Download this file

70 lines (56 with data), 1.6 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
function [mp rho_p mu_p] = circ_moment(alpha, w, p, cent, dim)
% [mp cbar sbar] = circ_moment(alpha, w, p, cent, dim)
% Calculates the complex p-th centred or non-centred moment
% of the angular data in angle.
%
% Input:
% alpha sample of angles
% [w weightings in case of binned angle data]
% [p p-th moment to be computed, default is p=1]
% [cent if true, central moments are computed, default = false]
% [dim compute along this dimension, default is 1]
%
% If dim argument is specified, all other optional arguments can be
% left empty: circ_moment(alpha, [], [], [], dim)
%
% Output:
% mp complex p-th moment
% rho_p magnitude of the p-th moment
% mu_p angle of th p-th moment
%
%
% References:
% Statistical analysis of circular data, Fisher, p. 33/34
%
% Circular Statistics Toolbox for Matlab
% By Philipp Berens, 2009
% berens@tuebingen.mpg.de
if nargin < 5
dim = 1;
end
if nargin < 4
cent = false;
end
if nargin < 3 || isempty(p)
p = 1;
end
if nargin < 2 || isempty(w)
% if no specific weighting has been specified
% assume no binning has taken place
w = ones(size(alpha));
else
if size(w,2) ~= size(alpha,2) || size(w,1) ~= size(alpha,1)
error('Input dimensions do not match');
end
end
if cent
theta = circ_mean(alpha,w,dim);
v = size(alpha)./size(theta);
alpha = circ_dist(alpha,repmat(theta,v));
end
n = size(alpha,dim);
cbar = sum(cos(p*alpha).*w,dim)/n;
sbar = sum(sin(p*alpha).*w,dim)/n;
mp = cbar + i*sbar;
rho_p = abs(mp);
mu_p = angle(mp);