import os
import torch
import torch.nn.functional as F
from torch.optim import Adam, AdamW, RMSprop
from .utils1 import soft_update, hard_update
from .model import GaussianPolicyLSTM, GaussianPolicyRNN, QNetworkFF, QNetworkLSTM
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence, pad_sequence
class SAC(object):
def __init__(self, num_inputs, action_space, args):
self.gamma = args.gamma
self.tau = args.tau
self.alpha = args.alpha
self.hidden_size= args.hidden_size
self.automatic_entropy_tuning = args.automatic_entropy_tuning
self.device = torch.device("cuda")
# Target Entropy = −dim(A) (e.g. , -6 for HalfCheetah-v2) as given in the paper
if args.automatic_entropy_tuning:
self.target_entropy = -torch.prod(torch.Tensor(action_space.shape).to(self.device)).item()
self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device)
self.alpha_optim = Adam([self.log_alpha], lr=args.lr)
def select_action(self, state, h_prev, c_prev, evaluate=False):
pass
def update_parameters(self, policy_memory, policy_batch_size):
pass
# Save model parameters
def save_model(self, env_name, suffix="", actor_path=None, critic_path=None):
if not os.path.exists('models/'):
os.makedirs('models/')
if actor_path is None:
actor_path = "models/sac_actor_{}_{}".format(env_name, suffix)
if critic_path is None:
critic_path = "models/sac_critic_{}_{}".format(env_name, suffix)
print('Saving models to {} and {}'.format(actor_path, critic_path))
torch.save(self.policy.state_dict(), actor_path)
torch.save(self.critic.state_dict(), critic_path)
# Load model parameters
def load_model(self, actor_path, critic_path):
print('Loading models from {} and {}'.format(actor_path, critic_path))
if actor_path is not None:
self.policy.load_state_dict(torch.load(actor_path))
if critic_path is not None:
self.critic.load_state_dict(torch.load(critic_path))
#filter_padded takes in a padded sequence of size (B, L_max, H) and corresponding sequence lengths, and returns a tensor of size [max(seq_lens), H]
#after filtering redundant paddings.
def filter_padded(self, padded_seq, seq_lens):
# padded_seq = a tensor of size (batch_size, max_seq_len, input_dimension) i.e. (B, L_max, H) representing a padded object
# seq_lens = a list contatining the length of individual sequences in the sequence object before padding
seq_max = max(seq_lens)
#reshape padded sequence to (B*L_max, input_dimension)
t = padded_seq.reshape(padded_seq.shape[0]*padded_seq.shape[1], padded_seq.shape[2])
iter_max = int(t.shape[0]/seq_max)
for iter1 in range(iter_max):
k = [item for item in range(iter1*seq_max, (iter1+1)*seq_max)]
k = k[:seq_lens[iter1]]
if iter1 == 0:
out_t = t[k]
else:
out_t = torch.cat((out_t, t[k]), dim=0)
return out_t
class SACRNN(SAC):
def __init__(self, num_inputs, action_space, args):
super(SACRNN, self).__init__(num_inputs, action_space, args)
self.critic = QNetworkFF(num_inputs, action_space.shape[0], args.hidden_size).to(self.device)
self.critic_target = QNetworkFF(num_inputs, action_space.shape[0], args.hidden_size).to(self.device)
hard_update(self.critic_target, self.critic)
self.critic_optim = Adam(self.critic.parameters(), lr=args.lr)
self.policy = GaussianPolicyRNN(num_inputs, action_space.shape[0], args.hidden_size, action_space=None).to(self.device)
self.policy_optim = Adam(self.policy.parameters(), lr=args.lr)
def select_action(self, state, h_prev, c_prev, evaluate=False):
state = torch.FloatTensor(state).to(self.device).unsqueeze(0).unsqueeze(0)
h_prev = h_prev.to(self.device)
c_prev = c_prev.to(self.device)
if evaluate == False:
action, _, _, h_current, c_current, _, lstm_out = self.policy.sample(state, h_prev, c_prev, sampling=True, len_seq=None)
else:
_, _, action, h_current, c_current, _, lstm_out = self.policy.sample(state, h_prev, c_prev, sampling=True, len_seq=None)
return action.detach().cpu().numpy()[0], h_current.detach(), c_current.detach(), lstm_out.detach().cpu().numpy()
def update_parameters(self, policy_memory, policy_batch_size):
# Sample a batch from memory
state_batch, action_batch, reward_batch, next_state_batch, mask_batch, h_batch, c_batch, policy_state_batch = policy_memory.sample(batch_size=policy_batch_size)
state_batch = torch.FloatTensor(state_batch).to(self.device)
next_state_batch = torch.FloatTensor(next_state_batch).to(self.device)
action_batch = torch.FloatTensor(action_batch).to(self.device)
reward_batch = torch.FloatTensor(reward_batch).to(self.device).unsqueeze(1)
mask_batch = torch.FloatTensor(mask_batch).to(self.device).unsqueeze(1)
h_batch = torch.FloatTensor(h_batch).to(self.device).permute(1, 0, 2)
c_batch = torch.FloatTensor(c_batch).to(self.device)
with torch.no_grad():
next_state_action, next_state_log_pi, _, _, _, _, _ = self.policy.sample(next_state_batch.unsqueeze(1), h_batch, c_batch, sampling=True)
qf1_next_target, qf2_next_target = self.critic_target(next_state_batch, next_state_action)
min_qf_next_target = torch.min(qf1_next_target, qf2_next_target) - self.alpha * next_state_log_pi
next_q_value = reward_batch + mask_batch * self.gamma * (min_qf_next_target)
qf1, qf2 = self.critic(state_batch, action_batch) # Two Q-functions to mitigate positive bias in the policy improvement step
qf1_loss = F.mse_loss(qf1, next_q_value) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
qf2_loss = F.mse_loss(qf2, next_q_value) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
qf_loss = qf1_loss + qf2_loss
self.critic_optim.zero_grad()
qf_loss.backward()
self.critic_optim.step()
# Update the policy network using the newly proposed method
h0 = torch.zeros(size=(1, len(policy_state_batch), self.hidden_size)).to(self.device)
c0 = torch.zeros(size=(1, len(policy_state_batch), self.hidden_size)).to(self.device)
len_seq = list(map(len, policy_state_batch))
policy_state_batch = torch.FloatTensor(pad_sequence(policy_state_batch, batch_first= True)).to(self.device)
pi_action_bat, log_prob_bat, _, _, _, mask_seq, _ = self.policy.sample(policy_state_batch, h0, c0, sampling= False, len_seq= len_seq)
#Now mask the policy_state_batch according to the mask seq
policy_state_batch_pi= policy_state_batch.reshape(-1, policy_state_batch.size()[-1])[mask_seq]
qf1_pi, qf2_pi = self.critic(policy_state_batch_pi, pi_action_bat)
min_qf_pi = torch.min(qf1_pi, qf2_pi)
policy_loss = ((self.alpha * log_prob_bat) - min_qf_pi).mean() # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))]
# Sample the hidden weights of the RNN
J_lstm_w = self.policy.lstm.weight_hh_l0 #These weights would be of the size (hidden_dim, hidden_dim)
#Sample the output of the RNN for the policy_state_batch
lstm_out_r, _ = self.policy.forward_for_simple_dynamics(policy_state_batch, h0, c0, sampling=False, len_seq= len_seq)
lstm_out_r = lstm_out_r.reshape(-1, lstm_out_r.size()[-1])[mask_seq]
#Reshape the policy hidden weights vector
J_lstm_w = J_lstm_w.unsqueeze(0).repeat(lstm_out_r.size()[0], 1, 1)
lstm_out_r = 1 - torch.pow(lstm_out_r, 2)
R_j = torch.mul(J_lstm_w, lstm_out_r.unsqueeze(-1))
policy_loss_2 = torch.norm(R_j)**2
#Find the loss encouraging the minimization of the firing rates for the linear and the RNN layer
#Sample the output of the RNN for the policy_state_batch
lstm_out_r, linear_out = self.policy.forward_for_simple_dynamics(policy_state_batch, h0, c0, sampling=False, len_seq= len_seq)
lstm_out_r = lstm_out_r.reshape(-1, lstm_out_r.size()[-1])[mask_seq]
linear_out = linear_out.reshape(-1, linear_out.size()[-1])[mask_seq]
mean_out_emg, _, _, _, _ = self.policy.forward(policy_state_batch, h0, c0, sampling=False, len_seq=len_seq)
mean_out_emg = mean_out_emg.reshape(-1, mean_out_emg.size()[-1])[mask_seq]
policy_loss_3 = torch.norm(lstm_out_r)**2 + torch.norm(linear_out)**2 + torch.norm(mean_out_emg)**2
#Find the loss encouraging the minimization of the input and output weights of the LSTM(RNN) and the layers downstream
#and upstream of the LSTM
#Sample the input weights of the RNN
J_lstm_i = self.policy.lstm.weight_ih_l0
J_in1 = self.policy.linear1.weight
#Sample the output weights
# J_out = self.policy.linear2.weight
J_out1 = self.policy.mean_linear.weight
policy_loss_4 = torch.norm(J_in1)**2 + torch.norm(J_lstm_i)**2 + torch.norm(J_out1)**2
policy_loss += (0.003*(policy_loss_2)) + (0.001*(policy_loss_3)) + (0.001*(policy_loss_4))
self.policy_optim.zero_grad()
policy_loss.backward()
self.policy_optim.step()
log_pi = log_prob_bat
if self.automatic_entropy_tuning:
alpha_loss = -(self.log_alpha * (log_pi + self.target_entropy).detach()).mean()
self.alpha_optim.zero_grad()
alpha_loss.backward()
self.alpha_optim.step()
self.alpha = self.log_alpha.exp()
alpha_tlogs = self.alpha.clone() # For TensorboardX logs
else:
alpha_loss = torch.tensor(0.).to(self.device)
alpha_tlogs = torch.tensor(self.alpha) # For TensorboardX logs
soft_update(self.critic_target, self.critic, self.tau)
return qf1_loss.item(), qf2_loss.item(), policy_loss.item(), policy_loss_2.item(), policy_loss_3.item(), policy_loss_4.item(), alpha_loss.item(), alpha_tlogs.item()
class SACLSTM(SAC):
def __init__(self, num_inputs, action_space, args):
super(SACLSTM, self).__init__(num_inputs, action_space, args)
self.critic = QNetworkLSTM(num_inputs, action_space.shape[0], args.hidden_size).to(self.device)
self.critic_target = QNetworkLSTM(num_inputs, action_space.shape[0], args.hidden_size).to(self.device)
hard_update(self.critic_target, self.critic)
self.critic_optim = Adam(self.critic.parameters(), lr=args.lr)
self.policy = GaussianPolicyLSTM(num_inputs, action_space.shape[0], args.hidden_size, action_space=None).to(self.device)
self.policy_optim = Adam(self.policy.parameters(), lr=args.lr)
def select_action(self, state, h_prev, c_prev, evaluate=False):
state = torch.FloatTensor(state).to(self.device).unsqueeze(0).unsqueeze(0)
h_prev = h_prev.to(self.device)
c_prev = c_prev.to(self.device)
if evaluate == False:
action, _, _, h_current, c_current, lstm_out = self.policy.sample(state, h_prev, c_prev, sampling=True)
else:
_, _, action, h_current, c_current, lstm_out = self.policy.sample(state, h_prev, c_prev, sampling=True)
return action.detach().cpu().numpy()[0], h_current.detach(), c_current.detach(), lstm_out.detach().cpu().numpy()
def update_parameters(self, policy_memory, policy_batch_size):
# Sample a batch from memory
#state_batch_p means padded_batch state_batch1 in notes
#state_batch means packed batch state_batch in notes
state_batch_0, action_batch_0, reward_batch_0, next_state_batch_0, mask_batch_0, hidden_in, hidden_out = policy_memory.sample(batch_size=policy_batch_size)
seq_lengths= list(map(len, state_batch_0))
state_batch_p = pad_sequence(state_batch_0, batch_first= True)
action_batch_p = pad_sequence(action_batch_0, batch_first= True)
reward_batch_p = pad_sequence(reward_batch_0, batch_first= True)
next_state_batch_p = pad_sequence(next_state_batch_0, batch_first= True)
mask_batch_p = pad_sequence(mask_batch_0, batch_first= True)
state_batch_p = torch.FloatTensor(state_batch_p).to(self.device)
next_state_batch_p = torch.FloatTensor(next_state_batch_p).to(self.device)
action_batch_p = torch.FloatTensor(action_batch_p).to(self.device)
reward_batch_p = torch.FloatTensor(reward_batch_p).to(self.device)
mask_batch_p = torch.FloatTensor(mask_batch_p).to(self.device)
hidden_in = (hidden_in[0].to(self.device), hidden_in[1].to(self.device))
hidden_out = (hidden_out[0].to(self.device), hidden_out[1].to(self.device))
state_batch = pack_padded_sequence(state_batch_p, seq_lengths, batch_first= True, enforce_sorted= False)
next_state_batch = pack_padded_sequence(next_state_batch_p, seq_lengths, batch_first= True, enforce_sorted= False)
action_batch = pack_padded_sequence(action_batch_p, seq_lengths, batch_first= True, enforce_sorted= False)
reward_batch_pack = pack_padded_sequence(reward_batch_p, seq_lengths, batch_first= True, enforce_sorted= False)
mask_batch_pack = pack_padded_sequence(mask_batch_p, seq_lengths, batch_first= True, enforce_sorted= False)
reward_batch = self.filter_padded(reward_batch_p, seq_lengths)
mask_batch = self.filter_padded(mask_batch_p, seq_lengths)
# We have padded batches of state, action, reward, next_state and mask from here downwards. We also have corresponding sequence lengths seq_lens
# batch_p stands for padded batch or tensor of size (B, L_max, H)
with torch.no_grad():
next_state_action_p, next_state_log_pi_p, _, _, _, _ = self.policy.sample(next_state_batch, h_prev=hidden_out[0], c_prev= hidden_out[1], sampling= False)
next_state_state_action_p = torch.cat((next_state_batch_p, next_state_action_p), dim=2)
next_state_state_action = pack_padded_sequence(next_state_state_action_p, seq_lengths, batch_first= True, enforce_sorted= False)
qf1_next_target, qf2_next_target = self.critic_target(next_state_state_action, hidden_out)
qf1_next_target = self.filter_padded(qf1_next_target, seq_lengths)
qf2_next_target = self.filter_padded(qf2_next_target, seq_lengths)
next_state_log_pi = self.filter_padded(next_state_log_pi_p, seq_lengths)
min_qf_next_target = torch.min(qf1_next_target, qf2_next_target) - self.alpha * next_state_log_pi
next_q_value = reward_batch + mask_batch * self.gamma * (min_qf_next_target)
state_action_batch_p = torch.cat((state_batch_p, action_batch_p), dim=2)
state_action_batch = pack_padded_sequence(state_action_batch_p, seq_lengths, batch_first= True, enforce_sorted= False)
qf1_p, qf2_p = self.critic(state_action_batch, hidden_in) # Two Q-functions to mitigate positive bias in the policy improvement step
qf1 = self.filter_padded(qf1_p, seq_lengths)
qf2 = self.filter_padded(qf2_p, seq_lengths)
qf1_loss = F.mse_loss(qf1, next_q_value) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
qf2_loss = F.mse_loss(qf2, next_q_value) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2]
qf_loss = qf1_loss + qf2_loss
self.critic_optim.zero_grad()
qf_loss.backward()
self.critic_optim.step()
# Update the policy network using the newly proposed method
pi_action_bat_p, log_prob_bat_p, _, _, _, _ = self.policy.sample(state_batch, h_prev= hidden_in[0], c_prev= hidden_in[1], sampling= False)
pi_state_action_batch_p = torch.cat((state_batch_p, pi_action_bat_p), dim=2)
pi_state_action_batch = pack_padded_sequence(pi_state_action_batch_p, seq_lengths, batch_first= True, enforce_sorted= False)
qf1_pi_p, qf2_pi_p = self.critic(pi_state_action_batch, hidden_in)
qf1_pi = self.filter_padded(qf1_pi_p, seq_lengths)
qf2_pi = self.filter_padded(qf2_pi_p, seq_lengths)
min_qf_pi = torch.min(qf1_pi, qf2_pi)
log_prob_bat = self.filter_padded(log_prob_bat_p, seq_lengths)
policy_loss = ((self.alpha * log_prob_bat) - min_qf_pi).mean() # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))]
self.policy_optim.zero_grad()
policy_loss.backward()
self.policy_optim.step()
log_pi = log_prob_bat
if self.automatic_entropy_tuning:
alpha_loss = -(self.log_alpha * (log_pi + self.target_entropy).detach()).mean()
self.alpha_optim.zero_grad()
alpha_loss.backward()
self.alpha_optim.step()
self.alpha = self.log_alpha.exp()
alpha_tlogs = self.alpha.clone() # For TensorboardX logs
else:
alpha_loss = torch.tensor(0.).to(self.device)
alpha_tlogs = torch.tensor(self.alpha) # For TensorboardX logs
soft_update(self.critic_target, self.critic, self.tau)
return qf1_loss.item(), qf2_loss.item(), policy_loss.item(), alpha_loss.item(), alpha_tlogs.item()