[9f010e]: / SAC / RL_Framework_Mujoco.py

Download this file

600 lines (448 with data), 25.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
from collections import OrderedDict
import os
from gym import error, spaces
from gym.utils import seeding
import numpy as np
from os import path
import gym
import pickle
import numpy as np
from gym import utils
from . import sensory_feedback_specs, reward_function_specs, perturbation_specs
from . import kinematics_preprocessing_specs
try:
import mujoco_py
except ImportError as e:
raise error.DependencyNotInstalled("{}. (HINT: you need to install mujoco_py, and also perform the setup instructions here: https://github.com/openai/mujoco-py/.)".format(e))
import ipdb
DEFAULT_SIZE = 500
def convert_observation_to_space(observation):
if isinstance(observation, dict):
space = spaces.Dict(OrderedDict([
(key, convert_observation_to_space(value))
for key, value in observation.items()
]))
elif isinstance(observation, np.ndarray):
low = np.full(observation.shape, -float('inf'), dtype=np.float32)
high = np.full(observation.shape, float('inf'), dtype=np.float32)
space = spaces.Box(low, high, dtype=observation.dtype)
else:
raise NotImplementedError(type(observation), observation)
return space
class MujocoEnv(gym.Env):
"""Superclass for all MuJoCo environments.
"""
def __init__(self, model_path, frame_skip, args):
#Set the istep to zero
self.istep = 0
self.model_path = model_path
self.initial_pose_path = args.initial_pose_path
self.kinematics_path = args.kinematics_path
self.nusim_data_path = args.nusim_data_path
self.stim_data_path = args.stimulus_data_path
self.mode_to_sim = args.mode
self.frame_skip = frame_skip
self.frame_repeat = args.frame_repeat
self.model = mujoco_py.load_model_from_path(model_path)
self.sim = mujoco_py.MjSim(self.model)
self.data = self.sim.data
#Set the simulation timestep
if args.sim_dt != 0:
self.model.opt.timestep = args.sim_dt
#Save all the sensory feedback specs for use in the later functions
self.sfs_stimulus_feedback = args.stimulus_feedback
self.sfs_proprioceptive_feedback = args.proprioceptive_feedback
self.sfs_muscle_forces = args.muscle_forces
self.sfs_joint_feedback = args.joint_feedback
self.sfs_visual_feedback = args.visual_feedback
self.sfs_visual_feedback_bodies = args.visual_feedback_bodies
self.sfs_visual_distance_bodies = args.visual_distance_bodies
self.sfs_visual_velocity = args.visual_velocity
self.sfs_sensory_delay_timepoints = args.sensory_delay_timepoints
# Load the experimental kinematics x and y coordinates from the data
with open(self.kinematics_path + '/kinematics.pkl', 'rb') as f:
kin_train_test = pickle.load(f)
kin_train = kin_train_test['train'] #[num_conds][num_targets, num_coords, timepoints]
kin_test = kin_train_test['test'] #[num_conds][num_targets, num_coords, timepoints]
#Load the neural activities for nusim if they exist
if path.isfile(self.nusim_data_path + '/neural_activity.pkl'):
self.nusim_data_exists = True
with open(self.nusim_data_path + '/neural_activity.pkl', 'rb') as f:
nusim_neural_activity = pickle.load(f)
na_train = nusim_neural_activity['train']
na_test = nusim_neural_activity['test']
else:
self.nusim_data_exists = False
assert args.zeta_nusim == 0, "Neural Activity not provided for nuSim training"
#Create a dummy neural activity as it is not being used anywhere
na_train = kin_train_test['train']
na_test = kin_train_test['test']
#Normalize the neural activity
for na_idx, na_item in na_train.items():
na_train[na_idx] = na_item/np.max(na_item)
for na_idx, na_item in na_test.items():
na_test[na_idx] = na_item/np.max(na_item)
#Load the stimulus feedback
if path.isfile(self.stim_data_path + '/stimulus_data.pkl'):
self.stim_fb_exists = True
with open(self.stim_data_path + '/stimulus_data.pkl', 'rb') as f:
stim_data = pickle.load(f)
self.stim_data_train = stim_data['train'] #[num_conds][timepoints, num_features]
self.stim_data_test = stim_data['test'] #[num_conds][timepoints, num_features]
else:
assert args.stimulus_feedback == False, "Expecting stimulus feedback, stimulus data file not provided"
self.stim_fb_exists = False
self.n_fixedsteps = args.n_fixedsteps
self.timestep_limit = args.timestep_limit
self.radius = args.trajectory_scaling
self.center = args.center
#The threshold is varied dynamically in the step and reset functions
self.threshold_user = 0.064 #Previously it was 0.1
#Setup coord_idx for setting the neural activity loss during nusim training
self.coord_idx=0
self.na_train = na_train
self.na_test = na_test
self.na_to_sim = na_train
#Kinematics preprocessing for training and testing kinematics
#Preprocess training kinematics
for i_target in range(kin_train[0].shape[0]):
for i_cond in range(len(kin_train)):
for i_coord in range(kin_train[i_cond].shape[1]):
kin_train[i_cond][i_target, i_coord, :] = kin_train[i_cond][i_target, i_coord, :] / self.radius[i_target]
kin_train[i_cond][i_target, i_coord, :] = kin_train[i_cond][i_target, i_coord, :] + self.center[i_target][i_coord]
#Preprocess testing kinematics
for i_target in range(kin_test[0].shape[0]):
for i_cond in range(len(kin_test)):
for i_coord in range(kin_test[i_cond].shape[1]):
kin_test[i_cond][i_target, i_coord, :] = kin_test[i_cond][i_target, i_coord, :] / self.radius[i_target]
kin_test[i_cond][i_target, i_coord, :] = kin_test[i_cond][i_target, i_coord, :] + self.center[i_target][i_coord]
self.kin_train = kin_train
self.kin_test = kin_test
self.kin_to_sim = self.kin_train
self.n_exp_conds = len(self.kin_to_sim)
self.current_cond_to_sim = 0
#Set the stim data
if self.stim_fb_exists:
self.stim_data_sim = self.stim_data_train
self.viewer = None
self._viewers = {}
self.metadata = {
'render.modes': ['human', 'rgb_array', 'depth_array'],
'video.frames_per_second': int(np.round(1.0 / self.dt))
}
self.init_qpos = np.load(args.initial_pose_path + '/initial_qpos_opt.npy')
#Start the musculo model with zero initial qvels
self.init_qvel = np.load(args.initial_pose_path + '/initial_qpos_opt.npy')*0
self._set_action_space()
self._set_observation_space(self._get_obs())
self.seed()
def update_kinematics_for_test(self):
#Simulate the environment on both the training and testing kinematics
#First update the keys of self.kin_test
for cond in range(len(self.kin_test)):
self.kin_test[len(self.kin_train) + cond] = self.kin_test.pop(cond)
#Update the kinematics to simulate
self.kin_to_sim.update(self.kin_test)
#Update the number of experimental conditions
self.n_exp_conds = len(self.kin_to_sim)
#Repeat for the neural activity
#First update the keys of self.na_test
for cond in range(len(self.na_test)):
self.na_test[len(self.na_train) + cond] = self.na_test.pop(cond)
#Update the kinematics to simulate
self.na_to_sim.update(self.na_test)
#Repeat for the stimulus feedback
#First update the keys of self.stim_data_test
if self.stim_fb_exists:
for cond in range(len(self.stim_data_test)):
self.stim_data_test[len(self.stim_data_train) + cond] = self.stim_data_test.pop(cond)
#Update the kinematics to simulate
self.stim_data_sim.update(self.stim_data_test)
def _set_action_space(self):
bounds = self.model.actuator_ctrlrange.copy().astype(np.float32)
low, high = bounds.T
self.action_space = spaces.Box(low=low, high=high, dtype=np.float32)
return self.action_space
def _set_observation_space(self, observation):
self.observation_space = convert_observation_to_space(observation)
return self.observation_space
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
# methods to override:
# ----------------------------
def reset_model(self):
"""
Reset the robot degrees of freedom (qpos and qvel).
Implement this in each subclass.
"""
raise NotImplementedError
def viewer_setup(self):
"""
This method is called when the viewer is initialized.
Optionally implement this method, if you need to tinker with camera position
and so forth.
"""
pass
# -----------------------------
def reset(self, cond_to_select):
#Set the experimental condition for training
self.current_cond_to_sim = cond_to_select
self.neural_activity = self.na_to_sim[cond_to_select]
#Set the high-level task scalar signal
self.condition_scalar = (self.kin_to_sim[self.current_cond_to_sim].shape[-1] - 600) / (1319 - 600)
#Set the max episode steps to reset after one cycle for multiple cycles
self._max_episode_steps = self.kin_to_sim[self.current_cond_to_sim].shape[-1] + self.n_fixedsteps
self.istep= 0
self.coord_idx = 0
self.theta= np.pi
self.threshold= self.threshold_user
self.sim.reset()
ob = self.reset_model()
return ob
def set_state(self, qpos, qvel):
assert qpos.shape == (self.model.nq, ) and qvel.shape == (self.model.nv, )
old_state= self.sim.get_state()
new_state= mujoco_py.MjSimState(old_state.time, qpos, qvel,
old_state.act, old_state.udd_state)
self.sim.set_state(new_state)
self.sim.forward()
@property
def dt(self):
return self.model.opt.timestep * self.frame_skip
def do_simulation(self, ctrl, n_frames):
self.sim.data.ctrl[:]= ctrl
for _ in range(n_frames):
self.sim.data.ctrl[:]= ctrl
self.sim.step()
self.sim.forward()
def render(self,
mode='human',
width=DEFAULT_SIZE,
height=DEFAULT_SIZE,
camera_id=0,
camera_name=None):
if mode == 'rgb_array' or mode == 'depth_array':
if camera_id is not None and camera_name is not None:
raise ValueError("Both `camera_id` and `camera_name` cannot be"
" specified at the same time.")
no_camera_specified = camera_name is None and camera_id is None
if no_camera_specified:
camera_name = 'track'
if camera_id is None and camera_name in self.model._camera_name2id:
camera_id = self.model.camera_name2id(camera_name)
self._get_viewer(mode).render(width, height, camera_id=camera_id)
if mode == 'rgb_array':
# window size used for old mujoco-py:
data = self._get_viewer(mode).read_pixels(width, height, depth=False)
# original image is upside-down, so flip it
return data[::-1, :, :]
elif mode == 'depth_array':
self._get_viewer(mode).render(width, height)
# window size used for old mujoco-py:
# Extract depth part of the read_pixels() tuple
data = self._get_viewer(mode).read_pixels(width, height, depth=True)[1]
# original image is upside-down, so flip it
return data[::-1, :]
elif mode == 'human':
self._get_viewer(mode).render()
def close(self):
if self.viewer is not None:
# self.viewer.finish()
self.viewer = None
self._viewers = {}
def _get_viewer(self, mode):
self.viewer = self._viewers.get(mode)
if self.viewer is None:
if mode == 'human':
self.viewer = mujoco_py.MjViewer(self.sim)
elif mode == 'rgb_array' or mode == 'depth_array':
self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, -1)
self.viewer_setup()
self._viewers[mode] = self.viewer
return self.viewer
def get_body_com(self, body_name):
return self.data.get_body_xpos(body_name).copy()
def state_vector(self):
return np.concatenate([
self.sim.data.qpos.flat,
self.sim.data.qvel.flat
])
class Muscle_Env(MujocoEnv):
def __init__(self, model_path, frame_skip, args):
MujocoEnv.__init__(self, model_path, frame_skip, args)
def get_cost(self, action):
scaler= 1/50
act= np.array(action)
cost= scaler * np.sum(np.abs(act))
return cost
def is_done(self):
#Define the distance threshold termination criteria
target_position= self.sim.data.get_body_xpos("target0").copy()
hand_position= self.sim.data.get_body_xpos("hand").copy()
criteria= hand_position - target_position
if self.istep < self.timestep_limit:
if np.abs(criteria[0]) > self.threshold or np.abs(criteria[1]) > self.threshold or np.abs(criteria[2]) > self.threshold:
return True
else:
return False
else:
return True
def step(self, action):
self.istep += 1
if self.istep > self.n_fixedsteps and self.istep < 100:
self.threshold = 0.032
elif self.istep >= 100 and self.istep<150:
self.threshold = 0.016
elif self.istep >=150:
self.threshold = 0.008
#Save the xpos of the musculo bodies for visual vels
if len(self.sfs_visual_velocity) != 0:
prev_body_xpos = []
for musculo_body in self.sfs_visual_velocity:
body_xpos = self.sim.data.get_body_xpos(musculo_body)
prev_body_xpos = [*prev_body_xpos, *body_xpos]
#Now carry out one step of the MuJoCo simulation
self.do_simulation(action, self.frame_skip)
#Currently the reward function is the function of the delayed state, current simulator state, action and threshold
if self.sfs_sensory_delay_timepoints != 0:
reward= reward_function_specs.reward_function(self.state_to_return[-1], self.sim, action, self.threshold)
else:
#Pass a dummy variable for the delayed state feedback
reward= reward_function_specs.reward_function(0, self.sim, action, self.threshold)
cost= self.get_cost(action)
final_reward= (5*reward) #- (0.5*cost)
done= self.is_done()
self.upd_theta()
visual_vels = []
#Find the visual vels after the simulation
if len(self.sfs_visual_velocity) != 0:
current_body_xpos = []
for musculo_body in self.sfs_visual_velocity:
body_xpos = self.sim.data.get_body_xpos(musculo_body)
current_body_xpos = [*current_body_xpos, *body_xpos]
#Find the velocity
visual_vels = (np.abs(np.array(prev_body_xpos) - np.array(current_body_xpos)) / self.dt).tolist()
ob= self._get_obs()
#process visual velocity feedback
if self.mode_to_sim in ["sensory_pert"]:
visual_vels = sensory_feedback_specs.process_visual_velocity_pert(visual_vels, self.istep)
visual_vels = sensory_feedback_specs.process_visual_velocity(visual_vels)
if self.mode_to_sim in ["SFE"] and "visual_velocity" in perturbation_specs.sf_elim:
obser= [*ob, *[ele*0 for ele in visual_vels]]
else:
obser= [*ob, *visual_vels]
#Append the current observation to the start of the list
#Return the last observation later on
self.state_to_return.insert(0, obser)
return self.state_to_return.pop(), final_reward, done, {}
def viewer_setup(self):
self.viewer.cam.trackbodyid = 0
def reset_model(self):
#Set the state to the initial pose
self.set_state(self.init_qpos, self.init_qvel)
#Now get the observation of the initial state and append zeros corresponding to the velocity of musculo bodies
#as specified in sensory_feedback_specs (len*3 for x/y/z vel for each musculo body)
initial_state_obs = [*self._get_obs(), *np.zeros(len(self.sfs_visual_velocity)*3)]
#Maintain a list of state observations for implementing the state delay
self.state_to_return = [[0]*len(initial_state_obs)] * self.sfs_sensory_delay_timepoints
#Insert the inital state obs to the start of the list
self.state_to_return.insert(0, initial_state_obs)
#Return the last element of the state_to_return
return self.state_to_return.pop()
def _get_obs(self):
sensory_feedback = []
if self.sfs_stimulus_feedback == True:
stim_feedback = self.stim_data_sim[self.current_cond_to_sim][max(0, self.istep - 1), :].tolist() #other feedbacks are in in lists
#process through the given function for muscle lens and muscle vels
if self.mode_to_sim in ["sensory_pert"]:
stim_feedback = sensory_feedback_specs.process_stimulus_pert(stim_feedback, self.istep)
stim_feedback = sensory_feedback_specs.process_stimulus(stim_feedback)
if self.mode_to_sim in ["SFE"] and "stimulus" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in stim_feedback]]
else:
sensory_feedback = [*sensory_feedback, *stim_feedback]
if self.sfs_proprioceptive_feedback == True:
muscle_lens = self.sim.data.actuator_length.flat.copy()
muscle_vels = self.sim.data.actuator_velocity.flat.copy()
#process through the given function for muscle lens and muscle vels
if self.mode_to_sim in ["sensory_pert"]:
muscle_lens, muscle_vels = sensory_feedback_specs.process_proprioceptive_pert(muscle_lens, muscle_vels, self.istep)
muscle_lens, muscle_vels = sensory_feedback_specs.process_proprioceptive(muscle_lens, muscle_vels)
if self.mode_to_sim in ["SFE"] and "proprioceptive" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in muscle_lens], *[ele*0 for ele in muscle_vels]]
else:
sensory_feedback = [*sensory_feedback, *muscle_lens, *muscle_vels]
if self.sfs_muscle_forces == True:
actuator_forces = self.sim.data.qfrc_actuator.flat.copy()
#process
if self.mode_to_sim in ["sensory_pert"]:
actuator_forces = sensory_feedback_specs.process_muscle_forces_pert(actuator_forces, self.istep)
actuator_forces = sensory_feedback_specs.process_muscle_forces(actuator_forces)
if self.mode_to_sim in ["SFE"] and "muscle_forces" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in actuator_forces]]
else:
sensory_feedback = [*sensory_feedback, *actuator_forces]
if self.sfs_joint_feedback == True:
sensory_qpos = self.sim.data.qpos.flat.copy()
sensory_qvel = self.sim.data.qvel.flat.copy()
#process
if self.mode_to_sim in ["sensory_pert"]:
sensory_qpos, sensory_qvel = sensory_feedback_specs.process_joint_feedback_pert(sensory_qpos, sensory_qvel, self.istep)
sensory_qpos, sensory_qvel = sensory_feedback_specs.process_joint_feedback(sensory_qpos, sensory_qvel)
if self.mode_to_sim in ["SFE"] and "joint_feedback" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in sensory_qpos], *[ele*0 for ele in sensory_qvel]]
else:
sensory_feedback = [*sensory_feedback, *sensory_qpos, *sensory_qvel]
if self.sfs_visual_feedback == True:
#Check if the user specified the musculo bodies to be included
assert len(self.sfs_visual_feedback_bodies) != 0
visual_xyz_coords = []
for musculo_body in self.sfs_visual_feedback_bodies:
visual_xyz_coords = [*visual_xyz_coords, *self.sim.data.get_body_xpos(musculo_body)]
if self.mode_to_sim in ["sensory_pert"]:
visual_xyz_coords = sensory_feedback_specs.process_visual_position_pert(visual_xyz_coords, self.istep)
visual_xyz_coords = sensory_feedback_specs.process_visual_position(visual_xyz_coords)
if self.mode_to_sim in ["SFE"] and "visual_position" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in visual_xyz_coords]]
else:
sensory_feedback = [*sensory_feedback, *visual_xyz_coords]
if len(self.sfs_visual_distance_bodies) != 0:
visual_xyz_distance = []
for musculo_tuple in self.sfs_visual_distance_bodies:
body0_xyz = self.sim.data.get_body_xpos(musculo_tuple[0])
body1_xyz = self.sim.data.get_body_xpos(musculo_tuple[1])
tuple_dist = (body0_xyz - body1_xyz).tolist()
visual_xyz_distance = [*visual_xyz_distance, *tuple_dist]
#process
if self.mode_to_sim in ["sensory_pert"]:
visual_xyz_distance = sensory_feedback_specs.process_visual_distance_pert(visual_xyz_distance, self.istep)
visual_xyz_distance = sensory_feedback_specs.process_visual_distance(visual_xyz_distance)
if self.mode_to_sim in ["SFE"] and "visual_distance" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in visual_xyz_distance]]
else:
sensory_feedback = [*sensory_feedback, *visual_xyz_distance]
return np.array(sensory_feedback)
def upd_theta(self):
if self.istep <= self._max_episode_steps:
if self.istep <= self.n_fixedsteps:
self.tpoint_to_sim = 0
else:
self.tpoint_to_sim = int(((self.kin_to_sim[self.current_cond_to_sim].shape[-1]-1)/(self._max_episode_steps-self.n_fixedsteps)) * (self.istep - self.n_fixedsteps))
else:
self.tpoint_to_sim = int(((self.kin_to_sim[self.current_cond_to_sim].shape[-1]-1)/(self._max_episode_steps-self.n_fixedsteps)) * ((self.istep - self.n_fixedsteps) % (self._max_episode_steps - self.n_fixedsteps)))
self.coord_idx = self.tpoint_to_sim
coords_to_sim = self.kin_to_sim[self.current_cond_to_sim]
crnt_state = self.sim.get_state()
for i_target in range(self.kin_to_sim[self.current_cond_to_sim].shape[0]):
if kinematics_preprocessing_specs.xyz_target[i_target][0]:
x_joint_idx= self.model.get_joint_qpos_addr(f"box:x{i_target}")
crnt_state.qpos[x_joint_idx] = coords_to_sim[i_target, 0, self.tpoint_to_sim]
if kinematics_preprocessing_specs.xyz_target[i_target][1]:
y_joint_idx= self.model.get_joint_qpos_addr(f"box:y{i_target}")
crnt_state.qpos[y_joint_idx] = coords_to_sim[i_target, kinematics_preprocessing_specs.xyz_target[i_target][0], self.tpoint_to_sim]
if kinematics_preprocessing_specs.xyz_target[i_target][2]:
z_joint_idx= self.model.get_joint_qpos_addr(f"box:z{i_target}")
crnt_state.qpos[z_joint_idx] = coords_to_sim[i_target, kinematics_preprocessing_specs.xyz_target[i_target][0] + kinematics_preprocessing_specs.xyz_target[i_target][1], self.tpoint_to_sim]
#Now set the state
self.set_state(crnt_state.qpos, crnt_state.qvel)