|
a |
|
b/dataloader.py |
|
|
1 |
import os |
|
|
2 |
import pandas as pd |
|
|
3 |
import numpy as np |
|
|
4 |
|
|
|
5 |
import torch |
|
|
6 |
import torch.nn.functional as F |
|
|
7 |
import torchvision.transforms.functional as TF |
|
|
8 |
import torch.utils.data as data |
|
|
9 |
from torchvision import transforms |
|
|
10 |
from torchsample.transforms import RandomRotate, RandomTranslate, RandomFlip, ToTensor, Compose, RandomAffine |
|
|
11 |
|
|
|
12 |
|
|
|
13 |
class MRDataset(data.Dataset): |
|
|
14 |
def __init__(self, root_dir, task, plane, train=True, transform=None, weights=None): |
|
|
15 |
super().__init__() |
|
|
16 |
self.task = task |
|
|
17 |
self.plane = plane |
|
|
18 |
self.root_dir = root_dir |
|
|
19 |
self.train = train |
|
|
20 |
if self.train: |
|
|
21 |
self.folder_path = self.root_dir + 'train/{0}/'.format(plane) |
|
|
22 |
self.records = pd.read_csv( |
|
|
23 |
self.root_dir + 'train-{0}.csv'.format(task), header=None, names=['id', 'label']) |
|
|
24 |
else: |
|
|
25 |
transform = None |
|
|
26 |
self.folder_path = self.root_dir + 'valid/{0}/'.format(plane) |
|
|
27 |
self.records = pd.read_csv( |
|
|
28 |
self.root_dir + 'valid-{0}.csv'.format(task), header=None, names=['id', 'label']) |
|
|
29 |
|
|
|
30 |
self.records['id'] = self.records['id'].map( |
|
|
31 |
lambda i: '0' * (4 - len(str(i))) + str(i)) |
|
|
32 |
self.paths = [self.folder_path + filename + |
|
|
33 |
'.npy' for filename in self.records['id'].tolist()] |
|
|
34 |
self.labels = self.records['label'].tolist() |
|
|
35 |
|
|
|
36 |
self.transform = transform |
|
|
37 |
if weights is None: |
|
|
38 |
pos = np.sum(self.labels) |
|
|
39 |
neg = len(self.labels) - pos |
|
|
40 |
self.weights = torch.FloatTensor([1, neg / pos]) |
|
|
41 |
else: |
|
|
42 |
self.weights = torch.FloatTensor(weights) |
|
|
43 |
|
|
|
44 |
def __len__(self): |
|
|
45 |
return len(self.paths) |
|
|
46 |
|
|
|
47 |
def __getitem__(self, index): |
|
|
48 |
array = np.load(self.paths[index]) |
|
|
49 |
label = self.labels[index] |
|
|
50 |
if label == 1: |
|
|
51 |
label = torch.FloatTensor([[0, 1]]) |
|
|
52 |
elif label == 0: |
|
|
53 |
label = torch.FloatTensor([[1, 0]]) |
|
|
54 |
|
|
|
55 |
if self.transform: |
|
|
56 |
array = self.transform(array) |
|
|
57 |
else: |
|
|
58 |
array = np.stack((array,)*3, axis=1) |
|
|
59 |
array = torch.FloatTensor(array) |
|
|
60 |
|
|
|
61 |
# if label.item() == 1: |
|
|
62 |
# weight = np.array([self.weights[1]]) |
|
|
63 |
# weight = torch.FloatTensor(weight) |
|
|
64 |
# else: |
|
|
65 |
# weight = np.array([self.weights[0]]) |
|
|
66 |
# weight = torch.FloatTensor(weight) |
|
|
67 |
|
|
|
68 |
return array, label, self.weights |
|
|
69 |
|