--- a +++ b/SAC/sac.py @@ -0,0 +1,240 @@ +import os +import torch +import torch.nn.functional as F +from torch.optim import Adam +from .utils import soft_update, hard_update +from .model import Actor, Critic +from torch.nn.utils.rnn import pad_sequence +import numpy as np +from .replay_memory import PolicyReplayMemory +import ipdb + +class SAC_Agent(): + def __init__(self, + num_inputs: int, + action_space: int, + hidden_size: int, + lr: float, + gamma: float, + tau: float, + alpha: float, + automatic_entropy_tuning: bool, + model: str, + multi_policy_loss: bool, + alpha_usim:float, + beta_usim:float, + gamma_usim:float, + zeta_nusim:float, + cuda: bool): + + if cuda: + self.device = torch.device("cuda") + else: + self.device = torch.device("cpu") + + #Save the regularization parameters + self.alpha_usim = alpha_usim + self.beta_usim = beta_usim + self.gamma_usim = gamma_usim + self.zeta_nusim = zeta_nusim + + ### SET CRITIC NETWORKS ### + self.critic = Critic(num_inputs, action_space.shape[0], hidden_size).to(self.device) + self.critic_target = Critic(num_inputs, action_space.shape[0], hidden_size).to(self.device) + self.critic_optim = Adam(self.critic.parameters(), lr=lr) + hard_update(self.critic_target, self.critic) + + ### SET ACTOR NETWORK ### + self.actor = Actor(num_inputs, action_space.shape[0], hidden_size, model, action_space=None).to(self.device) + self.actor_optim = Adam(self.actor.parameters(), lr=lr) + + ### SET TRAINING VARIABLES ### + self.model = model + self.multi_policy_loss = multi_policy_loss + self.gamma = gamma + self.tau = tau + self.alpha = alpha + self.hidden_size= hidden_size + self.automatic_entropy_tuning = automatic_entropy_tuning + + # Target Entropy = −dim(A) (e.g. , -6 for HalfCheetah-v2) as given in the paper + if automatic_entropy_tuning: + self.target_entropy = -torch.prod(torch.Tensor(action_space.shape).to(self.device)).item() + self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device) + self.alpha_optim = Adam([self.log_alpha], lr=lr) + + #This loss encourages the simple low-dimensional dynamics in the RNN activity + def _policy_loss_2(self, policy_state_batch, h0, len_seq, mask_seq): + + # Sample the hidden weights of the RNN + J_rnn_w = self.actor.rnn.weight_hh_l0 #These weights would be of the size (hidden_dim, hidden_dim) + + #Sample the output of the RNN for the policy_state_batch + rnn_out_r, _ = self.actor.forward_for_simple_dynamics(policy_state_batch, h0, sampling=False, len_seq=len_seq) + rnn_out_r = rnn_out_r.reshape(-1, rnn_out_r.size()[-1])[mask_seq] + + #Reshape the policy hidden weights vector + J_rnn_w = J_rnn_w.unsqueeze(0).repeat(rnn_out_r.size()[0], 1, 1) + rnn_out_r = 1 - torch.pow(rnn_out_r, 2) + + R_j = torch.mul(J_rnn_w, rnn_out_r.unsqueeze(-1)) + + policy_loss_2 = torch.norm(R_j)**2 + + return policy_loss_2 + + #This loss encourages the minimization of the firing rates for the linear and the RNN layer. + def _policy_loss_3(self, policy_state_batch, h0, len_seq, mask_seq): + + #Find the loss encouraging the minimization of the firing rates for the linear and the RNN layer + #Sample the output of the RNN for the policy_state_batch + rnn_out_r, linear_out = self.actor.forward_for_simple_dynamics(policy_state_batch, h0, sampling=False, len_seq=len_seq) + rnn_out_r = rnn_out_r.reshape(-1, rnn_out_r.size()[-1])[mask_seq] + linear_out = linear_out.reshape(-1, linear_out.size()[-1])[mask_seq] + + policy_loss_3 = torch.norm(rnn_out_r)**2 + torch.norm(linear_out)**2 + + return policy_loss_3 + + #This loss encourages the minimization of the input and output weights of the RNN and the layers downstream/ + #upstream of the RNN. + def _policy_loss_4(self): + + #Find the loss encouraging the minimization of the input and output weights of the RNN and the layers downstream + #and upstream of the RNN + #Sample the input weights of the RNN + J_rnn_i = self.actor.rnn.weight_ih_l0 + J_in1 = self.actor.linear1.weight + + #Sample the output weights + J_out1 = self.actor.mean_linear.weight + J_out2 = self.actor.log_std_linear.weight + + policy_loss_4 = torch.norm(J_in1)**2 + torch.norm(J_rnn_i)**2 + torch.norm(J_out1)**2 + torch.norm(J_out2)**2 + + return policy_loss_4 + + #Define a loss function that constraints a subset of the RNN nodes to the experimental neural data + def _policy_loss_exp_neural_constrain(self, policy_state_batch, h0, len_seq, neural_activity_batch, na_idx_batch, mask_seq): + #Find the loss for neural activity constrainting + lstm_out = self.actor.forward_lstm(policy_state_batch, h0, sampling= False, len_seq= len_seq) + lstm_out = lstm_out.reshape(-1, lstm_out.size()[-1])[mask_seq] + lstm_activity = lstm_out[:, 0:neural_activity_batch.shape[-1]] + + #Now filter the neural activity batch and lstm activity batch using the na_idx batch + with torch.no_grad(): + na_idx_batch = na_idx_batch.squeeze(-1) > 0 + + lstm_activity = lstm_activity[na_idx_batch] + neural_activity_batch = neural_activity_batch[na_idx_batch] + + policy_loss_exp_c = F.mse_loss(lstm_activity, neural_activity_batch) + + return policy_loss_exp_c + + + def select_action(self, state: np.ndarray, h_prev: torch.Tensor, evaluate=False) -> (np.ndarray, torch.Tensor, np.ndarray): + + state = torch.FloatTensor(state).to(self.device).unsqueeze(0).unsqueeze(0) + h_prev = h_prev.to(self.device) + + ### IF TRAINING ### + if evaluate == False: + # get action sampled from gaussian + action, _, _, h_current, _, rnn_out, rnn_in = self.actor.sample(state, h_prev, sampling=True, len_seq=None) + ### IF TESTING ### + else: + # get the action without noise + _, _, action, h_current, _, rnn_out, rnn_in = self.actor.sample(state, h_prev, sampling=True, len_seq=None) + + return action.detach().cpu().numpy()[0], h_current.detach(), rnn_out.detach().cpu().numpy(), rnn_in.detach().cpu().numpy() + + def update_parameters(self, policy_memory: PolicyReplayMemory, policy_batch_size: int) -> (int, int, int): + + ### SAMPLE FROM REPLAY ### + state_batch, action_batch, reward_batch, next_state_batch, mask_batch, h_batch, policy_state_batch, neural_activity_batch, na_idx_batch = policy_memory.sample(batch_size=policy_batch_size) + + ### CONVERT DATA TO TENSOR ### + state_batch = torch.FloatTensor(state_batch).to(self.device) + next_state_batch = torch.FloatTensor(next_state_batch).to(self.device) + action_batch = torch.FloatTensor(action_batch).to(self.device) + reward_batch = torch.FloatTensor(reward_batch).to(self.device).unsqueeze(1) + mask_batch = torch.FloatTensor(mask_batch).to(self.device).unsqueeze(1) + h_batch = torch.FloatTensor(h_batch).to(self.device).permute(1, 0, 2) + neural_activity_batch = torch.FloatTensor(neural_activity_batch).to(self.device) + na_idx_batch = torch.FloatTensor(na_idx_batch).to(self.device) + + h0 = torch.zeros(size=(1, next_state_batch.shape[0], self.hidden_size)).to(self.device) + ### SAMPLE NEXT Q VALUE FOR CRITIC LOSS ### + with torch.no_grad(): + next_state_action, next_state_log_pi, _, _, _, _, _ = self.actor.sample(next_state_batch.unsqueeze(1), h_batch, sampling=True) + qf1_next_target, qf2_next_target = self.critic_target(next_state_batch, next_state_action) + min_qf_next_target = torch.min(qf1_next_target, qf2_next_target) - self.alpha * next_state_log_pi + next_q_value = reward_batch + mask_batch * self.gamma * (min_qf_next_target) + + ### CALCULATE CRITIC LOSS ### + qf1, qf2 = self.critic(state_batch, action_batch) # Two Q-functions to mitigate positive bias in the policy improvement step + qf1_loss = F.mse_loss(qf1, next_q_value) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2] + qf2_loss = F.mse_loss(qf2, next_q_value) # JQ = 𝔼(st,at)~D[0.5(Q1(st,at) - r(st,at) - γ(𝔼st+1~p[V(st+1)]))^2] + qf_loss = qf1_loss + qf2_loss + + ### TAKE GRAIDENT STEP ### + self.critic_optim.zero_grad() + qf_loss.backward() + self.critic_optim.step() + + ### SAMPLE FROM ACTOR NETWORK ### + h0 = torch.zeros(size=(1, len(policy_state_batch), self.hidden_size)).to(self.device) + len_seq = list(map(len, policy_state_batch)) + policy_state_batch = torch.FloatTensor(pad_sequence(policy_state_batch, batch_first= True)).to(self.device) + pi_action_bat, log_prob_bat, _, _, mask_seq, _, _ = self.actor.sample(policy_state_batch, h0, sampling=False, len_seq=len_seq) + + ### MASK POLICY STATE BATCH ### + policy_state_batch_pi = policy_state_batch.reshape(-1, policy_state_batch.size()[-1])[mask_seq] + + ### GET VALUE OF CURRENT STATE AND ACTION PAIRS ### + qf1_pi, qf2_pi = self.critic(policy_state_batch_pi, pi_action_bat) + min_qf_pi = torch.min(qf1_pi, qf2_pi) + + ### CALCULATE POLICY LOSS ### + task_loss = ((self.alpha * log_prob_bat) - min_qf_pi).mean() # Jπ = 𝔼st∼D,εt∼N[α * logπ(f(εt;st)|st) − Q(st,f(εt;st))] + policy_loss = task_loss + + ############################ + # ADDITIONAL POLICY LOSSES # + ############################ + + if self.multi_policy_loss: + + loss_simple_dynamics = self._policy_loss_2(policy_state_batch, h0, len_seq, mask_seq) + loss_activations_min = self._policy_loss_3(policy_state_batch, h0, len_seq, mask_seq) + loss_weights_min = self._policy_loss_4() + loss_exp_constrain = self._policy_loss_exp_neural_constrain(policy_state_batch, h0, len_seq, neural_activity_batch, na_idx_batch, mask_seq) + + ### CALCULATE FINAL POLICY LOSS ### + #To implement nuSim training use a weighting of 1e+04 with loss_exp_constrain + policy_loss += (self.alpha_usim*(loss_simple_dynamics)) \ + + (self.beta_usim*(loss_activations_min)) \ + + (self.gamma_usim*(loss_weights_min)) \ + + (self.zeta_nusim*(loss_exp_constrain)) + + ### TAKE GRADIENT STEP ### + self.actor_optim.zero_grad() + policy_loss.backward() + self.actor_optim.step() + + ### AUTOMATIC ENTROPY TUNING ### + log_pi = log_prob_bat + if self.automatic_entropy_tuning: + alpha_loss = -(self.log_alpha * (log_pi + self.target_entropy).detach()).mean() + + self.alpha_optim.zero_grad() + alpha_loss.backward() + self.alpha_optim.step() + + self.alpha = self.log_alpha.exp() + + ### SOFT UPDATE OF CRITIC TARGET ### + soft_update(self.critic_target, self.critic, self.tau) + + return qf1_loss.item(), qf2_loss.item(), policy_loss.item() \ No newline at end of file