from collections import OrderedDict
import os
from gym import error, spaces
from gym.utils import seeding
import numpy as np
from os import path
import gym
import pickle
import numpy as np
from gym import utils
from . import sensory_feedback_specs, reward_function_specs, perturbation_specs
from . import kinematics_preprocessing_specs
try:
import mujoco_py
except ImportError as e:
raise error.DependencyNotInstalled("{}. (HINT: you need to install mujoco_py, and also perform the setup instructions here: https://github.com/openai/mujoco-py/.)".format(e))
import ipdb
DEFAULT_SIZE = 500
def convert_observation_to_space(observation):
if isinstance(observation, dict):
space = spaces.Dict(OrderedDict([
(key, convert_observation_to_space(value))
for key, value in observation.items()
]))
elif isinstance(observation, np.ndarray):
low = np.full(observation.shape, -float('inf'), dtype=np.float32)
high = np.full(observation.shape, float('inf'), dtype=np.float32)
space = spaces.Box(low, high, dtype=observation.dtype)
else:
raise NotImplementedError(type(observation), observation)
return space
class MujocoEnv(gym.Env):
"""Superclass for all MuJoCo environments.
"""
def __init__(self, model_path, frame_skip, args):
#Set the istep to zero
self.istep = 0
self.model_path = model_path
self.initial_pose_path = args.initial_pose_path
self.kinematics_path = args.kinematics_path
self.nusim_data_path = args.nusim_data_path
self.stim_data_path = args.stimulus_data_path
self.mode_to_sim = args.mode
self.frame_skip = frame_skip
self.frame_repeat = args.frame_repeat
self.model = mujoco_py.load_model_from_path(model_path)
self.sim = mujoco_py.MjSim(self.model)
self.data = self.sim.data
#Set the simulation timestep
if args.sim_dt != 0:
self.model.opt.timestep = args.sim_dt
#Save all the sensory feedback specs for use in the later functions
self.sfs_stimulus_feedback = args.stimulus_feedback
self.sfs_proprioceptive_feedback = args.proprioceptive_feedback
self.sfs_muscle_forces = args.muscle_forces
self.sfs_joint_feedback = args.joint_feedback
self.sfs_visual_feedback = args.visual_feedback
self.sfs_visual_feedback_bodies = args.visual_feedback_bodies
self.sfs_visual_distance_bodies = args.visual_distance_bodies
self.sfs_visual_velocity = args.visual_velocity
self.sfs_sensory_delay_timepoints = args.sensory_delay_timepoints
# Load the experimental kinematics x and y coordinates from the data
with open(self.kinematics_path + '/kinematics.pkl', 'rb') as f:
kin_train_test = pickle.load(f)
kin_train = kin_train_test['train'] #[num_conds][num_targets, num_coords, timepoints]
kin_test = kin_train_test['test'] #[num_conds][num_targets, num_coords, timepoints]
#Load the neural activities for nusim if they exist
if path.isfile(self.nusim_data_path + '/neural_activity.pkl'):
self.nusim_data_exists = True
with open(self.nusim_data_path + '/neural_activity.pkl', 'rb') as f:
nusim_neural_activity = pickle.load(f)
na_train = nusim_neural_activity['train']
na_test = nusim_neural_activity['test']
else:
self.nusim_data_exists = False
assert args.zeta_nusim == 0, "Neural Activity not provided for nuSim training"
#Create a dummy neural activity as it is not being used anywhere
na_train = kin_train_test['train']
na_test = kin_train_test['test']
#Normalize the neural activity
for na_idx, na_item in na_train.items():
na_train[na_idx] = na_item/np.max(na_item)
for na_idx, na_item in na_test.items():
na_test[na_idx] = na_item/np.max(na_item)
#Load the stimulus feedback
if path.isfile(self.stim_data_path + '/stimulus_data.pkl'):
self.stim_fb_exists = True
with open(self.stim_data_path + '/stimulus_data.pkl', 'rb') as f:
stim_data = pickle.load(f)
self.stim_data_train = stim_data['train'] #[num_conds][timepoints, num_features]
self.stim_data_test = stim_data['test'] #[num_conds][timepoints, num_features]
else:
assert args.stimulus_feedback == False, "Expecting stimulus feedback, stimulus data file not provided"
self.stim_fb_exists = False
self.n_fixedsteps = args.n_fixedsteps
self.timestep_limit = args.timestep_limit
self.radius = args.trajectory_scaling
self.center = args.center
#The threshold is varied dynamically in the step and reset functions
self.threshold_user = 0.064 #Previously it was 0.1
#Setup coord_idx for setting the neural activity loss during nusim training
self.coord_idx=0
self.na_train = na_train
self.na_test = na_test
self.na_to_sim = na_train
#Kinematics preprocessing for training and testing kinematics
#Preprocess training kinematics
for i_target in range(kin_train[0].shape[0]):
for i_cond in range(len(kin_train)):
for i_coord in range(kin_train[i_cond].shape[1]):
kin_train[i_cond][i_target, i_coord, :] = kin_train[i_cond][i_target, i_coord, :] / self.radius[i_target]
kin_train[i_cond][i_target, i_coord, :] = kin_train[i_cond][i_target, i_coord, :] + self.center[i_target][i_coord]
#Preprocess testing kinematics
for i_target in range(kin_test[0].shape[0]):
for i_cond in range(len(kin_test)):
for i_coord in range(kin_test[i_cond].shape[1]):
kin_test[i_cond][i_target, i_coord, :] = kin_test[i_cond][i_target, i_coord, :] / self.radius[i_target]
kin_test[i_cond][i_target, i_coord, :] = kin_test[i_cond][i_target, i_coord, :] + self.center[i_target][i_coord]
self.kin_train = kin_train
self.kin_test = kin_test
self.kin_to_sim = self.kin_train
self.n_exp_conds = len(self.kin_to_sim)
self.current_cond_to_sim = 0
#Set the stim data
if self.stim_fb_exists:
self.stim_data_sim = self.stim_data_train
self.viewer = None
self._viewers = {}
self.metadata = {
'render.modes': ['human', 'rgb_array', 'depth_array'],
'video.frames_per_second': int(np.round(1.0 / self.dt))
}
self.init_qpos = np.load(args.initial_pose_path + '/initial_qpos_opt.npy')
#Start the musculo model with zero initial qvels
self.init_qvel = np.load(args.initial_pose_path + '/initial_qpos_opt.npy')*0
self._set_action_space()
self._set_observation_space(self._get_obs())
self.seed()
def update_kinematics_for_test(self):
#Simulate the environment on both the training and testing kinematics
#First update the keys of self.kin_test
for cond in range(len(self.kin_test)):
self.kin_test[len(self.kin_train) + cond] = self.kin_test.pop(cond)
#Update the kinematics to simulate
self.kin_to_sim.update(self.kin_test)
#Update the number of experimental conditions
self.n_exp_conds = len(self.kin_to_sim)
#Repeat for the neural activity
#First update the keys of self.na_test
for cond in range(len(self.na_test)):
self.na_test[len(self.na_train) + cond] = self.na_test.pop(cond)
#Update the kinematics to simulate
self.na_to_sim.update(self.na_test)
#Repeat for the stimulus feedback
#First update the keys of self.stim_data_test
if self.stim_fb_exists:
for cond in range(len(self.stim_data_test)):
self.stim_data_test[len(self.stim_data_train) + cond] = self.stim_data_test.pop(cond)
#Update the kinematics to simulate
self.stim_data_sim.update(self.stim_data_test)
def _set_action_space(self):
bounds = self.model.actuator_ctrlrange.copy().astype(np.float32)
low, high = bounds.T
self.action_space = spaces.Box(low=low, high=high, dtype=np.float32)
return self.action_space
def _set_observation_space(self, observation):
self.observation_space = convert_observation_to_space(observation)
return self.observation_space
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
# methods to override:
# ----------------------------
def reset_model(self):
"""
Reset the robot degrees of freedom (qpos and qvel).
Implement this in each subclass.
"""
raise NotImplementedError
def viewer_setup(self):
"""
This method is called when the viewer is initialized.
Optionally implement this method, if you need to tinker with camera position
and so forth.
"""
pass
# -----------------------------
def reset(self, cond_to_select):
#Set the experimental condition for training
self.current_cond_to_sim = cond_to_select
self.neural_activity = self.na_to_sim[cond_to_select]
#Set the high-level task scalar signal
self.condition_scalar = (self.kin_to_sim[self.current_cond_to_sim].shape[-1] - 600) / (1319 - 600)
#Set the max episode steps to reset after one cycle for multiple cycles
self._max_episode_steps = self.kin_to_sim[self.current_cond_to_sim].shape[-1] + self.n_fixedsteps
self.istep= 0
self.coord_idx = 0
self.theta= np.pi
self.threshold= self.threshold_user
self.sim.reset()
ob = self.reset_model()
return ob
def set_state(self, qpos, qvel):
assert qpos.shape == (self.model.nq, ) and qvel.shape == (self.model.nv, )
old_state= self.sim.get_state()
new_state= mujoco_py.MjSimState(old_state.time, qpos, qvel,
old_state.act, old_state.udd_state)
self.sim.set_state(new_state)
self.sim.forward()
@property
def dt(self):
return self.model.opt.timestep * self.frame_skip
def do_simulation(self, ctrl, n_frames):
self.sim.data.ctrl[:]= ctrl
for _ in range(n_frames):
self.sim.data.ctrl[:]= ctrl
self.sim.step()
self.sim.forward()
def render(self,
mode='human',
width=DEFAULT_SIZE,
height=DEFAULT_SIZE,
camera_id=0,
camera_name=None):
if mode == 'rgb_array' or mode == 'depth_array':
if camera_id is not None and camera_name is not None:
raise ValueError("Both `camera_id` and `camera_name` cannot be"
" specified at the same time.")
no_camera_specified = camera_name is None and camera_id is None
if no_camera_specified:
camera_name = 'track'
if camera_id is None and camera_name in self.model._camera_name2id:
camera_id = self.model.camera_name2id(camera_name)
self._get_viewer(mode).render(width, height, camera_id=camera_id)
if mode == 'rgb_array':
# window size used for old mujoco-py:
data = self._get_viewer(mode).read_pixels(width, height, depth=False)
# original image is upside-down, so flip it
return data[::-1, :, :]
elif mode == 'depth_array':
self._get_viewer(mode).render(width, height)
# window size used for old mujoco-py:
# Extract depth part of the read_pixels() tuple
data = self._get_viewer(mode).read_pixels(width, height, depth=True)[1]
# original image is upside-down, so flip it
return data[::-1, :]
elif mode == 'human':
self._get_viewer(mode).render()
def close(self):
if self.viewer is not None:
# self.viewer.finish()
self.viewer = None
self._viewers = {}
def _get_viewer(self, mode):
self.viewer = self._viewers.get(mode)
if self.viewer is None:
if mode == 'human':
self.viewer = mujoco_py.MjViewer(self.sim)
elif mode == 'rgb_array' or mode == 'depth_array':
self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, -1)
self.viewer_setup()
self._viewers[mode] = self.viewer
return self.viewer
def get_body_com(self, body_name):
return self.data.get_body_xpos(body_name).copy()
def state_vector(self):
return np.concatenate([
self.sim.data.qpos.flat,
self.sim.data.qvel.flat
])
class Muscle_Env(MujocoEnv):
def __init__(self, model_path, frame_skip, args):
MujocoEnv.__init__(self, model_path, frame_skip, args)
def get_cost(self, action):
scaler= 1/50
act= np.array(action)
cost= scaler * np.sum(np.abs(act))
return cost
def is_done(self):
#Define the distance threshold termination criteria
target_position= self.sim.data.get_body_xpos("target0").copy()
hand_position= self.sim.data.get_body_xpos("hand").copy()
criteria= hand_position - target_position
if self.istep < self.timestep_limit:
if np.abs(criteria[0]) > self.threshold or np.abs(criteria[1]) > self.threshold or np.abs(criteria[2]) > self.threshold:
return True
else:
return False
else:
return True
def step(self, action):
self.istep += 1
if self.istep > self.n_fixedsteps and self.istep < 100:
self.threshold = 0.032
elif self.istep >= 100 and self.istep<150:
self.threshold = 0.016
elif self.istep >=150:
self.threshold = 0.008
#Save the xpos of the musculo bodies for visual vels
if len(self.sfs_visual_velocity) != 0:
prev_body_xpos = []
for musculo_body in self.sfs_visual_velocity:
body_xpos = self.sim.data.get_body_xpos(musculo_body)
prev_body_xpos = [*prev_body_xpos, *body_xpos]
#Now carry out one step of the MuJoCo simulation
self.do_simulation(action, self.frame_skip)
#Currently the reward function is the function of the delayed state, current simulator state, action and threshold
if self.sfs_sensory_delay_timepoints != 0:
reward= reward_function_specs.reward_function(self.state_to_return[-1], self.sim, action, self.threshold)
else:
#Pass a dummy variable for the delayed state feedback
reward= reward_function_specs.reward_function(0, self.sim, action, self.threshold)
cost= self.get_cost(action)
final_reward= (5*reward) #- (0.5*cost)
done= self.is_done()
self.upd_theta()
visual_vels = []
#Find the visual vels after the simulation
if len(self.sfs_visual_velocity) != 0:
current_body_xpos = []
for musculo_body in self.sfs_visual_velocity:
body_xpos = self.sim.data.get_body_xpos(musculo_body)
current_body_xpos = [*current_body_xpos, *body_xpos]
#Find the velocity
visual_vels = (np.abs(np.array(prev_body_xpos) - np.array(current_body_xpos)) / self.dt).tolist()
ob= self._get_obs()
#process visual velocity feedback
if self.mode_to_sim in ["sensory_pert"]:
visual_vels = sensory_feedback_specs.process_visual_velocity_pert(visual_vels, self.istep)
visual_vels = sensory_feedback_specs.process_visual_velocity(visual_vels)
if self.mode_to_sim in ["SFE"] and "visual_velocity" in perturbation_specs.sf_elim:
obser= [*ob, *[ele*0 for ele in visual_vels]]
else:
obser= [*ob, *visual_vels]
#Append the current observation to the start of the list
#Return the last observation later on
self.state_to_return.insert(0, obser)
return self.state_to_return.pop(), final_reward, done, {}
def viewer_setup(self):
self.viewer.cam.trackbodyid = 0
def reset_model(self):
#Set the state to the initial pose
self.set_state(self.init_qpos, self.init_qvel)
#Now get the observation of the initial state and append zeros corresponding to the velocity of musculo bodies
#as specified in sensory_feedback_specs (len*3 for x/y/z vel for each musculo body)
initial_state_obs = [*self._get_obs(), *np.zeros(len(self.sfs_visual_velocity)*3)]
#Maintain a list of state observations for implementing the state delay
self.state_to_return = [[0]*len(initial_state_obs)] * self.sfs_sensory_delay_timepoints
#Insert the inital state obs to the start of the list
self.state_to_return.insert(0, initial_state_obs)
#Return the last element of the state_to_return
return self.state_to_return.pop()
def _get_obs(self):
sensory_feedback = []
if self.sfs_stimulus_feedback == True:
stim_feedback = self.stim_data_sim[self.current_cond_to_sim][max(0, self.istep - 1), :].tolist() #other feedbacks are in in lists
#process through the given function for muscle lens and muscle vels
if self.mode_to_sim in ["sensory_pert"]:
stim_feedback = sensory_feedback_specs.process_stimulus_pert(stim_feedback, self.istep)
stim_feedback = sensory_feedback_specs.process_stimulus(stim_feedback)
if self.mode_to_sim in ["SFE"] and "stimulus" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in stim_feedback]]
else:
sensory_feedback = [*sensory_feedback, *stim_feedback]
if self.sfs_proprioceptive_feedback == True:
muscle_lens = self.sim.data.actuator_length.flat.copy()
muscle_vels = self.sim.data.actuator_velocity.flat.copy()
#process through the given function for muscle lens and muscle vels
if self.mode_to_sim in ["sensory_pert"]:
muscle_lens, muscle_vels = sensory_feedback_specs.process_proprioceptive_pert(muscle_lens, muscle_vels, self.istep)
muscle_lens, muscle_vels = sensory_feedback_specs.process_proprioceptive(muscle_lens, muscle_vels)
if self.mode_to_sim in ["SFE"] and "proprioceptive" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in muscle_lens], *[ele*0 for ele in muscle_vels]]
else:
sensory_feedback = [*sensory_feedback, *muscle_lens, *muscle_vels]
if self.sfs_muscle_forces == True:
actuator_forces = self.sim.data.qfrc_actuator.flat.copy()
#process
if self.mode_to_sim in ["sensory_pert"]:
actuator_forces = sensory_feedback_specs.process_muscle_forces_pert(actuator_forces, self.istep)
actuator_forces = sensory_feedback_specs.process_muscle_forces(actuator_forces)
if self.mode_to_sim in ["SFE"] and "muscle_forces" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in actuator_forces]]
else:
sensory_feedback = [*sensory_feedback, *actuator_forces]
if self.sfs_joint_feedback == True:
sensory_qpos = self.sim.data.qpos.flat.copy()
sensory_qvel = self.sim.data.qvel.flat.copy()
#process
if self.mode_to_sim in ["sensory_pert"]:
sensory_qpos, sensory_qvel = sensory_feedback_specs.process_joint_feedback_pert(sensory_qpos, sensory_qvel, self.istep)
sensory_qpos, sensory_qvel = sensory_feedback_specs.process_joint_feedback(sensory_qpos, sensory_qvel)
if self.mode_to_sim in ["SFE"] and "joint_feedback" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in sensory_qpos], *[ele*0 for ele in sensory_qvel]]
else:
sensory_feedback = [*sensory_feedback, *sensory_qpos, *sensory_qvel]
if self.sfs_visual_feedback == True:
#Check if the user specified the musculo bodies to be included
assert len(self.sfs_visual_feedback_bodies) != 0
visual_xyz_coords = []
for musculo_body in self.sfs_visual_feedback_bodies:
visual_xyz_coords = [*visual_xyz_coords, *self.sim.data.get_body_xpos(musculo_body)]
if self.mode_to_sim in ["sensory_pert"]:
visual_xyz_coords = sensory_feedback_specs.process_visual_position_pert(visual_xyz_coords, self.istep)
visual_xyz_coords = sensory_feedback_specs.process_visual_position(visual_xyz_coords)
if self.mode_to_sim in ["SFE"] and "visual_position" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in visual_xyz_coords]]
else:
sensory_feedback = [*sensory_feedback, *visual_xyz_coords]
if len(self.sfs_visual_distance_bodies) != 0:
visual_xyz_distance = []
for musculo_tuple in self.sfs_visual_distance_bodies:
body0_xyz = self.sim.data.get_body_xpos(musculo_tuple[0])
body1_xyz = self.sim.data.get_body_xpos(musculo_tuple[1])
tuple_dist = (body0_xyz - body1_xyz).tolist()
visual_xyz_distance = [*visual_xyz_distance, *tuple_dist]
#process
if self.mode_to_sim in ["sensory_pert"]:
visual_xyz_distance = sensory_feedback_specs.process_visual_distance_pert(visual_xyz_distance, self.istep)
visual_xyz_distance = sensory_feedback_specs.process_visual_distance(visual_xyz_distance)
if self.mode_to_sim in ["SFE"] and "visual_distance" in perturbation_specs.sf_elim:
sensory_feedback = [*sensory_feedback, *[ele*0 for ele in visual_xyz_distance]]
else:
sensory_feedback = [*sensory_feedback, *visual_xyz_distance]
return np.array(sensory_feedback)
def upd_theta(self):
if self.istep <= self._max_episode_steps:
if self.istep <= self.n_fixedsteps:
self.tpoint_to_sim = 0
else:
self.tpoint_to_sim = int(((self.kin_to_sim[self.current_cond_to_sim].shape[-1]-1)/(self._max_episode_steps-self.n_fixedsteps)) * (self.istep - self.n_fixedsteps))
else:
self.tpoint_to_sim = int(((self.kin_to_sim[self.current_cond_to_sim].shape[-1]-1)/(self._max_episode_steps-self.n_fixedsteps)) * ((self.istep - self.n_fixedsteps) % (self._max_episode_steps - self.n_fixedsteps)))
self.coord_idx = self.tpoint_to_sim
coords_to_sim = self.kin_to_sim[self.current_cond_to_sim]
crnt_state = self.sim.get_state()
for i_target in range(self.kin_to_sim[self.current_cond_to_sim].shape[0]):
if kinematics_preprocessing_specs.xyz_target[i_target][0]:
x_joint_idx= self.model.get_joint_qpos_addr(f"box:x{i_target}")
crnt_state.qpos[x_joint_idx] = coords_to_sim[i_target, 0, self.tpoint_to_sim]
if kinematics_preprocessing_specs.xyz_target[i_target][1]:
y_joint_idx= self.model.get_joint_qpos_addr(f"box:y{i_target}")
crnt_state.qpos[y_joint_idx] = coords_to_sim[i_target, kinematics_preprocessing_specs.xyz_target[i_target][0], self.tpoint_to_sim]
if kinematics_preprocessing_specs.xyz_target[i_target][2]:
z_joint_idx= self.model.get_joint_qpos_addr(f"box:z{i_target}")
crnt_state.qpos[z_joint_idx] = coords_to_sim[i_target, kinematics_preprocessing_specs.xyz_target[i_target][0] + kinematics_preprocessing_specs.xyz_target[i_target][1], self.tpoint_to_sim]
#Now set the state
self.set_state(crnt_state.qpos, crnt_state.qvel)