[9f010e]: / SAC / utils.py

Download this file

37 lines (32 with data), 1.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
from pyquaternion import Quaternion
import math
import pandas as pd
import matplotlib.pyplot as pp
import skvideo.io
import os
import pickle
from copy import deepcopy
import torch
def create_log_gaussian(mean, log_std, t):
quadratic = -((0.5 * (t - mean) / (log_std.exp())).pow(2))
l = mean.shape
log_z = log_std
z = l[-1] * math.log(2 * math.pi)
log_p = quadratic.sum(dim=-1) - log_z.sum(dim=-1) - 0.5 * z
return log_p
def logsumexp(inputs, dim=None, keepdim=False):
if dim is None:
inputs = inputs.view(-1)
dim = 0
s, _ = torch.max(inputs, dim=dim, keepdim=True)
outputs = s + (inputs - s).exp().sum(dim=dim, keepdim=True).log()
if not keepdim:
outputs = outputs.squeeze(dim)
return outputs
def soft_update(target, source, tau):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
def hard_update(target, source):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(param.data)