import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence, pad_sequence
import numpy as np
import colorednoise as cn
import math
LOG_SIG_MAX = 2
LOG_SIG_MIN = -20
epsilon = 1e-6
# Initialize Policy weights
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class ValueNetwork(nn.Module):
def __init__(self, num_inputs, hidden_dim):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class QNetworkFF(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super(QNetworkFF, self).__init__()
# Q1 architecture
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
# Q2 architecture
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state, action):
xu = torch.cat([state, action], 1)
x1 = F.relu(self.linear1(xu))
x1 = F.relu(self.linear2(x1))
x1 = self.linear3(x1)
x2 = F.relu(self.linear4(xu))
x2 = F.relu(self.linear5(x2))
x2 = self.linear6(x2)
return x1, x2
class QNetworkLSTM(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super(QNetworkLSTM, self).__init__()
# Q1 architecture
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
nn.init.xavier_normal_(self.linear1.weight)
self.linear2 = nn.Linear(num_inputs + num_actions, hidden_dim)
nn.init.xavier_normal_(self.linear2.weight)
self.lstm1 = nn.LSTM(hidden_dim, hidden_dim, num_layers= 1, batch_first= True)
self.linear3 = nn.Linear(2 * hidden_dim, hidden_dim)
nn.init.xavier_normal_(self.linear3.weight)
self.linear4 = nn.Linear(hidden_dim, 1)
nn.init.xavier_normal_(self.linear4.weight)
# Q2 architecture
self.linear5 = nn.Linear(num_inputs + num_actions, hidden_dim)
nn.init.xavier_normal_(self.linear5.weight)
self.linear6 = nn.Linear(num_inputs + num_actions, hidden_dim)
nn.init.xavier_normal_(self.linear6.weight)
self.lstm2 = nn.LSTM(hidden_dim, hidden_dim, num_layers= 1, batch_first= True)
self.linear7 = nn.Linear(2 * hidden_dim, hidden_dim)
nn.init.xavier_normal_(self.linear7.weight)
self.linear8 = nn.Linear(hidden_dim, 1)
nn.init.xavier_normal_(self.linear8.weight)
self.apply(weights_init_)
# notes: weights_init for the LSTM layer
def forward(self, state_action_packed, hidden):
xu = state_action_packed
xu_p, seq_lens = pad_packed_sequence(xu, batch_first= True)
fc_branch_1 = F.relu(self.linear1(xu_p))
lstm_branch_1 = F.relu(self.linear2(xu_p))
lstm_branch_1 = pack_padded_sequence(lstm_branch_1, seq_lens, batch_first= True, enforce_sorted= False)
lstm_branch_1, hidden_out_1 = self.lstm1(lstm_branch_1, hidden)
lstm_branch_1, _ = pad_packed_sequence(lstm_branch_1, batch_first= True)
x1 = torch.cat([fc_branch_1, lstm_branch_1], dim=-1)
x1 = F.relu(self.linear3(x1))
x1 = F.relu(self.linear4(x1))
fc_branch_2 = F.relu(self.linear5(xu_p))
lstm_branch_2 = F.relu(self.linear6(xu_p))
lstm_branch_2 = pack_padded_sequence(lstm_branch_2, seq_lens, batch_first= True, enforce_sorted= False)
lstm_branch_2, hidden_out_2 = self.lstm2(lstm_branch_2, hidden)
lstm_branch_2, _ = pad_packed_sequence(lstm_branch_2, batch_first= True)
x2 = torch.cat([fc_branch_2, lstm_branch_2], dim=-1)
x2 = F.relu(self.linear7(x2))
x2 = F.relu(self.linear8(x2))
return x1, x2
class GaussianPolicyRNN(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, action_space=None):
super(GaussianPolicyRNN, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
self.lstm = nn.RNN(hidden_dim, hidden_dim, batch_first=True)
self.mean_linear = nn.Linear(hidden_dim, num_actions)
self.log_std_linear = nn.Linear(hidden_dim, num_actions)
self.apply(weights_init_)
# action rescaling
# Pass none action space and adjust the action scale and bias manually
if action_space is None:
self.action_scale = torch.tensor(0.5)
self.action_bias = torch.tensor(0.5)
else:
self.action_scale = torch.FloatTensor(
(action_space.high - action_space.low) / 2.)
self.action_bias = torch.FloatTensor(
(action_space.high + action_space.low) / 2.)
def forward(self, state, h_prev, c_prev, sampling, len_seq= None):
#x = F.relu(F.tanh(self.linear1(state)))
#x = F.tanh(self.linear1(state))
x = F.relu(self.linear1(state))
if sampling == False:
assert len_seq!=None, "Proved the len_seq"
x = pack_padded_sequence(x, len_seq, batch_first= True, enforce_sorted= False)
x, (h_current) = self.lstm(x, (h_prev))
if sampling == False:
x, len_x_seq = pad_packed_sequence(x, batch_first= True)
if sampling == True:
x = x.squeeze(1)
x = F.relu(x)
mean = self.mean_linear(x)
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX)
c_current= torch.tensor(0., requires_grad= True)
return mean, log_std, h_current, c_current, x
def sample(self, state, h_prev, c_prev, sampling, len_seq=None):
mean, log_std, h_current, c_current, x = self.forward(state, h_prev, c_prev, sampling, len_seq)
#if sampling == False; then mask the mean and log_std using len_seq
if sampling == False:
assert mean.size()[1] == log_std.size()[1], "There is a mismatch between and mean and sigma Sl_max"
sl_max = mean.size()[1]
with torch.no_grad():
for seq_idx, k in enumerate(len_seq):
for j in range(1, sl_max + 1):
if j <= k:
if seq_idx == 0 and j == 1:
mask_seq = torch.tensor([True], dtype=bool)
else:
mask_seq = torch.cat((mask_seq, torch.tensor([True])), dim=0)
else:
mask_seq = torch.cat((mask_seq, torch.tensor([False])), dim=0)
#The mask has been created, Now filter the mean and sigma using this mask
print(mask_seq)
mean = mean.reshape(-1, mean.size()[-1])[mask_seq]
log_std = log_std.reshape(-1, log_std.size()[-1])[mask_seq]
if sampling == True:
mask_seq = [] #If sampling is True return a dummy mask seq
std = log_std.exp()
# white noise
normal = Normal(mean, std)
noise = normal.rsample()
# pink noise
#samples = math.prod(mean.squeeze().shape)
#noise = cn.powerlaw_psd_gaussian(1, samples)
#noise = torch.Tensor(noise).view(mean.shape).to(mean.device)
y_t = torch.tanh(noise) # reparameterization trick
action = y_t * self.action_scale + self.action_bias
log_prob = normal.log_prob(noise)
# Enforce the action_bounds
log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + epsilon)
log_prob = log_prob.sum(1, keepdim=True)
mean = torch.tanh(mean) * self.action_scale + self.action_bias
return action, log_prob, mean, h_current, c_current, mask_seq, x
def forward_for_simple_dynamics(self, state, h_prev, c_prev, sampling, len_seq= None):
#x = F.relu(F.tanh(self.linear1(state)))
#x = F.tanh(self.linear1(state))
x = F.relu(self.linear1(state))
#Tap the output of the first linear layer
x_l1 = x
# x = state
if sampling == False:
assert len_seq!=None, "Proved the len_seq"
x = pack_padded_sequence(x, len_seq, batch_first= True, enforce_sorted= False)
x, (h_current) = self.lstm(x, (h_prev))
if sampling == False:
x, len_x_seq = pad_packed_sequence(x, batch_first= True)
x = F.relu(x)
return x, x_l1
def to(self, device):
self.action_scale = self.action_scale.to(device)
self.action_bias = self.action_bias.to(device)
return super(GaussianPolicyRNN, self).to(device)
class GaussianPolicyLSTM(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, action_space=None):
super(GaussianPolicyLSTM, self).__init__()
self.linear1 = nn.Linear(num_inputs, hidden_dim)
nn.init.xavier_normal_(self.linear1.weight)
self.lstm = nn.LSTM(num_inputs, hidden_dim, num_layers=1, batch_first=True)
self.linear2 = nn.Linear(2*hidden_dim, hidden_dim)
nn.init.xavier_normal_(self.linear2.weight)
self.mean_linear = nn.Linear(hidden_dim, num_actions)
self.log_std_linear = nn.Linear(hidden_dim, num_actions)
self.apply(weights_init_)
# Adjust the initial weights of the recurrent LSTM layer
# action rescaling
# Pass none action space and adjust the action scale and bias manually
if action_space is None:
# Try different scales to see what works best
self.action_scale = torch.tensor(0.5)
self.action_bias = torch.tensor(0.5)
else:
self.action_scale = torch.FloatTensor(
(action_space.high - action_space.low) / 2.)
self.action_bias = torch.FloatTensor(
(action_space.high + action_space.low) / 2.)
def forward(self, state, h_prev, c_prev, sampling):
if sampling == True:
fc_branch = F.relu(self.linear1(state))
lstm_branch, (h_current, c_current) = self.lstm(state, (h_prev, c_prev))
else:
state_pad, _ = pad_packed_sequence(state, batch_first= True)
fc_branch = F.relu(self.linear1(state_pad))
lstm_branch, (h_current, c_current) = self.lstm(state, (h_prev, c_prev))
lstm_branch, seq_lens = pad_packed_sequence(lstm_branch, batch_first= True)
x = torch.cat([fc_branch, lstm_branch], dim=-1)
x = F.relu(self.linear2(x))
mean = self.mean_linear(x)
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX)
return mean, log_std, h_current, c_current, lstm_branch
def sample(self, state, h_prev, c_prev, sampling):
mean, log_std, h_current, c_current, lstm_branch = self.forward(state, h_prev, c_prev, sampling)
#if sampling == False; then reshape mean and log_std from (B, L_max, A) to (B*Lmax, A)
mean_size = mean.size()
log_std_size = log_std.size()
mean = mean.reshape(-1, mean.size()[-1])
log_std = log_std.reshape(-1, log_std.size()[-1])
std = log_std.exp()
normal = Normal(mean, std)
x_t = normal.rsample()
y_t = torch.tanh(x_t)
action = y_t * self.action_scale + self.action_bias
log_prob = normal.log_prob(x_t)
# Enforce the action_bounds
log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + epsilon)
log_prob = log_prob.sum(1, keepdim=True)
mean = torch.tanh(mean) * self.action_scale + self.action_bias
if sampling == False:
action = action.reshape(mean_size[0], mean_size[1], mean_size[2])
mean = mean.reshape(mean_size[0], mean_size[1], mean_size[2])
log_prob = log_prob.reshape(log_std_size[0], log_std_size[1], 1)
return action, log_prob, mean, h_current, c_current, lstm_branch
def to(self, device):
self.action_scale = self.action_scale.to(device)
self.action_bias = self.action_bias.to(device)
return super(GaussianPolicyLSTM, self).to(device)