|
a |
|
b/Analysis/find_fp.py |
|
|
1 |
''' |
|
|
2 |
examples/torch/run_FlipFlop.py |
|
|
3 |
Written for Python 3.8.17 and Pytorch 2.0.1 |
|
|
4 |
@ Matt Golub, June 2023 |
|
|
5 |
Please direct correspondence to mgolub@cs.washington.edu |
|
|
6 |
''' |
|
|
7 |
|
|
|
8 |
import pdb |
|
|
9 |
import sys |
|
|
10 |
import numpy as np |
|
|
11 |
import torch |
|
|
12 |
import pickle |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
PATH_TO_FIXED_POINT_FINDER = './fixed-point-finder/' |
|
|
16 |
PATH_TO_HELPER = './fixed-point-finder/examples/helper/' |
|
|
17 |
PATH_TO_TORCH = './fixed-point-finder/examples/torch/' |
|
|
18 |
PATH_TO_SAC = '../SAC/' |
|
|
19 |
sys.path.insert(0, PATH_TO_FIXED_POINT_FINDER) |
|
|
20 |
sys.path.insert(0, PATH_TO_HELPER) |
|
|
21 |
sys.path.insert(0, PATH_TO_TORCH) |
|
|
22 |
sys.path.insert(0, PATH_TO_SAC) |
|
|
23 |
|
|
|
24 |
from FlipFlop import FlipFlop |
|
|
25 |
from FixedPointFinderTorch import FixedPointFinderTorch as FixedPointFinder |
|
|
26 |
from FlipFlopData import FlipFlopData |
|
|
27 |
from plot_utils import plot_fps |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
def find_fixed_points(model, rnn_trajectories, rnn_input): |
|
|
31 |
''' Find, analyze, and visualize the fixed points of the trained RNN. |
|
|
32 |
|
|
|
33 |
Args: |
|
|
34 |
model: |
|
|
35 |
|
|
|
36 |
Trained RNN model, as returned by uSim training. |
|
|
37 |
|
|
|
38 |
valid_predictions: dict. |
|
|
39 |
|
|
|
40 |
Model trajectories for training and testing conditions. |
|
|
41 |
|
|
|
42 |
Returns: |
|
|
43 |
None. |
|
|
44 |
''' |
|
|
45 |
|
|
|
46 |
NOISE_SCALE = 0.5 # Standard deviation of noise added to initial states |
|
|
47 |
# N_INITS = 1024*10 |
|
|
48 |
N_INITS = rnn_trajectories.shape[0] * rnn_trajectories.shape[1] # The number of initial states to provide |
|
|
49 |
|
|
|
50 |
n_hidden_units = rnn_trajectories.shape[2] |
|
|
51 |
|
|
|
52 |
'''Fixed point finder hyperparameters. See FixedPointFinder.py for detailed |
|
|
53 |
descriptions of available hyperparameters.''' |
|
|
54 |
fpf_hps = { |
|
|
55 |
'max_iters': 10000, |
|
|
56 |
'lr_init': 1., |
|
|
57 |
'outlier_distance_scale': 10.0, |
|
|
58 |
'verbose': True, |
|
|
59 |
'super_verbose': True} |
|
|
60 |
|
|
|
61 |
# Setup the fixed point finder |
|
|
62 |
fpf = FixedPointFinder(model, **fpf_hps) |
|
|
63 |
|
|
|
64 |
'''Draw random, noise corrupted samples of those state trajectories |
|
|
65 |
to use as initial states for the fixed point optimizations.''' |
|
|
66 |
initial_states = fpf.sample_states(rnn_trajectories, |
|
|
67 |
n_inits=N_INITS, |
|
|
68 |
noise_scale=NOISE_SCALE) |
|
|
69 |
|
|
|
70 |
# Study the system in the absence of input pulses (e.g., all inputs are 0) |
|
|
71 |
inputs = np.zeros([1, n_hidden_units]) |
|
|
72 |
# inputs = rnn_input.reshape(-1, n_hidden_units) |
|
|
73 |
|
|
|
74 |
# Run the fixed point finder |
|
|
75 |
unique_fps, all_fps = fpf.find_fixed_points(initial_states, inputs) |
|
|
76 |
|
|
|
77 |
# Visualize identified fixed points with overlaid RNN state trajectories |
|
|
78 |
# All visualized in the 3D PCA space fit the the example RNN states. |
|
|
79 |
fig = plot_fps(unique_fps, rnn_trajectories, |
|
|
80 |
plot_batch_idx=list(range(6)), |
|
|
81 |
plot_start_time=0) |
|
|
82 |
|
|
|
83 |
def main(): |
|
|
84 |
|
|
|
85 |
# Step 1: Load the uSim RNN model, RNN trajectories and RNN input |
|
|
86 |
PATH_TO_MODEL = '../checkpoint/actor_rnn_best_fpf.pth' |
|
|
87 |
actor_rnn = torch.load(PATH_TO_MODEL) |
|
|
88 |
model = actor_rnn |
|
|
89 |
|
|
|
90 |
#Load the test data |
|
|
91 |
with open('../test_data/test_data.pkl', 'rb') as file: |
|
|
92 |
test_data = pickle.load(file) |
|
|
93 |
|
|
|
94 |
#Get the uSim RNN hidden trajectories and inputs |
|
|
95 |
rnn_trajectories = [] |
|
|
96 |
for cond in range(len(test_data['rnn_activity'])): |
|
|
97 |
rnn_trajectories.append(test_data['rnn_activity'][cond]) |
|
|
98 |
|
|
|
99 |
rnn_trajectories = np.array(rnn_trajectories) #[n_conds, n_timepoints, n_hidden_units] |
|
|
100 |
|
|
|
101 |
rnn_input = [] |
|
|
102 |
for cond in range(len(test_data['rnn_input_fp'])): |
|
|
103 |
rnn_input.append(test_data['rnn_input_fp'][cond]) |
|
|
104 |
|
|
|
105 |
rnn_input = np.array(rnn_input) #[n_conds, n_timepoints, n_hidden_units] |
|
|
106 |
|
|
|
107 |
# STEP 2: Find, analyze, and visualize the fixed points of the trained RNN |
|
|
108 |
find_fixed_points(model, rnn_trajectories, rnn_input) |
|
|
109 |
|
|
|
110 |
print('Entering debug mode to allow interaction with objects and figures.') |
|
|
111 |
print('You should see a figure with:') |
|
|
112 |
|
|
|
113 |
pdb.set_trace() |
|
|
114 |
|
|
|
115 |
if __name__ == '__main__': |
|
|
116 |
main() |