def compute(self, x, u, xd, ud, ad): |
|
|
38 |
""" |
|
|
39 |
Parameters |
|
|
40 |
---------- |
|
|
41 |
|
|
|
42 |
x: current position |
|
|
43 |
u: current velocity |
|
|
44 |
xd: desired position |
|
|
45 |
ud: desired velocity |
|
|
46 |
ad: desired acceleration |
|
|
47 |
|
|
|
48 |
Returns |
|
|
49 |
------- |
|
|
50 |
|
|
|
51 |
the requred acceleration |
|
|
52 |
|
|
|
53 |
""" |
|
|
54 |
|
|
|
55 |
return ad + self.Kp * (xd - x) + self.Kd * (ud - u) |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
class PID: |
|
|
59 |
""" |
|
|
60 |
An implementation of Proportional Integral Derivative controller. |
|
|
61 |
|
|
|
62 |
e = xd - x |
|
|
63 |
u = Kp e + Ki \int_0^t e d\tau + Kd de/dt |
|
|
64 |
|
|
|
65 |
""" |
|
|
66 |
|
|
|
67 |
def __init__(self, Kp, Ki, Kd): |
|
|
68 |
""" |
|
|
69 |
Parameters |
|
|
70 |
---------- |
|
|
71 |
|
|
|
72 |
Kp: proportional gain |
|
|
73 |
Ki: integral gain |
|
|
74 |
Kd: derivative gain |
|
|
75 |
|
|
|
76 |
""" |
|
|
77 |
|
|
|
78 |
self.Kp = Kp |
|
|
79 |
self.Ki = Ki |
|
|
80 |
self.Kd = Kd |
|
|
81 |
self.t = 0 |
|
|
82 |
self.error_sum = 0 |
|
|
83 |
|
|
|
84 |
def compute(self, t, x, u, xd, ud): |
|
|
85 |
""" |
|
|
86 |
Parameters |
|
|
87 |
---------- |
|
|
88 |
|
|
|
89 |
x: current position |
|
|
90 |
u: current velocity |
|
|
91 |
xd: desired position |
|
|
92 |
ud: desired velocity |
|
|
93 |
|
|
|
94 |
Returns |
|
|
95 |
------- |
|
|
96 |
|
|
|
97 |
the requred acceleration |
|
|
98 |
|
|
|
99 |
Note: TODO if the numerical integration goes backward in time then this |
|
|
100 |
may cause instabilities |
|
|
101 |
|
|
|
102 |
""" |
|
|
103 |
|
|
|
104 |
dt = np.abs(self.t - t) |
|
|
105 |
|
|
|
106 |
error = xd - x |
|
|
107 |
error_d = ud - u |
|
|
108 |
self.error_sum = self.error_sum + error * dt |
|
|
109 |
self.t = t |
|
|
110 |
|
|
|
111 |
return self.Kp * error + self.Kd * error_d + self.Ki * self.error_sum |
|
|
112 |
|
|
|
113 |
|
|
|
114 |
# ------------------------------------------------------------------------ |
|
|
115 |
# JointSpaceController |
|
|
116 |
# ------------------------------------------------------------------------ |
|
|
117 |
|
|
|
118 |
|
|
|
119 |
class JointSpaceController: |
|
|
120 |
"""Simple joint space tracking controller. |
|
|
121 |
|
|
|
122 |
""" |
|
|
123 |
|
|
|
124 |
def __init__(self, model): |
|
|
125 |
""" Constructor. |
|
|
126 |
|
|
|
127 |
Parameters |
|
|
128 |
---------- |
|
|
129 |
|
|
|
130 |
model: reference to the model |
|
|
131 |
|
|
|
132 |
""" |
|
|
133 |
self.logger = Logger('JointSpaceController') |
|
|
134 |
self.model = model |
|
|
135 |
self.pid = PID(10, 2, 2) |
|
|
136 |
self.reporter = SimulationReporter(model) |
|
|
137 |
|
|
|
138 |
def controller(self, x, t, x0): |
|
|
139 |
"""Default simple joint space PD controller. |
|
|
140 |
|
|
|
141 |
Parameters |
|
|
142 |
---------- |
|
|
143 |
|
|
|
144 |
x: state |
|
|
145 |
t: time |
|
|
146 |
x0: initial state |
|
|
147 |
|
|
|
148 |
""" |
|
|
149 |
# self.logger.debug('Time: ' + str(t)) |
|
|
150 |
n = self.model.nd |
|
|
151 |
q = np.array(x[:n]) |
|
|
152 |
u = np.array(x[n:]) |
|
|
153 |
qd = np.array(self.target(x, t, x0)) |
|
|
154 |
ud = np.zeros((n)) |
|
|
155 |
tau = np.array(self.pid.compute(t, q, u, qd, ud)) |
|
|
156 |
|
|
|
157 |
# record |
|
|
158 |
self.reporter.t.append(t) |
|
|
159 |
self.reporter.q.append(q) |
|
|
160 |
self.reporter.qd.append(qd) |
|
|
161 |
self.reporter.tau.append(tau) |
|
|
162 |
# self.fs_reporter.record(t, q, u, tau.reshape((n, 1))) |
|
|
163 |
|
|
|
164 |
return tau |
|
|
165 |
|
|
|
166 |
def target(self, x, t, x0): |
|
|
167 |
"""Default joint space target function. |
|
|
168 |
|
|
|
169 |
Parameters |
|
|
170 |
---------- |
|
|
171 |
|
|
|
172 |
x: state |
|
|
173 |
t: time |
|
|
174 |
x0: initial state |
|
|
175 |
|
|
|
176 |
""" |
|
|
177 |
return [np.deg2rad(130), np.deg2rad(60), np.deg2rad(95)] |
|
|
178 |
|
|
|
179 |
# ------------------------------------------------------------------------ |
|
|
180 |
# TaskSpaceController |
|
|
181 |
# ------------------------------------------------------------------------ |
|
|
182 |
|
|
|
183 |
|
|
|
184 |
class TaskSpaceController: |
|
|
185 |
"""A task space controller that moves the task goal in a direction. |
|
|
186 |
|
|
|
187 |
""" |
|
|
188 |
|
|
|
189 |
def __init__(self, model, task, angle=0, evaluate_muscle_forces=False): |
|
|
190 |
"""Constructor. |
|
|
191 |
|
|
|
192 |
Parameters |
|
|
193 |
---------- |
|
|
194 |
|
|
|
195 |
model: Model |
|
|
196 |
a reference to the model |
|
|
197 |
|
|
|
198 |
task: TaskSpace |
|
|
199 |
a reference to TaskSpace |
|
|
200 |
|
|
|
201 |
angle: rad (default=0) |
|
|
202 |
direction to move the task |
|
|
203 |
|
|
|
204 |
evaluate_muscle_forces: Boolean (default=False) |
|
|
205 |
compute muscle forces that satisfy the task constraint |
|
|
206 |
|
|
|
207 |
""" |
|
|
208 |
self.logger = Logger('TaskSpaceController') |
|
|
209 |
self.model = model |
|
|
210 |
self.task = task |
|
|
211 |
self.angle = angle |
|
|
212 |
self.evaluate_muscle_forces = evaluate_muscle_forces |
|
|
213 |
self.pd = PD(50, 5) |
|
|
214 |
self.reporter = SimulationReporter(model) |
|
|
215 |
|
|
|
216 |
def controller(self, x, t, x0): |
|
|
217 |
"""Controller function. |
|
|
218 |
|
|
|
219 |
Parameters |
|
|
220 |
---------- |
|
|
221 |
|
|
|
222 |
x: state |
|
|
223 |
t: time |
|
|
224 |
x0: initial state |
|
|
225 |
|
|
|
226 |
""" |
|
|
227 |
self.logger.debug('Time: ' + str(t)) |
|
|
228 |
n = self.model.nd |
|
|
229 |
q = np.array(x[:n]) |
|
|
230 |
u = np.array(x[n:]) |
|
|
231 |
pose = self.model.model_parameters(q=q, u=u) |
|
|
232 |
|
|
|
233 |
# task variables |
|
|
234 |
xc = to_np_mat(self.task.x(pose)) |
|
|
235 |
uc = to_np_mat(self.task.u(pose, u)) |
|
|
236 |
xd, ud, ad = self.target(x, t, x0) |
|
|
237 |
ad = sp.Matrix(self.pd.compute(xc, uc, xd, ud, ad)) |
|
|
238 |
|
|
|
239 |
# forces |
|
|
240 |
tau, ft = self.task.calculate_force(ad, pose) |
|
|
241 |
ft = to_np_vec(ft) |
|
|
242 |
tau = to_np_vec(tau) |
|
|
243 |
|
|
|
244 |
# solve static optimization |
|
|
245 |
fm = None |
|
|
246 |
if self.evaluate_muscle_forces: |
|
|
247 |
m = self.model.md |
|
|
248 |
R = to_np_mat(self.model.R.subs(pose)) |
|
|
249 |
RT = R.transpose() |
|
|
250 |
|
|
|
251 |
def objective(x): |
|
|
252 |
return np.sum(x**2) |
|
|
253 |
|
|
|
254 |
def inequality_constraint(x): |
|
|
255 |
return np.array(tau + RT * (x.reshape(-1, 1))).reshape(-1,) |
|
|
256 |
|
|
|
257 |
x0 = np.zeros(m) |
|
|
258 |
bounds = tuple([(0, self.model.Fmax[i, i]) for i in range(0, m)]) |
|
|
259 |
constraints = ({'type': 'ineq', 'fun': inequality_constraint}) |
|
|
260 |
sol = minimize(objective, x0, method='SLSQP', |
|
|
261 |
bounds=bounds, |
|
|
262 |
constraints=constraints) |
|
|
263 |
if sol.success is False: |
|
|
264 |
raise Exception('Static optimization failed at: ' + t) |
|
|
265 |
|
|
|
266 |
fm = sol.x.reshape(-1,) |
|
|
267 |
|
|
|
268 |
# record |
|
|
269 |
self.reporter.t.append(t) |
|
|
270 |
self.reporter.q.append(q) |
|
|
271 |
self.reporter.u.append(u) |
|
|
272 |
self.reporter.x.append(np.array(xc).reshape(-1,)) |
|
|
273 |
self.reporter.xd.append(np.array(xd).reshape(-1,)) |
|
|
274 |
self.reporter.tau.append(tau) |
|
|
275 |
self.reporter.ft.append(ft) |
|
|
276 |
self.reporter.fm.append(fm) |
|
|
277 |
# self.fs_reporter.record(t, q, u, tau) |
|
|
278 |
|
|
|
279 |
return tau |
|
|
280 |
|
|
|
281 |
def target(self, x, t, x0): |
|
|
282 |
""" A directed sigmoid function target. |
|
|
283 |
|
|
|
284 |
Parameters |
|
|
285 |
---------- |
|
|
286 |
|
|
|
287 |
x: state |
|
|
288 |
t: time |
|
|
289 |
x0: initial state |
|
|
290 |
|
|
|
291 |
Returns |
|
|
292 |
------- |
|
|
293 |
|
|
|
294 |
(x, u, a) |
|
|
295 |
|
|
|
296 |
""" |
|
|
297 |
pose0 = self.model.model_parameters(q=x0[:self.model.nd]) |
|
|
298 |
xt0 = self.task.x(pose0) |
|
|
299 |
|
|
|
300 |
t0 = 1 |
|
|
301 |
A = 0.3 |
|
|
302 |
B = 4 |
|
|
303 |
o = np.asmatrix([[0], [0]]) |
|
|
304 |
xd, ud, ad = sigmoid(t, t0, A, B) |
|
|
305 |
|
|
|
306 |
xd = rotate(o, np.asmatrix([[xd], [0]]), self.angle) |
|
|
307 |
ud = rotate(o, np.asmatrix([[ud], [0]]), self.angle) |
|
|
308 |
ad = rotate(o, np.asmatrix([[ad], [0]]), self.angle) |
|
|
309 |
|
|
|
310 |
return (np.asmatrix(xt0 + xd), |
|
|
311 |
np.asmatrix(ud), |
|
|
312 |
np.asmatrix(ad)) |
|
|
313 |
|
|
|
314 |
|
|
|
315 |
# ------------------------------------------------------------------------ |
|
|
316 |
# MuscleSpaceControllerJS |
|
|
317 |
# ------------------------------------------------------------------------ |
|
|
318 |
|
|
|
319 |
|
|
|
320 |
class MuscleSpaceControllerJS: |
|
|
321 |
"""This controller uses the muscle space EoM to driving a model from a |
|
|
322 |
reference pose to a desired pose in joint space. |
|
|
323 |
|
|
|
324 |
""" |
|
|
325 |
|
|
|
326 |
def __init__(self, model, musclespace): |
|
|
327 |
"""Constructor. |
|
|
328 |
|
|
|
329 |
Parameters |
|
|
330 |
---------- |
|
|
331 |
|
|
|
332 |
model: a reference to the model |
|
|
333 |
musclespace: a reference to MuscleSpace |
|
|
334 |
|
|
|
335 |
""" |
|
|
336 |
self.logger = Logger('MsucleSpaceControllerJS') |
|
|
337 |
self.model = model |
|
|
338 |
self.musclespace = musclespace |
|
|
339 |
self.pid = PID(10, 0, 10) |
|
|
340 |
self.reporter = SimulationReporter(model) |
|
|
341 |
|
|
|
342 |
def controller(self, x, t, x0): |
|
|
343 |
"""Default simple joint space PD controller. |
|
|
344 |
|
|
|
345 |
Parameters |
|
|
346 |
---------- |
|
|
347 |
|
|
|
348 |
x: state |
|
|
349 |
t: time |
|
|
350 |
x0: initial state |
|
|
351 |
|
|
|
352 |
""" |
|
|
353 |
self.logger.debug('Time: ' + str(t)) |
|
|
354 |
n = self.model.nd |
|
|
355 |
m = self.model.md |
|
|
356 |
q = np.array(x[:n]) |
|
|
357 |
u = np.array(x[n:]) |
|
|
358 |
qd = np.array(self.target(x, t, x0)) |
|
|
359 |
ud = np.zeros((n)) |
|
|
360 |
qddot = np.array(self.pid.compute(t, q, u, qd, ud)) |
|
|
361 |
|
|
|
362 |
# evalutate desired lmdd_d |
|
|
363 |
pose = self.model.model_parameters(q=q, u=u) |
|
|
364 |
RDotQDot = self.model.RDotQDot.subs(pose) |
|
|
365 |
RQDDot = self.model.R.subs(pose) * sp.Matrix(qddot) |
|
|
366 |
lmdd_d = sp.Matrix(RDotQDot + RQDDot) |
|
|
367 |
lmd = to_np_vec(self.model.lmd.subs(pose)) |
|
|
368 |
lmd_d = to_np_vec(self.model.R.subs(pose) * sp.Matrix(u)) |
|
|
369 |
|
|
|
370 |
tau = self.musclespace.calculate_force(lmdd_d, pose)[0] |
|
|
371 |
tau = to_np_vec(tau) |
|
|
372 |
|
|
|
373 |
# store record |
|
|
374 |
self.reporter.t.append(t) |
|
|
375 |
self.reporter.q.append(q) |
|
|
376 |
self.reporter.u.append(u) |
|
|
377 |
self.reporter.qd.append(qd) |
|
|
378 |
self.reporter.lmd.append(lmd) |
|
|
379 |
self.reporter.lmd_d.append(lmd_d) |
|
|
380 |
self.reporter.tau.append(tau) |
|
|
381 |
|
|
|
382 |
return tau |
|
|
383 |
|
|
|
384 |
def target(self, x, t, x0): |
|
|
385 |
"""Default joint space target function. |
|
|
386 |
|
|
|
387 |
Parameters |
|
|
388 |
---------- |
|
|
389 |
|
|
|
390 |
x: state |
|
|
391 |
t: time |
|
|
392 |
x0: initial state |
|
|
393 |
|
|
|
394 |
""" |
|
|
395 |
return [np.deg2rad(130), np.deg2rad(60), np.deg2rad(95)] |
|
|
396 |
|
|
|
397 |
|
|
|
398 |
# ------------------------------------------------------------------------ |
|
|
399 |
# PosturalMuscleSpaceController |
|
|
400 |
# ------------------------------------------------------------------------ |
|
|
401 |
|
|
|
402 |
|
|
|
403 |
class PosturalMuscleSpaceController: |
|
|
404 |
"""This is a posture controller in muscle space. The system is disturbed and a |
|
|
405 |
muscle length controller is responsible for restoring it to its initial |
|
|
406 |
pose. |
|
|
407 |
|
|
|
408 |
""" |
|
|
409 |
|
|
|
410 |
def __init__(self, model, musclespace, kp, kd, delay, a, t0, sigma, gamma): |
|
|
411 |
""" Constructor. |
|
|
412 |
|
|
|
413 |
Parameters |
|
|
414 |
---------- |
|
|
415 |
|
|
|
416 |
model: a reference to ToyModel |
|
|
417 |
|
|
|
418 |
muscle: a reference to TaskSpace |
|
|
419 |
|
|
|
420 |
kp: proportional gain |
|
|
421 |
|
|
|
422 |
kd: derivative gain |
|
|
423 |
|
|
|
424 |
delay: the delay of the reflex loops |
|
|
425 |
|
|
|
426 |
a: Gaussian aptitude (disturbance) |
|
|
427 |
|
|
|
428 |
t0: time of application (disturbance) |
|
|
429 |
|
|
|
430 |
sigma: outspread (disturbance) |
|
|
431 |
|
|
|
432 |
gamma: direction of disturbance |
|
|
433 |
|
|
|
434 |
""" |
|
|
435 |
self.logger = Logger('PosturalMsucleSpaceController') |
|
|
436 |
self.model = model |
|
|
437 |
self.musclespace = musclespace |
|
|
438 |
self.pd = PD(kp, kd) # (10, 10) -> full controller, (0, 10) -> reflex |
|
|
439 |
self.delay = delay |
|
|
440 |
self.a = a |
|
|
441 |
self.t0 = t0 |
|
|
442 |
self.sigma = sigma |
|
|
443 |
self.gamma = gamma |
|
|
444 |
self.reporter = SimulationReporter(model) |
|
|
445 |
self.__initialize_delay_components() |
|
|
446 |
self.__calculate_task() |
|
|
447 |
|
|
|
448 |
def __calculate_task(self): |
|
|
449 |
"""Calculate model's end effector Jacobian transpose. |
|
|
450 |
|
|
|
451 |
""" |
|
|
452 |
xt = sp.Matrix(self.model.ee) |
|
|
453 |
Jt = xt.jacobian(self.model.Q()) |
|
|
454 |
self.JtT = Jt.transpose() |
|
|
455 |
|
|
|
456 |
def __add_in_distrurbance(self, t, tau, pose): |
|
|
457 |
"""Adds distrubance to end effector. |
|
|
458 |
|
|
|
459 |
""" |
|
|
460 |
angle = self.gamma |
|
|
461 |
o = np.asmatrix([[0], [0]]) |
|
|
462 |
fd = np.asmatrix([[gaussian(t, self.a, self.t0, self.sigma)], [0]]) |
|
|
463 |
fd = rotate(o, fd, angle) |
|
|
464 |
return tau + self.JtT.subs(pose) * fd |
|
|
465 |
|
|
|
466 |
def __initialize_delay_components(self): |
|
|
467 |
"""Initializes the delay components with the default muscle length (state(0)) |
|
|
468 |
and zero length velocities. |
|
|
469 |
|
|
|
470 |
""" |
|
|
471 |
n = self.model.nd |
|
|
472 |
m = self.model.md |
|
|
473 |
|
|
|
474 |
state0 = self.model.state0 |
|
|
475 |
q = state0[:n] |
|
|
476 |
u = state0[n:] |
|
|
477 |
pose = self.model.model_parameters(q=q, u=u) |
|
|
478 |
self.lm0 = self.model.lm.subs(pose) |
|
|
479 |
self.lm0 = to_np_vec(self.lm0) |
|
|
480 |
|
|
|
481 |
delay = np.full(m, self.delay) |
|
|
482 |
|
|
|
483 |
self.lm_del = DelayArray(m, delay, self.lm0) |
|
|
484 |
self.lmd_del = DelayArray(m, delay, np.zeros(m)) |
|
|
485 |
|
|
|
486 |
def controller(self, x, t, x0): |
|
|
487 |
""" Controller. |
|
|
488 |
|
|
|
489 |
Parameters |
|
|
490 |
---------- |
|
|
491 |
|
|
|
492 |
x: state |
|
|
493 |
t: time |
|
|
494 |
x0: initial state |
|
|
495 |
|
|
|
496 |
""" |
|
|
497 |
self.logger.debug('Time: ' + str(t)) |
|
|
498 |
m = self.model.md |
|
|
499 |
n = self.model.nd |
|
|
500 |
q = np.array(x[:n]) |
|
|
501 |
u = np.array(x[n:]) |
|
|
502 |
|
|
|
503 |
# compute current muscle length and derivative |
|
|
504 |
pose = self.model.model_parameters(q=q, u=u) |
|
|
505 |
lm = self.model.lm.subs(pose) |
|
|
506 |
lm = to_np_vec(lm) |
|
|
507 |
lmd = self.model.lmd.subs(pose) |
|
|
508 |
lmd = to_np_vec(lmd) |
|
|
509 |
|
|
|
510 |
# compute target |
|
|
511 |
lm_des = self.target(x, t, x0) |
|
|
512 |
lmd_des = np.zeros(m) |
|
|
513 |
lmdd_des = np.zeros(m) |
|
|
514 |
|
|
|
515 |
# update delayed values and get current (must update first) |
|
|
516 |
self.lm_del.add(t, lm) |
|
|
517 |
self.lmd_del.add(t, lmd) |
|
|
518 |
|
|
|
519 |
lm_del = np.array(self.lm_del.get_delayed()) |
|
|
520 |
lmd_del = np.array(self.lmd_del.get_delayed()) |
|
|
521 |
|
|
|
522 |
lmdd_des = sp.Matrix(self.pd.compute( |
|
|
523 |
lm_del, lmd_del, lm_des, lmd_des, lmdd_des)) |
|
|
524 |
|
|
|
525 |
tau, fm = self.musclespace.calculate_force(lmdd_des, pose) |
|
|
526 |
tau = self.__add_in_distrurbance(t, tau, pose) |
|
|
527 |
tau = to_np_vec(tau) |
|
|
528 |
|
|
|
529 |
# record |
|
|
530 |
self.reporter.t.append(t) |
|
|
531 |
self.reporter.q.append(q) |
|
|
532 |
self.reporter.u.append(u) |
|
|
533 |
self.reporter.lm.append(lm) |
|
|
534 |
self.reporter.lm_d.append(lm_des) |
|
|
535 |
self.reporter.fm.append(fm) |
|
|
536 |
self.reporter.tau.append(tau) |
|
|
537 |
|
|
|
538 |
return tau |
|
|
539 |
|
|
|
540 |
def target(self, x, t, x0): |
|
|
541 |
"""Default muscle space target function. |
|
|
542 |
|
|
|
543 |
Parameters |
|
|
544 |
---------- |
|
|
545 |
|
|
|
546 |
x: state |
|
|
547 |
t: time |
|
|
548 |
x0: initial state |
|
|
549 |
|
|
|
550 |
""" |
|
|
551 |
return self.lm0 |