Diff of /find_init_pose_ik_cma.py [000000] .. [9f010e]

Switch to side-by-side view

--- a
+++ b/find_init_pose_ik_cma.py
@@ -0,0 +1,58 @@
+import config
+import numpy as np
+from SAC.IK_Framework_Mujoco import Muscle_Env
+from SAC import kinematics_preprocessing_specs
+from SAC.TR_Algorithm import TR_Algorithm
+import cma
+
+### PARAMETERS ###
+parser = config.config_parser()
+args = parser.parse_args()
+
+#Parameters for the CMA-ES algorithm
+sigma= 0.5
+
+### PARAMETERS ###
+parser = config.config_parser()
+args = parser.parse_args()
+
+#Setup the mujoco_env with the given args
+env = Muscle_Env(args.musculoskeletal_model_path[:-len('musculoskeletal_model.xml')] + 'musculo_targets.xml', 0, 0, args)
+
+#Set condition 0 and timpoint 0 for finding the initial position
+env.set_cond_to_simulate(0, 0)
+initial_state = env.get_musculo_state()
+
+# Define the objective function to be minimized for the IK optimization algorithm
+def obj_func(state):
+
+	#Set the env qpos to the state
+	env.set_state_musculo(state)
+
+	#Return the l2 norm of the resuling difference between the musculo bodies and targets
+
+	return np.linalg.norm(env.get_obs_musculo_bodies() - env.get_obs_targets())
+
+
+#Use the CMA-ES algorithm to find the initial position
+es = cma.CMAEvolutionStrategy(len(initial_state) * [0], sigma)
+
+
+while not es.stop():
+
+	initial_states = es.ask()
+	es.tell(initial_states, [TR_Algorithm(obj_func, initial_state, env)[3] for initial_state in initial_states])
+
+	es.logger.add()
+	es.disp()
+
+es.result_pretty()
+cma.plot()
+
+#Saving the result using the 
+print('Initial Pose found and saved using CMA-ES and Inverse Kinematics')
+
+qpos_to_save = env.sim.data.qpos.flat.copy()
+qpos_to_save[env.qpos_idx_musculo] = es.result.xbest
+
+np.save(args.initial_pose_path + '/initial_qpos_opt.npy', qpos_to_save)
\ No newline at end of file