|
a |
|
b/MRNet_EDA_ns.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import numpy as np\n", |
|
|
10 |
"import pandas as pd\n", |
|
|
11 |
"import matplotlib.pyplot as plt\n", |
|
|
12 |
"from fastai.core import *\n", |
|
|
13 |
"\n", |
|
|
14 |
"%matplotlib notebook" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "code", |
|
|
19 |
"execution_count": 2, |
|
|
20 |
"metadata": {}, |
|
|
21 |
"outputs": [ |
|
|
22 |
{ |
|
|
23 |
"name": "stdout", |
|
|
24 |
"output_type": "stream", |
|
|
25 |
"text": [ |
|
|
26 |
"LICENSE MRNet_EDA.ipynb README.md\r\n" |
|
|
27 |
] |
|
|
28 |
} |
|
|
29 |
], |
|
|
30 |
"source": [ |
|
|
31 |
"! ls -R " |
|
|
32 |
] |
|
|
33 |
}, |
|
|
34 |
{ |
|
|
35 |
"cell_type": "code", |
|
|
36 |
"execution_count": 3, |
|
|
37 |
"metadata": {}, |
|
|
38 |
"outputs": [], |
|
|
39 |
"source": [ |
|
|
40 |
"data_path = Path('../data')\n", |
|
|
41 |
"train_path = data_path/'smalltrain'/'train'\n", |
|
|
42 |
"valid_path = data_path/'smallvalid'/'valid'" |
|
|
43 |
] |
|
|
44 |
}, |
|
|
45 |
{ |
|
|
46 |
"cell_type": "code", |
|
|
47 |
"execution_count": 5, |
|
|
48 |
"metadata": {}, |
|
|
49 |
"outputs": [ |
|
|
50 |
{ |
|
|
51 |
"name": "stdout", |
|
|
52 |
"output_type": "stream", |
|
|
53 |
"text": [ |
|
|
54 |
" Case\n", |
|
|
55 |
"Abnormal \n", |
|
|
56 |
"0 217\n", |
|
|
57 |
"1 913\n" |
|
|
58 |
] |
|
|
59 |
}, |
|
|
60 |
{ |
|
|
61 |
"data": { |
|
|
62 |
"text/html": [ |
|
|
63 |
"<div>\n", |
|
|
64 |
"<style scoped>\n", |
|
|
65 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
66 |
" vertical-align: middle;\n", |
|
|
67 |
" }\n", |
|
|
68 |
"\n", |
|
|
69 |
" .dataframe tbody tr th {\n", |
|
|
70 |
" vertical-align: top;\n", |
|
|
71 |
" }\n", |
|
|
72 |
"\n", |
|
|
73 |
" .dataframe thead th {\n", |
|
|
74 |
" text-align: right;\n", |
|
|
75 |
" }\n", |
|
|
76 |
"</style>\n", |
|
|
77 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
78 |
" <thead>\n", |
|
|
79 |
" <tr style=\"text-align: right;\">\n", |
|
|
80 |
" <th></th>\n", |
|
|
81 |
" <th>Case</th>\n", |
|
|
82 |
" <th>Abnormal</th>\n", |
|
|
83 |
" </tr>\n", |
|
|
84 |
" </thead>\n", |
|
|
85 |
" <tbody>\n", |
|
|
86 |
" <tr>\n", |
|
|
87 |
" <th>0</th>\n", |
|
|
88 |
" <td>0000</td>\n", |
|
|
89 |
" <td>1</td>\n", |
|
|
90 |
" </tr>\n", |
|
|
91 |
" <tr>\n", |
|
|
92 |
" <th>1</th>\n", |
|
|
93 |
" <td>0001</td>\n", |
|
|
94 |
" <td>1</td>\n", |
|
|
95 |
" </tr>\n", |
|
|
96 |
" <tr>\n", |
|
|
97 |
" <th>2</th>\n", |
|
|
98 |
" <td>0002</td>\n", |
|
|
99 |
" <td>1</td>\n", |
|
|
100 |
" </tr>\n", |
|
|
101 |
" <tr>\n", |
|
|
102 |
" <th>3</th>\n", |
|
|
103 |
" <td>0003</td>\n", |
|
|
104 |
" <td>1</td>\n", |
|
|
105 |
" </tr>\n", |
|
|
106 |
" <tr>\n", |
|
|
107 |
" <th>4</th>\n", |
|
|
108 |
" <td>0004</td>\n", |
|
|
109 |
" <td>1</td>\n", |
|
|
110 |
" </tr>\n", |
|
|
111 |
" </tbody>\n", |
|
|
112 |
"</table>\n", |
|
|
113 |
"</div>" |
|
|
114 |
], |
|
|
115 |
"text/plain": [ |
|
|
116 |
" Case Abnormal\n", |
|
|
117 |
"0 0000 1\n", |
|
|
118 |
"1 0001 1\n", |
|
|
119 |
"2 0002 1\n", |
|
|
120 |
"3 0003 1\n", |
|
|
121 |
"4 0004 1" |
|
|
122 |
] |
|
|
123 |
}, |
|
|
124 |
"execution_count": 5, |
|
|
125 |
"metadata": {}, |
|
|
126 |
"output_type": "execute_result" |
|
|
127 |
} |
|
|
128 |
], |
|
|
129 |
"source": [ |
|
|
130 |
"train_abnl = pd.read_csv(data_path/'train-abnormal.csv', header=None,\n", |
|
|
131 |
" names=['Case', 'Abnormal'], \n", |
|
|
132 |
" dtype={'Case': str, 'Abnormal': np.int64})\n", |
|
|
133 |
"print(train_abnl.groupby('Abnormal').count())\n", |
|
|
134 |
"train_abnl.head()" |
|
|
135 |
] |
|
|
136 |
}, |
|
|
137 |
{ |
|
|
138 |
"cell_type": "code", |
|
|
139 |
"execution_count": 6, |
|
|
140 |
"metadata": {}, |
|
|
141 |
"outputs": [ |
|
|
142 |
{ |
|
|
143 |
"name": "stdout", |
|
|
144 |
"output_type": "stream", |
|
|
145 |
"text": [ |
|
|
146 |
" Case\n", |
|
|
147 |
"ACL_tear \n", |
|
|
148 |
"0 922\n", |
|
|
149 |
"1 208\n" |
|
|
150 |
] |
|
|
151 |
}, |
|
|
152 |
{ |
|
|
153 |
"data": { |
|
|
154 |
"text/html": [ |
|
|
155 |
"<div>\n", |
|
|
156 |
"<style scoped>\n", |
|
|
157 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
158 |
" vertical-align: middle;\n", |
|
|
159 |
" }\n", |
|
|
160 |
"\n", |
|
|
161 |
" .dataframe tbody tr th {\n", |
|
|
162 |
" vertical-align: top;\n", |
|
|
163 |
" }\n", |
|
|
164 |
"\n", |
|
|
165 |
" .dataframe thead th {\n", |
|
|
166 |
" text-align: right;\n", |
|
|
167 |
" }\n", |
|
|
168 |
"</style>\n", |
|
|
169 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
170 |
" <thead>\n", |
|
|
171 |
" <tr style=\"text-align: right;\">\n", |
|
|
172 |
" <th></th>\n", |
|
|
173 |
" <th>Case</th>\n", |
|
|
174 |
" <th>ACL_tear</th>\n", |
|
|
175 |
" </tr>\n", |
|
|
176 |
" </thead>\n", |
|
|
177 |
" <tbody>\n", |
|
|
178 |
" <tr>\n", |
|
|
179 |
" <th>0</th>\n", |
|
|
180 |
" <td>0000</td>\n", |
|
|
181 |
" <td>0</td>\n", |
|
|
182 |
" </tr>\n", |
|
|
183 |
" <tr>\n", |
|
|
184 |
" <th>1</th>\n", |
|
|
185 |
" <td>0001</td>\n", |
|
|
186 |
" <td>1</td>\n", |
|
|
187 |
" </tr>\n", |
|
|
188 |
" <tr>\n", |
|
|
189 |
" <th>2</th>\n", |
|
|
190 |
" <td>0002</td>\n", |
|
|
191 |
" <td>0</td>\n", |
|
|
192 |
" </tr>\n", |
|
|
193 |
" <tr>\n", |
|
|
194 |
" <th>3</th>\n", |
|
|
195 |
" <td>0003</td>\n", |
|
|
196 |
" <td>0</td>\n", |
|
|
197 |
" </tr>\n", |
|
|
198 |
" <tr>\n", |
|
|
199 |
" <th>4</th>\n", |
|
|
200 |
" <td>0004</td>\n", |
|
|
201 |
" <td>0</td>\n", |
|
|
202 |
" </tr>\n", |
|
|
203 |
" </tbody>\n", |
|
|
204 |
"</table>\n", |
|
|
205 |
"</div>" |
|
|
206 |
], |
|
|
207 |
"text/plain": [ |
|
|
208 |
" Case ACL_tear\n", |
|
|
209 |
"0 0000 0\n", |
|
|
210 |
"1 0001 1\n", |
|
|
211 |
"2 0002 0\n", |
|
|
212 |
"3 0003 0\n", |
|
|
213 |
"4 0004 0" |
|
|
214 |
] |
|
|
215 |
}, |
|
|
216 |
"execution_count": 6, |
|
|
217 |
"metadata": {}, |
|
|
218 |
"output_type": "execute_result" |
|
|
219 |
} |
|
|
220 |
], |
|
|
221 |
"source": [ |
|
|
222 |
"train_acl = pd.read_csv(data_path/'train-acl.csv', header=None,\n", |
|
|
223 |
" names=['Case', 'ACL_tear'], \n", |
|
|
224 |
" dtype={'Case': str, 'ACL_tear': np.int64})\n", |
|
|
225 |
"print(train_acl.groupby('ACL_tear').count())\n", |
|
|
226 |
"train_acl.head()" |
|
|
227 |
] |
|
|
228 |
}, |
|
|
229 |
{ |
|
|
230 |
"cell_type": "code", |
|
|
231 |
"execution_count": 7, |
|
|
232 |
"metadata": {}, |
|
|
233 |
"outputs": [ |
|
|
234 |
{ |
|
|
235 |
"name": "stdout", |
|
|
236 |
"output_type": "stream", |
|
|
237 |
"text": [ |
|
|
238 |
" Case\n", |
|
|
239 |
"Meniscus_tear \n", |
|
|
240 |
"0 733\n", |
|
|
241 |
"1 397\n" |
|
|
242 |
] |
|
|
243 |
}, |
|
|
244 |
{ |
|
|
245 |
"data": { |
|
|
246 |
"text/html": [ |
|
|
247 |
"<div>\n", |
|
|
248 |
"<style scoped>\n", |
|
|
249 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
250 |
" vertical-align: middle;\n", |
|
|
251 |
" }\n", |
|
|
252 |
"\n", |
|
|
253 |
" .dataframe tbody tr th {\n", |
|
|
254 |
" vertical-align: top;\n", |
|
|
255 |
" }\n", |
|
|
256 |
"\n", |
|
|
257 |
" .dataframe thead th {\n", |
|
|
258 |
" text-align: right;\n", |
|
|
259 |
" }\n", |
|
|
260 |
"</style>\n", |
|
|
261 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
262 |
" <thead>\n", |
|
|
263 |
" <tr style=\"text-align: right;\">\n", |
|
|
264 |
" <th></th>\n", |
|
|
265 |
" <th>Case</th>\n", |
|
|
266 |
" <th>Meniscus_tear</th>\n", |
|
|
267 |
" </tr>\n", |
|
|
268 |
" </thead>\n", |
|
|
269 |
" <tbody>\n", |
|
|
270 |
" <tr>\n", |
|
|
271 |
" <th>0</th>\n", |
|
|
272 |
" <td>0000</td>\n", |
|
|
273 |
" <td>0</td>\n", |
|
|
274 |
" </tr>\n", |
|
|
275 |
" <tr>\n", |
|
|
276 |
" <th>1</th>\n", |
|
|
277 |
" <td>0001</td>\n", |
|
|
278 |
" <td>1</td>\n", |
|
|
279 |
" </tr>\n", |
|
|
280 |
" <tr>\n", |
|
|
281 |
" <th>2</th>\n", |
|
|
282 |
" <td>0002</td>\n", |
|
|
283 |
" <td>0</td>\n", |
|
|
284 |
" </tr>\n", |
|
|
285 |
" <tr>\n", |
|
|
286 |
" <th>3</th>\n", |
|
|
287 |
" <td>0003</td>\n", |
|
|
288 |
" <td>1</td>\n", |
|
|
289 |
" </tr>\n", |
|
|
290 |
" <tr>\n", |
|
|
291 |
" <th>4</th>\n", |
|
|
292 |
" <td>0004</td>\n", |
|
|
293 |
" <td>0</td>\n", |
|
|
294 |
" </tr>\n", |
|
|
295 |
" </tbody>\n", |
|
|
296 |
"</table>\n", |
|
|
297 |
"</div>" |
|
|
298 |
], |
|
|
299 |
"text/plain": [ |
|
|
300 |
" Case Meniscus_tear\n", |
|
|
301 |
"0 0000 0\n", |
|
|
302 |
"1 0001 1\n", |
|
|
303 |
"2 0002 0\n", |
|
|
304 |
"3 0003 1\n", |
|
|
305 |
"4 0004 0" |
|
|
306 |
] |
|
|
307 |
}, |
|
|
308 |
"execution_count": 7, |
|
|
309 |
"metadata": {}, |
|
|
310 |
"output_type": "execute_result" |
|
|
311 |
} |
|
|
312 |
], |
|
|
313 |
"source": [ |
|
|
314 |
"train_meniscus = pd.read_csv(data_path/'train-meniscus.csv', header=None,\n", |
|
|
315 |
" names=['Case', 'Meniscus_tear'], \n", |
|
|
316 |
" dtype={'Case': str, 'Meniscus_tear': np.int64})\n", |
|
|
317 |
"print(train_meniscus.groupby('Meniscus_tear').count())\n", |
|
|
318 |
"train_meniscus.head()" |
|
|
319 |
] |
|
|
320 |
}, |
|
|
321 |
{ |
|
|
322 |
"cell_type": "markdown", |
|
|
323 |
"metadata": {}, |
|
|
324 |
"source": [ |
|
|
325 |
"### Co-occurrence of ACL and Meniscus tears" |
|
|
326 |
] |
|
|
327 |
}, |
|
|
328 |
{ |
|
|
329 |
"cell_type": "code", |
|
|
330 |
"execution_count": null, |
|
|
331 |
"metadata": {}, |
|
|
332 |
"outputs": [], |
|
|
333 |
"source": [ |
|
|
334 |
"train = pd.merge(train_abnl, train_acl, on='Case')" |
|
|
335 |
] |
|
|
336 |
}, |
|
|
337 |
{ |
|
|
338 |
"cell_type": "code", |
|
|
339 |
"execution_count": 10, |
|
|
340 |
"metadata": {}, |
|
|
341 |
"outputs": [], |
|
|
342 |
"source": [ |
|
|
343 |
"train = pd.merge(train, train_meniscus, on='Case')" |
|
|
344 |
] |
|
|
345 |
}, |
|
|
346 |
{ |
|
|
347 |
"cell_type": "code", |
|
|
348 |
"execution_count": 16, |
|
|
349 |
"metadata": {}, |
|
|
350 |
"outputs": [ |
|
|
351 |
{ |
|
|
352 |
"data": { |
|
|
353 |
"text/html": [ |
|
|
354 |
"<div>\n", |
|
|
355 |
"<style scoped>\n", |
|
|
356 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
357 |
" vertical-align: middle;\n", |
|
|
358 |
" }\n", |
|
|
359 |
"\n", |
|
|
360 |
" .dataframe tbody tr th {\n", |
|
|
361 |
" vertical-align: top;\n", |
|
|
362 |
" }\n", |
|
|
363 |
"\n", |
|
|
364 |
" .dataframe thead th {\n", |
|
|
365 |
" text-align: right;\n", |
|
|
366 |
" }\n", |
|
|
367 |
"</style>\n", |
|
|
368 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
369 |
" <thead>\n", |
|
|
370 |
" <tr style=\"text-align: right;\">\n", |
|
|
371 |
" <th></th>\n", |
|
|
372 |
" <th>Case</th>\n", |
|
|
373 |
" <th>Abnormal</th>\n", |
|
|
374 |
" <th>ACL_tear</th>\n", |
|
|
375 |
" <th>Meniscus_tear</th>\n", |
|
|
376 |
" </tr>\n", |
|
|
377 |
" </thead>\n", |
|
|
378 |
" <tbody>\n", |
|
|
379 |
" <tr>\n", |
|
|
380 |
" <th>0</th>\n", |
|
|
381 |
" <td>0000</td>\n", |
|
|
382 |
" <td>1</td>\n", |
|
|
383 |
" <td>0</td>\n", |
|
|
384 |
" <td>0</td>\n", |
|
|
385 |
" </tr>\n", |
|
|
386 |
" <tr>\n", |
|
|
387 |
" <th>1</th>\n", |
|
|
388 |
" <td>0001</td>\n", |
|
|
389 |
" <td>1</td>\n", |
|
|
390 |
" <td>1</td>\n", |
|
|
391 |
" <td>1</td>\n", |
|
|
392 |
" </tr>\n", |
|
|
393 |
" <tr>\n", |
|
|
394 |
" <th>2</th>\n", |
|
|
395 |
" <td>0002</td>\n", |
|
|
396 |
" <td>1</td>\n", |
|
|
397 |
" <td>0</td>\n", |
|
|
398 |
" <td>0</td>\n", |
|
|
399 |
" </tr>\n", |
|
|
400 |
" <tr>\n", |
|
|
401 |
" <th>3</th>\n", |
|
|
402 |
" <td>0003</td>\n", |
|
|
403 |
" <td>1</td>\n", |
|
|
404 |
" <td>0</td>\n", |
|
|
405 |
" <td>1</td>\n", |
|
|
406 |
" </tr>\n", |
|
|
407 |
" <tr>\n", |
|
|
408 |
" <th>4</th>\n", |
|
|
409 |
" <td>0004</td>\n", |
|
|
410 |
" <td>1</td>\n", |
|
|
411 |
" <td>0</td>\n", |
|
|
412 |
" <td>0</td>\n", |
|
|
413 |
" </tr>\n", |
|
|
414 |
" </tbody>\n", |
|
|
415 |
"</table>\n", |
|
|
416 |
"</div>" |
|
|
417 |
], |
|
|
418 |
"text/plain": [ |
|
|
419 |
" Case Abnormal ACL_tear Meniscus_tear\n", |
|
|
420 |
"0 0000 1 0 0\n", |
|
|
421 |
"1 0001 1 1 1\n", |
|
|
422 |
"2 0002 1 0 0\n", |
|
|
423 |
"3 0003 1 0 1\n", |
|
|
424 |
"4 0004 1 0 0" |
|
|
425 |
] |
|
|
426 |
}, |
|
|
427 |
"metadata": {}, |
|
|
428 |
"output_type": "display_data" |
|
|
429 |
}, |
|
|
430 |
{ |
|
|
431 |
"data": { |
|
|
432 |
"text/html": [ |
|
|
433 |
"<div>\n", |
|
|
434 |
"<style scoped>\n", |
|
|
435 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
436 |
" vertical-align: middle;\n", |
|
|
437 |
" }\n", |
|
|
438 |
"\n", |
|
|
439 |
" .dataframe tbody tr th {\n", |
|
|
440 |
" vertical-align: top;\n", |
|
|
441 |
" }\n", |
|
|
442 |
"\n", |
|
|
443 |
" .dataframe thead th {\n", |
|
|
444 |
" text-align: right;\n", |
|
|
445 |
" }\n", |
|
|
446 |
"</style>\n", |
|
|
447 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
448 |
" <thead>\n", |
|
|
449 |
" <tr style=\"text-align: right;\">\n", |
|
|
450 |
" <th></th>\n", |
|
|
451 |
" <th></th>\n", |
|
|
452 |
" <th></th>\n", |
|
|
453 |
" <th>Case</th>\n", |
|
|
454 |
" </tr>\n", |
|
|
455 |
" <tr>\n", |
|
|
456 |
" <th>Abnormal</th>\n", |
|
|
457 |
" <th>ACL_tear</th>\n", |
|
|
458 |
" <th>Meniscus_tear</th>\n", |
|
|
459 |
" <th></th>\n", |
|
|
460 |
" </tr>\n", |
|
|
461 |
" </thead>\n", |
|
|
462 |
" <tbody>\n", |
|
|
463 |
" <tr>\n", |
|
|
464 |
" <th>0</th>\n", |
|
|
465 |
" <th>0</th>\n", |
|
|
466 |
" <th>0</th>\n", |
|
|
467 |
" <td>217</td>\n", |
|
|
468 |
" </tr>\n", |
|
|
469 |
" <tr>\n", |
|
|
470 |
" <th rowspan=\"4\" valign=\"top\">1</th>\n", |
|
|
471 |
" <th rowspan=\"2\" valign=\"top\">0</th>\n", |
|
|
472 |
" <th>0</th>\n", |
|
|
473 |
" <td>433</td>\n", |
|
|
474 |
" </tr>\n", |
|
|
475 |
" <tr>\n", |
|
|
476 |
" <th>1</th>\n", |
|
|
477 |
" <td>272</td>\n", |
|
|
478 |
" </tr>\n", |
|
|
479 |
" <tr>\n", |
|
|
480 |
" <th rowspan=\"2\" valign=\"top\">1</th>\n", |
|
|
481 |
" <th>0</th>\n", |
|
|
482 |
" <td>83</td>\n", |
|
|
483 |
" </tr>\n", |
|
|
484 |
" <tr>\n", |
|
|
485 |
" <th>1</th>\n", |
|
|
486 |
" <td>125</td>\n", |
|
|
487 |
" </tr>\n", |
|
|
488 |
" </tbody>\n", |
|
|
489 |
"</table>\n", |
|
|
490 |
"</div>" |
|
|
491 |
], |
|
|
492 |
"text/plain": [ |
|
|
493 |
" Case\n", |
|
|
494 |
"Abnormal ACL_tear Meniscus_tear \n", |
|
|
495 |
"0 0 0 217\n", |
|
|
496 |
"1 0 0 433\n", |
|
|
497 |
" 1 272\n", |
|
|
498 |
" 1 0 83\n", |
|
|
499 |
" 1 125" |
|
|
500 |
] |
|
|
501 |
}, |
|
|
502 |
"metadata": {}, |
|
|
503 |
"output_type": "display_data" |
|
|
504 |
} |
|
|
505 |
], |
|
|
506 |
"source": [ |
|
|
507 |
"display(train.head())\n", |
|
|
508 |
"display(train.groupby(['Abnormal','ACL_tear','Meniscus_tear']).count())" |
|
|
509 |
] |
|
|
510 |
}, |
|
|
511 |
{ |
|
|
512 |
"cell_type": "markdown", |
|
|
513 |
"metadata": {}, |
|
|
514 |
"source": [ |
|
|
515 |
"Note that cases considered Abnormal but without either ACL or Meniscus tear are the most common category, and ACL tears without Meniscus tear is the least common case in the training sample." |
|
|
516 |
] |
|
|
517 |
}, |
|
|
518 |
{ |
|
|
519 |
"cell_type": "markdown", |
|
|
520 |
"metadata": {}, |
|
|
521 |
"source": [ |
|
|
522 |
"## Load stacks/sequences of images from each plane\n", |
|
|
523 |
"Files are saved as NumPy arrays. Scans were taken from each of three planes, axial, coronal, and sagittal. For each plane, the scan results in a set of images. \n", |
|
|
524 |
"\n", |
|
|
525 |
"First, let's check for variation in the number of images per sequence, and in the image dimensions." |
|
|
526 |
] |
|
|
527 |
}, |
|
|
528 |
{ |
|
|
529 |
"cell_type": "code", |
|
|
530 |
"execution_count": 67, |
|
|
531 |
"metadata": {}, |
|
|
532 |
"outputs": [], |
|
|
533 |
"source": [ |
|
|
534 |
"def collect_stack_dims(case_df, data_path=train_path):\n", |
|
|
535 |
" cases = list(case_df.Case)\n", |
|
|
536 |
" data = []\n", |
|
|
537 |
" for case in cases:\n", |
|
|
538 |
" row = [case]\n", |
|
|
539 |
" for plane in ['axial', 'coronal', 'sagittal']:\n", |
|
|
540 |
" fpath = data_path/plane/'{}.npy'.format(case)\n", |
|
|
541 |
" try: \n", |
|
|
542 |
" s,w,h = np.load(fpath).shape \n", |
|
|
543 |
" row.extend([s,w,h])\n", |
|
|
544 |
" except FileNotFoundError:\n", |
|
|
545 |
" continue\n", |
|
|
546 |
"# print('{}: {}'.format(case,row))\n", |
|
|
547 |
" if len(row)==10: data.append(row)\n", |
|
|
548 |
" columns=['Case',\n", |
|
|
549 |
" 'axial_s','axial_w','axial_h',\n", |
|
|
550 |
" 'coronal_s','coronal_w','coronal_h',\n", |
|
|
551 |
" 'sagittal_s','sagittal_w','sagittal_h',\n", |
|
|
552 |
" ]\n", |
|
|
553 |
" data_dict = {}\n", |
|
|
554 |
" for i,k in enumerate(columns): data_dict[k] = [row[i] for row in data]\n", |
|
|
555 |
" return pd.DataFrame(data_dict)" |
|
|
556 |
] |
|
|
557 |
}, |
|
|
558 |
{ |
|
|
559 |
"cell_type": "code", |
|
|
560 |
"execution_count": 68, |
|
|
561 |
"metadata": {}, |
|
|
562 |
"outputs": [], |
|
|
563 |
"source": [ |
|
|
564 |
"dimdf = collect_stack_dims(train)" |
|
|
565 |
] |
|
|
566 |
}, |
|
|
567 |
{ |
|
|
568 |
"cell_type": "code", |
|
|
569 |
"execution_count": 70, |
|
|
570 |
"metadata": {}, |
|
|
571 |
"outputs": [ |
|
|
572 |
{ |
|
|
573 |
"data": { |
|
|
574 |
"text/html": [ |
|
|
575 |
"<div>\n", |
|
|
576 |
"<style scoped>\n", |
|
|
577 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
578 |
" vertical-align: middle;\n", |
|
|
579 |
" }\n", |
|
|
580 |
"\n", |
|
|
581 |
" .dataframe tbody tr th {\n", |
|
|
582 |
" vertical-align: top;\n", |
|
|
583 |
" }\n", |
|
|
584 |
"\n", |
|
|
585 |
" .dataframe thead th {\n", |
|
|
586 |
" text-align: right;\n", |
|
|
587 |
" }\n", |
|
|
588 |
"</style>\n", |
|
|
589 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
590 |
" <thead>\n", |
|
|
591 |
" <tr style=\"text-align: right;\">\n", |
|
|
592 |
" <th></th>\n", |
|
|
593 |
" <th>axial_s</th>\n", |
|
|
594 |
" <th>axial_w</th>\n", |
|
|
595 |
" <th>axial_h</th>\n", |
|
|
596 |
" <th>coronal_s</th>\n", |
|
|
597 |
" <th>coronal_w</th>\n", |
|
|
598 |
" <th>coronal_h</th>\n", |
|
|
599 |
" <th>sagittal_s</th>\n", |
|
|
600 |
" <th>sagittal_w</th>\n", |
|
|
601 |
" <th>sagittal_h</th>\n", |
|
|
602 |
" </tr>\n", |
|
|
603 |
" </thead>\n", |
|
|
604 |
" <tbody>\n", |
|
|
605 |
" <tr>\n", |
|
|
606 |
" <th>count</th>\n", |
|
|
607 |
" <td>50.000000</td>\n", |
|
|
608 |
" <td>50.0</td>\n", |
|
|
609 |
" <td>50.0</td>\n", |
|
|
610 |
" <td>50.000000</td>\n", |
|
|
611 |
" <td>50.0</td>\n", |
|
|
612 |
" <td>50.0</td>\n", |
|
|
613 |
" <td>50.00000</td>\n", |
|
|
614 |
" <td>50.0</td>\n", |
|
|
615 |
" <td>50.0</td>\n", |
|
|
616 |
" </tr>\n", |
|
|
617 |
" <tr>\n", |
|
|
618 |
" <th>mean</th>\n", |
|
|
619 |
" <td>35.860000</td>\n", |
|
|
620 |
" <td>256.0</td>\n", |
|
|
621 |
" <td>256.0</td>\n", |
|
|
622 |
" <td>31.360000</td>\n", |
|
|
623 |
" <td>256.0</td>\n", |
|
|
624 |
" <td>256.0</td>\n", |
|
|
625 |
" <td>31.72000</td>\n", |
|
|
626 |
" <td>256.0</td>\n", |
|
|
627 |
" <td>256.0</td>\n", |
|
|
628 |
" </tr>\n", |
|
|
629 |
" <tr>\n", |
|
|
630 |
" <th>std</th>\n", |
|
|
631 |
" <td>7.050865</td>\n", |
|
|
632 |
" <td>0.0</td>\n", |
|
|
633 |
" <td>0.0</td>\n", |
|
|
634 |
" <td>7.899264</td>\n", |
|
|
635 |
" <td>0.0</td>\n", |
|
|
636 |
" <td>0.0</td>\n", |
|
|
637 |
" <td>6.35687</td>\n", |
|
|
638 |
" <td>0.0</td>\n", |
|
|
639 |
" <td>0.0</td>\n", |
|
|
640 |
" </tr>\n", |
|
|
641 |
" <tr>\n", |
|
|
642 |
" <th>min</th>\n", |
|
|
643 |
" <td>22.000000</td>\n", |
|
|
644 |
" <td>256.0</td>\n", |
|
|
645 |
" <td>256.0</td>\n", |
|
|
646 |
" <td>18.000000</td>\n", |
|
|
647 |
" <td>256.0</td>\n", |
|
|
648 |
" <td>256.0</td>\n", |
|
|
649 |
" <td>19.00000</td>\n", |
|
|
650 |
" <td>256.0</td>\n", |
|
|
651 |
" <td>256.0</td>\n", |
|
|
652 |
" </tr>\n", |
|
|
653 |
" <tr>\n", |
|
|
654 |
" <th>25%</th>\n", |
|
|
655 |
" <td>32.000000</td>\n", |
|
|
656 |
" <td>256.0</td>\n", |
|
|
657 |
" <td>256.0</td>\n", |
|
|
658 |
" <td>24.000000</td>\n", |
|
|
659 |
" <td>256.0</td>\n", |
|
|
660 |
" <td>256.0</td>\n", |
|
|
661 |
" <td>26.25000</td>\n", |
|
|
662 |
" <td>256.0</td>\n", |
|
|
663 |
" <td>256.0</td>\n", |
|
|
664 |
" </tr>\n", |
|
|
665 |
" <tr>\n", |
|
|
666 |
" <th>50%</th>\n", |
|
|
667 |
" <td>37.500000</td>\n", |
|
|
668 |
" <td>256.0</td>\n", |
|
|
669 |
" <td>256.0</td>\n", |
|
|
670 |
" <td>32.000000</td>\n", |
|
|
671 |
" <td>256.0</td>\n", |
|
|
672 |
" <td>256.0</td>\n", |
|
|
673 |
" <td>32.00000</td>\n", |
|
|
674 |
" <td>256.0</td>\n", |
|
|
675 |
" <td>256.0</td>\n", |
|
|
676 |
" </tr>\n", |
|
|
677 |
" <tr>\n", |
|
|
678 |
" <th>75%</th>\n", |
|
|
679 |
" <td>40.000000</td>\n", |
|
|
680 |
" <td>256.0</td>\n", |
|
|
681 |
" <td>256.0</td>\n", |
|
|
682 |
" <td>37.750000</td>\n", |
|
|
683 |
" <td>256.0</td>\n", |
|
|
684 |
" <td>256.0</td>\n", |
|
|
685 |
" <td>36.00000</td>\n", |
|
|
686 |
" <td>256.0</td>\n", |
|
|
687 |
" <td>256.0</td>\n", |
|
|
688 |
" </tr>\n", |
|
|
689 |
" <tr>\n", |
|
|
690 |
" <th>max</th>\n", |
|
|
691 |
" <td>51.000000</td>\n", |
|
|
692 |
" <td>256.0</td>\n", |
|
|
693 |
" <td>256.0</td>\n", |
|
|
694 |
" <td>46.000000</td>\n", |
|
|
695 |
" <td>256.0</td>\n", |
|
|
696 |
" <td>256.0</td>\n", |
|
|
697 |
" <td>46.00000</td>\n", |
|
|
698 |
" <td>256.0</td>\n", |
|
|
699 |
" <td>256.0</td>\n", |
|
|
700 |
" </tr>\n", |
|
|
701 |
" </tbody>\n", |
|
|
702 |
"</table>\n", |
|
|
703 |
"</div>" |
|
|
704 |
], |
|
|
705 |
"text/plain": [ |
|
|
706 |
" axial_s axial_w axial_h coronal_s coronal_w coronal_h \\\n", |
|
|
707 |
"count 50.000000 50.0 50.0 50.000000 50.0 50.0 \n", |
|
|
708 |
"mean 35.860000 256.0 256.0 31.360000 256.0 256.0 \n", |
|
|
709 |
"std 7.050865 0.0 0.0 7.899264 0.0 0.0 \n", |
|
|
710 |
"min 22.000000 256.0 256.0 18.000000 256.0 256.0 \n", |
|
|
711 |
"25% 32.000000 256.0 256.0 24.000000 256.0 256.0 \n", |
|
|
712 |
"50% 37.500000 256.0 256.0 32.000000 256.0 256.0 \n", |
|
|
713 |
"75% 40.000000 256.0 256.0 37.750000 256.0 256.0 \n", |
|
|
714 |
"max 51.000000 256.0 256.0 46.000000 256.0 256.0 \n", |
|
|
715 |
"\n", |
|
|
716 |
" sagittal_s sagittal_w sagittal_h \n", |
|
|
717 |
"count 50.00000 50.0 50.0 \n", |
|
|
718 |
"mean 31.72000 256.0 256.0 \n", |
|
|
719 |
"std 6.35687 0.0 0.0 \n", |
|
|
720 |
"min 19.00000 256.0 256.0 \n", |
|
|
721 |
"25% 26.25000 256.0 256.0 \n", |
|
|
722 |
"50% 32.00000 256.0 256.0 \n", |
|
|
723 |
"75% 36.00000 256.0 256.0 \n", |
|
|
724 |
"max 46.00000 256.0 256.0 " |
|
|
725 |
] |
|
|
726 |
}, |
|
|
727 |
"execution_count": 70, |
|
|
728 |
"metadata": {}, |
|
|
729 |
"output_type": "execute_result" |
|
|
730 |
} |
|
|
731 |
], |
|
|
732 |
"source": [ |
|
|
733 |
"dimdf.describe()" |
|
|
734 |
] |
|
|
735 |
}, |
|
|
736 |
{ |
|
|
737 |
"cell_type": "markdown", |
|
|
738 |
"metadata": {}, |
|
|
739 |
"source": [ |
|
|
740 |
"The number of images in a set varies from case (patient) to case, and the dimensions of each image is the same, 256x256. In the sample of data collected here, axial sequences range in length from 22 to 51; coronal, from 18 to 46; sagittal, from 19 to 46." |
|
|
741 |
] |
|
|
742 |
}, |
|
|
743 |
{ |
|
|
744 |
"cell_type": "code", |
|
|
745 |
"execution_count": 20, |
|
|
746 |
"metadata": {}, |
|
|
747 |
"outputs": [], |
|
|
748 |
"source": [ |
|
|
749 |
"def load_one_stack(case, data_path=train_path, plane='coronal'):\n", |
|
|
750 |
" fpath = data_path/plane/'{}.npy'.format(case)\n", |
|
|
751 |
" return np.load(fpath)\n", |
|
|
752 |
"\n", |
|
|
753 |
"def load_stacks(case):\n", |
|
|
754 |
" x = {}\n", |
|
|
755 |
" planes = ['axial', 'coronal', 'sagittal']\n", |
|
|
756 |
" for i, plane in enumerate(planes):\n", |
|
|
757 |
" x[plane] = load_one_stack(case, plane=plane)\n", |
|
|
758 |
" return x" |
|
|
759 |
] |
|
|
760 |
}, |
|
|
761 |
{ |
|
|
762 |
"cell_type": "code", |
|
|
763 |
"execution_count": 29, |
|
|
764 |
"metadata": {}, |
|
|
765 |
"outputs": [ |
|
|
766 |
{ |
|
|
767 |
"name": "stdout", |
|
|
768 |
"output_type": "stream", |
|
|
769 |
"text": [ |
|
|
770 |
"(36, 256, 256)\n", |
|
|
771 |
"255\n" |
|
|
772 |
] |
|
|
773 |
} |
|
|
774 |
], |
|
|
775 |
"source": [ |
|
|
776 |
"case = train_abnl.Case[0]\n", |
|
|
777 |
"x = load_one_stack(case, plane='coronal')\n", |
|
|
778 |
"print(x.shape)\n", |
|
|
779 |
"print(x.max())" |
|
|
780 |
] |
|
|
781 |
}, |
|
|
782 |
{ |
|
|
783 |
"cell_type": "code", |
|
|
784 |
"execution_count": 9, |
|
|
785 |
"metadata": {}, |
|
|
786 |
"outputs": [ |
|
|
787 |
{ |
|
|
788 |
"data": { |
|
|
789 |
"text/plain": [ |
|
|
790 |
"{'axial': array([[[ 0, 0, 0, 0, ..., 4, 5, 4, 3],\n", |
|
|
791 |
" [ 0, 0, 0, 0, ..., 8, 8, 6, 8],\n", |
|
|
792 |
" [ 0, 0, 0, 0, ..., 14, 14, 11, 11],\n", |
|
|
793 |
" [ 0, 0, 0, 0, ..., 16, 16, 14, 15],\n", |
|
|
794 |
" ...,\n", |
|
|
795 |
" [ 0, 0, 0, 0, ..., 14, 15, 18, 16],\n", |
|
|
796 |
" [ 0, 0, 0, 0, ..., 15, 16, 15, 12],\n", |
|
|
797 |
" [ 0, 0, 0, 0, ..., 11, 12, 13, 12],\n", |
|
|
798 |
" [ 0, 0, 0, 0, ..., 8, 11, 7, 9]],\n", |
|
|
799 |
" \n", |
|
|
800 |
" [[ 0, 0, 0, 0, ..., 4, 3, 2, 2],\n", |
|
|
801 |
" [ 0, 0, 0, 0, ..., 5, 9, 7, 7],\n", |
|
|
802 |
" [ 0, 0, 0, 0, ..., 10, 13, 10, 10],\n", |
|
|
803 |
" [ 0, 0, 0, 0, ..., 14, 14, 19, 17],\n", |
|
|
804 |
" ...,\n", |
|
|
805 |
" [ 0, 0, 0, 0, ..., 18, 16, 16, 17],\n", |
|
|
806 |
" [ 0, 0, 0, 0, ..., 13, 12, 15, 13],\n", |
|
|
807 |
" [ 0, 0, 0, 0, ..., 16, 14, 12, 12],\n", |
|
|
808 |
" [ 0, 0, 0, 0, ..., 8, 6, 5, 7]],\n", |
|
|
809 |
" \n", |
|
|
810 |
" [[ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
811 |
" [ 0, 0, 0, 0, ..., 7, 8, 6, 6],\n", |
|
|
812 |
" [ 0, 0, 0, 0, ..., 12, 11, 13, 10],\n", |
|
|
813 |
" [ 0, 0, 0, 0, ..., 12, 18, 18, 16],\n", |
|
|
814 |
" ...,\n", |
|
|
815 |
" [ 0, 0, 0, 0, ..., 16, 18, 16, 17],\n", |
|
|
816 |
" [ 0, 0, 0, 0, ..., 15, 13, 13, 16],\n", |
|
|
817 |
" [ 0, 0, 0, 0, ..., 10, 10, 10, 12],\n", |
|
|
818 |
" [ 0, 0, 0, 0, ..., 6, 6, 6, 5]],\n", |
|
|
819 |
" \n", |
|
|
820 |
" [[ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
821 |
" [ 0, 0, 0, 0, ..., 5, 7, 5, 4],\n", |
|
|
822 |
" [ 0, 0, 0, 0, ..., 11, 10, 11, 12],\n", |
|
|
823 |
" [ 0, 0, 0, 0, ..., 16, 16, 15, 14],\n", |
|
|
824 |
" ...,\n", |
|
|
825 |
" [ 0, 0, 0, 0, ..., 17, 21, 20, 18],\n", |
|
|
826 |
" [ 0, 0, 0, 0, ..., 14, 15, 18, 14],\n", |
|
|
827 |
" [ 0, 0, 0, 0, ..., 11, 9, 8, 10],\n", |
|
|
828 |
" [ 0, 0, 0, 0, ..., 5, 5, 5, 5]],\n", |
|
|
829 |
" \n", |
|
|
830 |
" ...,\n", |
|
|
831 |
" \n", |
|
|
832 |
" [[ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
833 |
" [ 0, 0, 0, 0, ..., 4, 4, 4, 4],\n", |
|
|
834 |
" [ 0, 0, 0, 0, ..., 10, 9, 9, 10],\n", |
|
|
835 |
" [ 0, 0, 0, 0, ..., 12, 13, 16, 14],\n", |
|
|
836 |
" ...,\n", |
|
|
837 |
" [ 0, 0, 0, 0, ..., 16, 12, 14, 15],\n", |
|
|
838 |
" [ 0, 0, 0, 0, ..., 11, 10, 13, 10],\n", |
|
|
839 |
" [ 0, 0, 0, 0, ..., 9, 12, 9, 9],\n", |
|
|
840 |
" [ 0, 0, 0, 0, ..., 6, 6, 4, 5]],\n", |
|
|
841 |
" \n", |
|
|
842 |
" [[ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
843 |
" [ 0, 0, 0, 0, ..., 5, 5, 4, 4],\n", |
|
|
844 |
" [ 0, 0, 0, 0, ..., 12, 8, 9, 11],\n", |
|
|
845 |
" [ 0, 0, 0, 0, ..., 16, 17, 12, 13],\n", |
|
|
846 |
" ...,\n", |
|
|
847 |
" [ 0, 0, 0, 0, ..., 13, 14, 14, 17],\n", |
|
|
848 |
" [ 0, 0, 0, 0, ..., 12, 14, 16, 13],\n", |
|
|
849 |
" [ 0, 0, 0, 0, ..., 9, 12, 12, 8],\n", |
|
|
850 |
" [ 0, 0, 0, 0, ..., 6, 5, 4, 5]],\n", |
|
|
851 |
" \n", |
|
|
852 |
" [[ 0, 0, 0, 0, ..., 3, 2, 3, 2],\n", |
|
|
853 |
" [ 0, 0, 0, 0, ..., 5, 4, 5, 6],\n", |
|
|
854 |
" [ 0, 0, 0, 0, ..., 13, 11, 11, 9],\n", |
|
|
855 |
" [ 0, 0, 0, 0, ..., 13, 13, 16, 16],\n", |
|
|
856 |
" ...,\n", |
|
|
857 |
" [ 0, 0, 0, 0, ..., 17, 17, 14, 16],\n", |
|
|
858 |
" [ 0, 0, 0, 0, ..., 16, 14, 16, 15],\n", |
|
|
859 |
" [ 0, 0, 0, 0, ..., 9, 8, 10, 8],\n", |
|
|
860 |
" [ 0, 0, 0, 0, ..., 6, 6, 6, 6]],\n", |
|
|
861 |
" \n", |
|
|
862 |
" [[ 0, 0, 0, 0, ..., 5, 4, 4, 4],\n", |
|
|
863 |
" [ 0, 0, 0, 0, ..., 9, 8, 7, 6],\n", |
|
|
864 |
" [ 0, 0, 0, 0, ..., 11, 9, 10, 11],\n", |
|
|
865 |
" [ 0, 0, 0, 0, ..., 17, 15, 12, 13],\n", |
|
|
866 |
" ...,\n", |
|
|
867 |
" [ 0, 0, 0, 0, ..., 12, 16, 16, 15],\n", |
|
|
868 |
" [ 0, 0, 0, 0, ..., 16, 12, 15, 16],\n", |
|
|
869 |
" [ 0, 0, 0, 0, ..., 10, 14, 12, 12],\n", |
|
|
870 |
" [ 0, 0, 0, 0, ..., 6, 8, 7, 7]]], dtype=uint8),\n", |
|
|
871 |
" 'coronal': array([[[ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
872 |
" [ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
873 |
" [ 0, 0, 0, 0, ..., 2, 2, 1, 2],\n", |
|
|
874 |
" [ 0, 0, 0, 0, ..., 3, 3, 1, 2],\n", |
|
|
875 |
" ...,\n", |
|
|
876 |
" [ 0, 0, 0, 0, ..., 2, 3, 2, 2],\n", |
|
|
877 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 2],\n", |
|
|
878 |
" [ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
879 |
" [ 0, 0, 0, 0, ..., 0, 0, 1, 0]],\n", |
|
|
880 |
" \n", |
|
|
881 |
" [[ 0, 0, 0, 0, ..., 1, 1, 1, 0],\n", |
|
|
882 |
" [ 0, 0, 0, 0, ..., 2, 1, 1, 1],\n", |
|
|
883 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 2],\n", |
|
|
884 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 2],\n", |
|
|
885 |
" ...,\n", |
|
|
886 |
" [ 0, 0, 0, 0, ..., 3, 3, 2, 2],\n", |
|
|
887 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 2],\n", |
|
|
888 |
" [ 0, 0, 0, 0, ..., 1, 1, 1, 2],\n", |
|
|
889 |
" [ 0, 0, 0, 0, ..., 0, 1, 1, 1]],\n", |
|
|
890 |
" \n", |
|
|
891 |
" [[ 0, 0, 0, 0, ..., 1, 1, 0, 1],\n", |
|
|
892 |
" [ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
893 |
" [ 0, 0, 0, 0, ..., 2, 2, 1, 2],\n", |
|
|
894 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 2],\n", |
|
|
895 |
" ...,\n", |
|
|
896 |
" [ 0, 0, 0, 0, ..., 3, 2, 1, 2],\n", |
|
|
897 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 2],\n", |
|
|
898 |
" [ 0, 0, 0, 0, ..., 2, 1, 1, 2],\n", |
|
|
899 |
" [ 0, 0, 0, 0, ..., 1, 1, 1, 1]],\n", |
|
|
900 |
" \n", |
|
|
901 |
" [[ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
902 |
" [ 0, 0, 0, 0, ..., 2, 1, 1, 1],\n", |
|
|
903 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 2],\n", |
|
|
904 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 2],\n", |
|
|
905 |
" ...,\n", |
|
|
906 |
" [ 0, 0, 0, 0, ..., 2, 3, 2, 2],\n", |
|
|
907 |
" [ 0, 0, 0, 0, ..., 3, 2, 1, 2],\n", |
|
|
908 |
" [ 0, 0, 0, 0, ..., 2, 1, 1, 1],\n", |
|
|
909 |
" [ 0, 0, 0, 0, ..., 1, 1, 1, 1]],\n", |
|
|
910 |
" \n", |
|
|
911 |
" ...,\n", |
|
|
912 |
" \n", |
|
|
913 |
" [[ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
914 |
" [ 0, 0, 0, 0, ..., 1, 1, 2, 2],\n", |
|
|
915 |
" [ 0, 0, 0, 0, ..., 3, 3, 3, 3],\n", |
|
|
916 |
" [ 0, 0, 0, 0, ..., 5, 4, 4, 5],\n", |
|
|
917 |
" ...,\n", |
|
|
918 |
" [ 0, 0, 0, 0, ..., 5, 5, 4, 5],\n", |
|
|
919 |
" [ 0, 0, 0, 0, ..., 3, 3, 3, 3],\n", |
|
|
920 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 1],\n", |
|
|
921 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0]],\n", |
|
|
922 |
" \n", |
|
|
923 |
" [[ 0, 0, 0, 0, ..., 1, 0, 0, 1],\n", |
|
|
924 |
" [ 0, 0, 0, 0, ..., 2, 2, 1, 2],\n", |
|
|
925 |
" [ 0, 0, 0, 0, ..., 4, 5, 4, 4],\n", |
|
|
926 |
" [ 0, 0, 0, 0, ..., 7, 8, 8, 7],\n", |
|
|
927 |
" ...,\n", |
|
|
928 |
" [ 0, 0, 0, 0, ..., 7, 7, 6, 6],\n", |
|
|
929 |
" [ 0, 0, 0, 0, ..., 5, 3, 3, 5],\n", |
|
|
930 |
" [ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
931 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0]],\n", |
|
|
932 |
" \n", |
|
|
933 |
" [[ 0, 0, 0, 0, ..., 0, 0, 1, 1],\n", |
|
|
934 |
" [ 0, 0, 0, 0, ..., 2, 3, 3, 3],\n", |
|
|
935 |
" [ 0, 0, 0, 0, ..., 4, 4, 5, 4],\n", |
|
|
936 |
" [ 0, 0, 0, 0, ..., 9, 6, 8, 10],\n", |
|
|
937 |
" ...,\n", |
|
|
938 |
" [ 0, 0, 0, 0, ..., 8, 9, 8, 11],\n", |
|
|
939 |
" [ 0, 0, 0, 0, ..., 5, 6, 3, 4],\n", |
|
|
940 |
" [ 0, 0, 0, 0, ..., 0, 0, 1, 0],\n", |
|
|
941 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0]],\n", |
|
|
942 |
" \n", |
|
|
943 |
" [[ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
944 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 2],\n", |
|
|
945 |
" [ 0, 0, 0, 0, ..., 3, 3, 5, 5],\n", |
|
|
946 |
" [ 0, 0, 0, 0, ..., 9, 10, 7, 6],\n", |
|
|
947 |
" ...,\n", |
|
|
948 |
" [ 0, 0, 0, 0, ..., 9, 9, 9, 8],\n", |
|
|
949 |
" [ 0, 0, 0, 0, ..., 5, 5, 4, 4],\n", |
|
|
950 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
951 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0]]], dtype=uint8),\n", |
|
|
952 |
" 'sagittal': array([[[ 0, 0, 0, 0, ..., 2, 1, 1, 2],\n", |
|
|
953 |
" [ 0, 0, 0, 0, ..., 8, 8, 8, 7],\n", |
|
|
954 |
" [ 0, 0, 0, 0, ..., 11, 15, 16, 14],\n", |
|
|
955 |
" [ 7, 5, 5, 7, ..., 15, 14, 19, 16],\n", |
|
|
956 |
" ...,\n", |
|
|
957 |
" [ 7, 5, 7, 5, ..., 15, 17, 15, 14],\n", |
|
|
958 |
" [ 0, 1, 1, 1, ..., 10, 15, 12, 11],\n", |
|
|
959 |
" [ 0, 0, 0, 0, ..., 7, 7, 6, 5],\n", |
|
|
960 |
" [ 0, 0, 0, 0, ..., 3, 2, 2, 1]],\n", |
|
|
961 |
" \n", |
|
|
962 |
" [[ 0, 0, 0, 0, ..., 4, 3, 1, 1],\n", |
|
|
963 |
" [ 0, 0, 0, 0, ..., 10, 9, 7, 8],\n", |
|
|
964 |
" [ 0, 0, 0, 0, ..., 17, 17, 15, 17],\n", |
|
|
965 |
" [ 7, 5, 5, 6, ..., 20, 22, 21, 17],\n", |
|
|
966 |
" ...,\n", |
|
|
967 |
" [ 6, 7, 6, 4, ..., 18, 14, 19, 19],\n", |
|
|
968 |
" [ 0, 1, 0, 2, ..., 16, 13, 15, 16],\n", |
|
|
969 |
" [ 0, 0, 0, 0, ..., 10, 8, 5, 6],\n", |
|
|
970 |
" [ 0, 0, 0, 0, ..., 2, 1, 1, 4]],\n", |
|
|
971 |
" \n", |
|
|
972 |
" [[ 0, 0, 0, 0, ..., 3, 4, 3, 4],\n", |
|
|
973 |
" [ 0, 0, 0, 0, ..., 9, 12, 9, 10],\n", |
|
|
974 |
" [ 0, 0, 0, 0, ..., 19, 20, 12, 11],\n", |
|
|
975 |
" [ 7, 6, 7, 6, ..., 19, 17, 13, 16],\n", |
|
|
976 |
" ...,\n", |
|
|
977 |
" [ 3, 6, 6, 4, ..., 27, 27, 14, 19],\n", |
|
|
978 |
" [ 2, 3, 1, 1, ..., 23, 19, 14, 15],\n", |
|
|
979 |
" [ 0, 0, 0, 0, ..., 9, 4, 11, 9],\n", |
|
|
980 |
" [ 0, 0, 0, 0, ..., 2, 1, 2, 3]],\n", |
|
|
981 |
" \n", |
|
|
982 |
" [[ 0, 0, 0, 0, ..., 3, 6, 4, 3],\n", |
|
|
983 |
" [ 0, 0, 0, 0, ..., 8, 10, 8, 10],\n", |
|
|
984 |
" [ 0, 0, 0, 0, ..., 21, 18, 14, 18],\n", |
|
|
985 |
" [ 5, 9, 6, 6, ..., 26, 19, 18, 22],\n", |
|
|
986 |
" ...,\n", |
|
|
987 |
" [ 6, 4, 6, 9, ..., 22, 23, 24, 25],\n", |
|
|
988 |
" [ 1, 1, 2, 1, ..., 14, 17, 19, 17],\n", |
|
|
989 |
" [ 0, 0, 0, 0, ..., 10, 8, 7, 9],\n", |
|
|
990 |
" [ 0, 0, 0, 0, ..., 2, 2, 2, 3]],\n", |
|
|
991 |
" \n", |
|
|
992 |
" ...,\n", |
|
|
993 |
" \n", |
|
|
994 |
" [[ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
995 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
996 |
" [ 0, 0, 0, 0, ..., 3, 3, 3, 2],\n", |
|
|
997 |
" [ 0, 0, 0, 0, ..., 10, 8, 10, 10],\n", |
|
|
998 |
" ...,\n", |
|
|
999 |
" [ 0, 0, 0, 3, ..., 7, 10, 8, 7],\n", |
|
|
1000 |
" [ 0, 0, 0, 0, ..., 4, 4, 5, 4],\n", |
|
|
1001 |
" [ 0, 0, 0, 0, ..., 2, 2, 1, 1],\n", |
|
|
1002 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0]],\n", |
|
|
1003 |
" \n", |
|
|
1004 |
" [[ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
1005 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
1006 |
" [ 0, 0, 0, 0, ..., 3, 3, 3, 2],\n", |
|
|
1007 |
" [ 0, 0, 0, 0, ..., 10, 11, 9, 11],\n", |
|
|
1008 |
" ...,\n", |
|
|
1009 |
" [ 0, 0, 0, 4, ..., 10, 9, 10, 9],\n", |
|
|
1010 |
" [ 0, 0, 0, 1, ..., 5, 6, 5, 6],\n", |
|
|
1011 |
" [ 0, 0, 0, 0, ..., 3, 2, 1, 2],\n", |
|
|
1012 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0]],\n", |
|
|
1013 |
" \n", |
|
|
1014 |
" [[ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
1015 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
1016 |
" [ 0, 0, 0, 0, ..., 3, 2, 2, 2],\n", |
|
|
1017 |
" [ 0, 0, 0, 1, ..., 11, 12, 11, 9],\n", |
|
|
1018 |
" ...,\n", |
|
|
1019 |
" [ 0, 0, 0, 3, ..., 9, 11, 10, 9],\n", |
|
|
1020 |
" [ 0, 0, 0, 1, ..., 5, 6, 6, 5],\n", |
|
|
1021 |
" [ 0, 0, 0, 0, ..., 2, 3, 2, 1],\n", |
|
|
1022 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0]],\n", |
|
|
1023 |
" \n", |
|
|
1024 |
" [[ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
1025 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0],\n", |
|
|
1026 |
" [ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
1027 |
" [ 0, 0, 0, 0, ..., 8, 10, 8, 9],\n", |
|
|
1028 |
" ...,\n", |
|
|
1029 |
" [ 0, 0, 0, 2, ..., 7, 9, 8, 8],\n", |
|
|
1030 |
" [ 0, 0, 0, 0, ..., 4, 4, 4, 5],\n", |
|
|
1031 |
" [ 0, 0, 0, 0, ..., 1, 1, 1, 1],\n", |
|
|
1032 |
" [ 0, 0, 0, 0, ..., 0, 0, 0, 0]]], dtype=uint8)}" |
|
|
1033 |
] |
|
|
1034 |
}, |
|
|
1035 |
"execution_count": 9, |
|
|
1036 |
"metadata": {}, |
|
|
1037 |
"output_type": "execute_result" |
|
|
1038 |
} |
|
|
1039 |
], |
|
|
1040 |
"source": [ |
|
|
1041 |
"x_multi = load_stacks(case)\n", |
|
|
1042 |
"x_multi" |
|
|
1043 |
] |
|
|
1044 |
}, |
|
|
1045 |
{ |
|
|
1046 |
"cell_type": "code", |
|
|
1047 |
"execution_count": 30, |
|
|
1048 |
"metadata": {}, |
|
|
1049 |
"outputs": [], |
|
|
1050 |
"source": [ |
|
|
1051 |
"from ipywidgets import interactive\n", |
|
|
1052 |
"from IPython.display import display\n", |
|
|
1053 |
"\n", |
|
|
1054 |
"plt.style.use('grayscale')\n", |
|
|
1055 |
"\n", |
|
|
1056 |
"class KneePlot():\n", |
|
|
1057 |
" def __init__(self, x, figsize=(10, 10)):\n", |
|
|
1058 |
" self.x = x\n", |
|
|
1059 |
" self.slice_range = (0, self.x.shape[0] - 1)\n", |
|
|
1060 |
" self.resize(figsize)\n", |
|
|
1061 |
" \n", |
|
|
1062 |
" def _plot_slice(self, im_slice):\n", |
|
|
1063 |
" fig, ax = plt.subplots(1, 1, figsize=self.figsize)\n", |
|
|
1064 |
" ax.imshow(self.x[im_slice, :, :])\n", |
|
|
1065 |
" plt.show()\n", |
|
|
1066 |
"\n", |
|
|
1067 |
" def resize(self, figsize):\n", |
|
|
1068 |
" self.figsize = figsize\n", |
|
|
1069 |
" self.interactive_plot = interactive(self._plot_slice, im_slice=self.slice_range)\n", |
|
|
1070 |
" self.output = self.interactive_plot.children[-1]\n", |
|
|
1071 |
" self.output.layout.height = '{}px'.format(60 * self.figsize[1])\n", |
|
|
1072 |
"\n", |
|
|
1073 |
" def show(self):\n", |
|
|
1074 |
" display(self.interactive_plot)\n" |
|
|
1075 |
] |
|
|
1076 |
}, |
|
|
1077 |
{ |
|
|
1078 |
"cell_type": "code", |
|
|
1079 |
"execution_count": 31, |
|
|
1080 |
"metadata": {}, |
|
|
1081 |
"outputs": [ |
|
|
1082 |
{ |
|
|
1083 |
"data": { |
|
|
1084 |
"application/vnd.jupyter.widget-view+json": { |
|
|
1085 |
"model_id": "bb94b9e5a31b44c5abd287a8cdb12fe9", |
|
|
1086 |
"version_major": 2, |
|
|
1087 |
"version_minor": 0 |
|
|
1088 |
}, |
|
|
1089 |
"text/plain": [ |
|
|
1090 |
"interactive(children=(IntSlider(value=17, description='im_slice', max=35), Output(layout=Layout(height='600px'…" |
|
|
1091 |
] |
|
|
1092 |
}, |
|
|
1093 |
"metadata": {}, |
|
|
1094 |
"output_type": "display_data" |
|
|
1095 |
} |
|
|
1096 |
], |
|
|
1097 |
"source": [ |
|
|
1098 |
"plot = KneePlot(x)\n", |
|
|
1099 |
"plot.show()\n" |
|
|
1100 |
] |
|
|
1101 |
}, |
|
|
1102 |
{ |
|
|
1103 |
"cell_type": "code", |
|
|
1104 |
"execution_count": 12, |
|
|
1105 |
"metadata": {}, |
|
|
1106 |
"outputs": [ |
|
|
1107 |
{ |
|
|
1108 |
"data": { |
|
|
1109 |
"application/vnd.jupyter.widget-view+json": { |
|
|
1110 |
"model_id": "4d55829c45294dbd90f82665f799a8ca", |
|
|
1111 |
"version_major": 2, |
|
|
1112 |
"version_minor": 0 |
|
|
1113 |
}, |
|
|
1114 |
"text/plain": [ |
|
|
1115 |
"interactive(children=(IntSlider(value=17, description='im_slice', max=35), Output(layout=Layout(height='720px'…" |
|
|
1116 |
] |
|
|
1117 |
}, |
|
|
1118 |
"metadata": {}, |
|
|
1119 |
"output_type": "display_data" |
|
|
1120 |
} |
|
|
1121 |
], |
|
|
1122 |
"source": [ |
|
|
1123 |
"plot.resize(figsize=(12, 12))\n", |
|
|
1124 |
"plot.show()\n" |
|
|
1125 |
] |
|
|
1126 |
}, |
|
|
1127 |
{ |
|
|
1128 |
"cell_type": "code", |
|
|
1129 |
"execution_count": 15, |
|
|
1130 |
"metadata": {}, |
|
|
1131 |
"outputs": [], |
|
|
1132 |
"source": [ |
|
|
1133 |
"from ipywidgets import interact, Dropdown, IntSlider\n", |
|
|
1134 |
"\n", |
|
|
1135 |
"class MultiKneePlot():\n", |
|
|
1136 |
" def __init__(self, x_multi, figsize=(10, 10)):\n", |
|
|
1137 |
" self.x = x_multi\n", |
|
|
1138 |
" self.planes = ['coronal', 'sagittal', 'axial']\n", |
|
|
1139 |
" self.slice_nums = {plane: self.x[plane].shape[0] for plane in self.planes}\n", |
|
|
1140 |
" self.figsize = figsize\n", |
|
|
1141 |
" \n", |
|
|
1142 |
" def _plot_slices(self, plane, im_slice): \n", |
|
|
1143 |
" fig, ax = plt.subplots(1, 1, figsize=self.figsize)\n", |
|
|
1144 |
" ax.imshow(self.x[plane][im_slice, :, :])\n", |
|
|
1145 |
" plt.show()\n", |
|
|
1146 |
" \n", |
|
|
1147 |
" def draw(self):\n", |
|
|
1148 |
" planes_widget = Dropdown(options=self.planes)\n", |
|
|
1149 |
" plane_init = self.planes[0]\n", |
|
|
1150 |
" slice_init = self.slice_nums[plane_init] - 1\n", |
|
|
1151 |
" slices_widget = IntSlider(min=0, max=slice_init, value=slice_init//2)\n", |
|
|
1152 |
" def update_slices_widget(*args):\n", |
|
|
1153 |
" slices_widget.max = self.slice_nums[planes_widget.value] - 1\n", |
|
|
1154 |
" slices_widget.value = slices_widget.max // 2\n", |
|
|
1155 |
" planes_widget.observe(update_slices_widget, 'value')\n", |
|
|
1156 |
" interact(self._plot_slices, plane=planes_widget, im_slice=slices_widget)\n", |
|
|
1157 |
" \n", |
|
|
1158 |
" def resize(self, figsize): self.figsize = figsize\n" |
|
|
1159 |
] |
|
|
1160 |
}, |
|
|
1161 |
{ |
|
|
1162 |
"cell_type": "code", |
|
|
1163 |
"execution_count": 16, |
|
|
1164 |
"metadata": {}, |
|
|
1165 |
"outputs": [ |
|
|
1166 |
{ |
|
|
1167 |
"data": { |
|
|
1168 |
"application/vnd.jupyter.widget-view+json": { |
|
|
1169 |
"model_id": "0d7a1c151c3440c59bfa0a2b55e6180e", |
|
|
1170 |
"version_major": 2, |
|
|
1171 |
"version_minor": 0 |
|
|
1172 |
}, |
|
|
1173 |
"text/plain": [ |
|
|
1174 |
"interactive(children=(Dropdown(description='plane', options=('coronal', 'sagittal', 'axial'), value='coronal')…" |
|
|
1175 |
] |
|
|
1176 |
}, |
|
|
1177 |
"metadata": {}, |
|
|
1178 |
"output_type": "display_data" |
|
|
1179 |
} |
|
|
1180 |
], |
|
|
1181 |
"source": [ |
|
|
1182 |
"plot_multi = MultiKneePlot(x_multi)\n", |
|
|
1183 |
"plot_multi.draw()" |
|
|
1184 |
] |
|
|
1185 |
}, |
|
|
1186 |
{ |
|
|
1187 |
"cell_type": "code", |
|
|
1188 |
"execution_count": null, |
|
|
1189 |
"metadata": {}, |
|
|
1190 |
"outputs": [], |
|
|
1191 |
"source": [] |
|
|
1192 |
} |
|
|
1193 |
], |
|
|
1194 |
"metadata": { |
|
|
1195 |
"kernelspec": { |
|
|
1196 |
"display_name": "Python 3", |
|
|
1197 |
"language": "python", |
|
|
1198 |
"name": "python3" |
|
|
1199 |
}, |
|
|
1200 |
"language_info": { |
|
|
1201 |
"codemirror_mode": { |
|
|
1202 |
"name": "ipython", |
|
|
1203 |
"version": 3 |
|
|
1204 |
}, |
|
|
1205 |
"file_extension": ".py", |
|
|
1206 |
"mimetype": "text/x-python", |
|
|
1207 |
"name": "python", |
|
|
1208 |
"nbconvert_exporter": "python", |
|
|
1209 |
"pygments_lexer": "ipython3", |
|
|
1210 |
"version": "3.7.2" |
|
|
1211 |
} |
|
|
1212 |
}, |
|
|
1213 |
"nbformat": 4, |
|
|
1214 |
"nbformat_minor": 2 |
|
|
1215 |
} |