|
a |
|
b/MRNet_EDA.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import numpy as np\n", |
|
|
10 |
"import pandas as pd\n", |
|
|
11 |
"import matplotlib.pyplot as plt\n", |
|
|
12 |
"from pathlib import Path\n", |
|
|
13 |
"from ipywidgets import interact, Dropdown, IntSlider\n", |
|
|
14 |
"\n", |
|
|
15 |
"%matplotlib notebook\n", |
|
|
16 |
"plt.style.use('grayscale')" |
|
|
17 |
] |
|
|
18 |
}, |
|
|
19 |
{ |
|
|
20 |
"cell_type": "code", |
|
|
21 |
"execution_count": 2, |
|
|
22 |
"metadata": {}, |
|
|
23 |
"outputs": [ |
|
|
24 |
{ |
|
|
25 |
"name": "stdout", |
|
|
26 |
"output_type": "stream", |
|
|
27 |
"text": [ |
|
|
28 |
"\u001b[01;34m..\u001b[00m\r\n", |
|
|
29 |
"├── \u001b[01;34mdata\u001b[00m\r\n", |
|
|
30 |
"│ ├── \u001b[01;34mtrain\u001b[00m\r\n", |
|
|
31 |
"│ │ ├── \u001b[01;34maxial\u001b[00m\r\n", |
|
|
32 |
"│ │ ├── \u001b[01;34mcoronal\u001b[00m\r\n", |
|
|
33 |
"│ │ └── \u001b[01;34msagittal\u001b[00m\r\n", |
|
|
34 |
"│ └── \u001b[01;34mvalid\u001b[00m\r\n", |
|
|
35 |
"│ ├── \u001b[01;34maxial\u001b[00m\r\n", |
|
|
36 |
"│ ├── \u001b[01;34mcoronal\u001b[00m\r\n", |
|
|
37 |
"│ └── \u001b[01;34msagittal\u001b[00m\r\n", |
|
|
38 |
"├── \u001b[01;34mexp\u001b[00m\r\n", |
|
|
39 |
"└── \u001b[01;34mmrnet-fastai\u001b[00m\r\n", |
|
|
40 |
"\r\n", |
|
|
41 |
"11 directories\r\n" |
|
|
42 |
] |
|
|
43 |
} |
|
|
44 |
], |
|
|
45 |
"source": [ |
|
|
46 |
"! tree -d .." |
|
|
47 |
] |
|
|
48 |
}, |
|
|
49 |
{ |
|
|
50 |
"cell_type": "code", |
|
|
51 |
"execution_count": 3, |
|
|
52 |
"metadata": {}, |
|
|
53 |
"outputs": [ |
|
|
54 |
{ |
|
|
55 |
"name": "stdout", |
|
|
56 |
"output_type": "stream", |
|
|
57 |
"text": [ |
|
|
58 |
"0000.npy\r\n", |
|
|
59 |
"0001.npy\r\n", |
|
|
60 |
"0002.npy\r\n", |
|
|
61 |
"0003.npy\r\n", |
|
|
62 |
"0004.npy\r\n", |
|
|
63 |
"ls: write error: Broken pipe\r\n" |
|
|
64 |
] |
|
|
65 |
} |
|
|
66 |
], |
|
|
67 |
"source": [ |
|
|
68 |
"! ls ../data/train/axial | head -n 5" |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "code", |
|
|
73 |
"execution_count": 4, |
|
|
74 |
"metadata": {}, |
|
|
75 |
"outputs": [], |
|
|
76 |
"source": [ |
|
|
77 |
"data_path = Path('../data')\n", |
|
|
78 |
"train_path = data_path/'train'\n", |
|
|
79 |
"valid_path = data_path/'valid'" |
|
|
80 |
] |
|
|
81 |
}, |
|
|
82 |
{ |
|
|
83 |
"cell_type": "code", |
|
|
84 |
"execution_count": 5, |
|
|
85 |
"metadata": {}, |
|
|
86 |
"outputs": [ |
|
|
87 |
{ |
|
|
88 |
"name": "stdout", |
|
|
89 |
"output_type": "stream", |
|
|
90 |
"text": [ |
|
|
91 |
" Case\n", |
|
|
92 |
"Abnormal \n", |
|
|
93 |
"0 217\n", |
|
|
94 |
"1 913\n" |
|
|
95 |
] |
|
|
96 |
}, |
|
|
97 |
{ |
|
|
98 |
"data": { |
|
|
99 |
"text/html": [ |
|
|
100 |
"<div>\n", |
|
|
101 |
"<style scoped>\n", |
|
|
102 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
103 |
" vertical-align: middle;\n", |
|
|
104 |
" }\n", |
|
|
105 |
"\n", |
|
|
106 |
" .dataframe tbody tr th {\n", |
|
|
107 |
" vertical-align: top;\n", |
|
|
108 |
" }\n", |
|
|
109 |
"\n", |
|
|
110 |
" .dataframe thead th {\n", |
|
|
111 |
" text-align: right;\n", |
|
|
112 |
" }\n", |
|
|
113 |
"</style>\n", |
|
|
114 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
115 |
" <thead>\n", |
|
|
116 |
" <tr style=\"text-align: right;\">\n", |
|
|
117 |
" <th></th>\n", |
|
|
118 |
" <th>Case</th>\n", |
|
|
119 |
" <th>Abnormal</th>\n", |
|
|
120 |
" </tr>\n", |
|
|
121 |
" </thead>\n", |
|
|
122 |
" <tbody>\n", |
|
|
123 |
" <tr>\n", |
|
|
124 |
" <th>0</th>\n", |
|
|
125 |
" <td>0000</td>\n", |
|
|
126 |
" <td>1</td>\n", |
|
|
127 |
" </tr>\n", |
|
|
128 |
" <tr>\n", |
|
|
129 |
" <th>1</th>\n", |
|
|
130 |
" <td>0001</td>\n", |
|
|
131 |
" <td>1</td>\n", |
|
|
132 |
" </tr>\n", |
|
|
133 |
" <tr>\n", |
|
|
134 |
" <th>2</th>\n", |
|
|
135 |
" <td>0002</td>\n", |
|
|
136 |
" <td>1</td>\n", |
|
|
137 |
" </tr>\n", |
|
|
138 |
" <tr>\n", |
|
|
139 |
" <th>3</th>\n", |
|
|
140 |
" <td>0003</td>\n", |
|
|
141 |
" <td>1</td>\n", |
|
|
142 |
" </tr>\n", |
|
|
143 |
" <tr>\n", |
|
|
144 |
" <th>4</th>\n", |
|
|
145 |
" <td>0004</td>\n", |
|
|
146 |
" <td>1</td>\n", |
|
|
147 |
" </tr>\n", |
|
|
148 |
" </tbody>\n", |
|
|
149 |
"</table>\n", |
|
|
150 |
"</div>" |
|
|
151 |
], |
|
|
152 |
"text/plain": [ |
|
|
153 |
" Case Abnormal\n", |
|
|
154 |
"0 0000 1\n", |
|
|
155 |
"1 0001 1\n", |
|
|
156 |
"2 0002 1\n", |
|
|
157 |
"3 0003 1\n", |
|
|
158 |
"4 0004 1" |
|
|
159 |
] |
|
|
160 |
}, |
|
|
161 |
"execution_count": 5, |
|
|
162 |
"metadata": {}, |
|
|
163 |
"output_type": "execute_result" |
|
|
164 |
} |
|
|
165 |
], |
|
|
166 |
"source": [ |
|
|
167 |
"train_abnl = pd.read_csv(data_path/'train-abnormal.csv', header=None,\n", |
|
|
168 |
" names=['Case', 'Abnormal'], \n", |
|
|
169 |
" dtype={'Case': str, 'Abnormal': np.int64})\n", |
|
|
170 |
"print(train_abnl.groupby('Abnormal').count())\n", |
|
|
171 |
"train_abnl.head()" |
|
|
172 |
] |
|
|
173 |
}, |
|
|
174 |
{ |
|
|
175 |
"cell_type": "code", |
|
|
176 |
"execution_count": 6, |
|
|
177 |
"metadata": {}, |
|
|
178 |
"outputs": [ |
|
|
179 |
{ |
|
|
180 |
"name": "stdout", |
|
|
181 |
"output_type": "stream", |
|
|
182 |
"text": [ |
|
|
183 |
" Case\n", |
|
|
184 |
"ACL_tear \n", |
|
|
185 |
"0 922\n", |
|
|
186 |
"1 208\n" |
|
|
187 |
] |
|
|
188 |
}, |
|
|
189 |
{ |
|
|
190 |
"data": { |
|
|
191 |
"text/html": [ |
|
|
192 |
"<div>\n", |
|
|
193 |
"<style scoped>\n", |
|
|
194 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
195 |
" vertical-align: middle;\n", |
|
|
196 |
" }\n", |
|
|
197 |
"\n", |
|
|
198 |
" .dataframe tbody tr th {\n", |
|
|
199 |
" vertical-align: top;\n", |
|
|
200 |
" }\n", |
|
|
201 |
"\n", |
|
|
202 |
" .dataframe thead th {\n", |
|
|
203 |
" text-align: right;\n", |
|
|
204 |
" }\n", |
|
|
205 |
"</style>\n", |
|
|
206 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
207 |
" <thead>\n", |
|
|
208 |
" <tr style=\"text-align: right;\">\n", |
|
|
209 |
" <th></th>\n", |
|
|
210 |
" <th>Case</th>\n", |
|
|
211 |
" <th>ACL_tear</th>\n", |
|
|
212 |
" </tr>\n", |
|
|
213 |
" </thead>\n", |
|
|
214 |
" <tbody>\n", |
|
|
215 |
" <tr>\n", |
|
|
216 |
" <th>0</th>\n", |
|
|
217 |
" <td>0000</td>\n", |
|
|
218 |
" <td>0</td>\n", |
|
|
219 |
" </tr>\n", |
|
|
220 |
" <tr>\n", |
|
|
221 |
" <th>1</th>\n", |
|
|
222 |
" <td>0001</td>\n", |
|
|
223 |
" <td>1</td>\n", |
|
|
224 |
" </tr>\n", |
|
|
225 |
" <tr>\n", |
|
|
226 |
" <th>2</th>\n", |
|
|
227 |
" <td>0002</td>\n", |
|
|
228 |
" <td>0</td>\n", |
|
|
229 |
" </tr>\n", |
|
|
230 |
" <tr>\n", |
|
|
231 |
" <th>3</th>\n", |
|
|
232 |
" <td>0003</td>\n", |
|
|
233 |
" <td>0</td>\n", |
|
|
234 |
" </tr>\n", |
|
|
235 |
" <tr>\n", |
|
|
236 |
" <th>4</th>\n", |
|
|
237 |
" <td>0004</td>\n", |
|
|
238 |
" <td>0</td>\n", |
|
|
239 |
" </tr>\n", |
|
|
240 |
" </tbody>\n", |
|
|
241 |
"</table>\n", |
|
|
242 |
"</div>" |
|
|
243 |
], |
|
|
244 |
"text/plain": [ |
|
|
245 |
" Case ACL_tear\n", |
|
|
246 |
"0 0000 0\n", |
|
|
247 |
"1 0001 1\n", |
|
|
248 |
"2 0002 0\n", |
|
|
249 |
"3 0003 0\n", |
|
|
250 |
"4 0004 0" |
|
|
251 |
] |
|
|
252 |
}, |
|
|
253 |
"execution_count": 6, |
|
|
254 |
"metadata": {}, |
|
|
255 |
"output_type": "execute_result" |
|
|
256 |
} |
|
|
257 |
], |
|
|
258 |
"source": [ |
|
|
259 |
"train_acl = pd.read_csv(data_path/'train-acl.csv', header=None,\n", |
|
|
260 |
" names=['Case', 'ACL_tear'], \n", |
|
|
261 |
" dtype={'Case': str, 'ACL_tear': np.int64})\n", |
|
|
262 |
"print(train_acl.groupby('ACL_tear').count())\n", |
|
|
263 |
"train_acl.head()" |
|
|
264 |
] |
|
|
265 |
}, |
|
|
266 |
{ |
|
|
267 |
"cell_type": "code", |
|
|
268 |
"execution_count": 7, |
|
|
269 |
"metadata": {}, |
|
|
270 |
"outputs": [ |
|
|
271 |
{ |
|
|
272 |
"name": "stdout", |
|
|
273 |
"output_type": "stream", |
|
|
274 |
"text": [ |
|
|
275 |
" Case\n", |
|
|
276 |
"Meniscus_tear \n", |
|
|
277 |
"0 733\n", |
|
|
278 |
"1 397\n" |
|
|
279 |
] |
|
|
280 |
}, |
|
|
281 |
{ |
|
|
282 |
"data": { |
|
|
283 |
"text/html": [ |
|
|
284 |
"<div>\n", |
|
|
285 |
"<style scoped>\n", |
|
|
286 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
287 |
" vertical-align: middle;\n", |
|
|
288 |
" }\n", |
|
|
289 |
"\n", |
|
|
290 |
" .dataframe tbody tr th {\n", |
|
|
291 |
" vertical-align: top;\n", |
|
|
292 |
" }\n", |
|
|
293 |
"\n", |
|
|
294 |
" .dataframe thead th {\n", |
|
|
295 |
" text-align: right;\n", |
|
|
296 |
" }\n", |
|
|
297 |
"</style>\n", |
|
|
298 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
299 |
" <thead>\n", |
|
|
300 |
" <tr style=\"text-align: right;\">\n", |
|
|
301 |
" <th></th>\n", |
|
|
302 |
" <th>Case</th>\n", |
|
|
303 |
" <th>Meniscus_tear</th>\n", |
|
|
304 |
" </tr>\n", |
|
|
305 |
" </thead>\n", |
|
|
306 |
" <tbody>\n", |
|
|
307 |
" <tr>\n", |
|
|
308 |
" <th>0</th>\n", |
|
|
309 |
" <td>0000</td>\n", |
|
|
310 |
" <td>0</td>\n", |
|
|
311 |
" </tr>\n", |
|
|
312 |
" <tr>\n", |
|
|
313 |
" <th>1</th>\n", |
|
|
314 |
" <td>0001</td>\n", |
|
|
315 |
" <td>1</td>\n", |
|
|
316 |
" </tr>\n", |
|
|
317 |
" <tr>\n", |
|
|
318 |
" <th>2</th>\n", |
|
|
319 |
" <td>0002</td>\n", |
|
|
320 |
" <td>0</td>\n", |
|
|
321 |
" </tr>\n", |
|
|
322 |
" <tr>\n", |
|
|
323 |
" <th>3</th>\n", |
|
|
324 |
" <td>0003</td>\n", |
|
|
325 |
" <td>1</td>\n", |
|
|
326 |
" </tr>\n", |
|
|
327 |
" <tr>\n", |
|
|
328 |
" <th>4</th>\n", |
|
|
329 |
" <td>0004</td>\n", |
|
|
330 |
" <td>0</td>\n", |
|
|
331 |
" </tr>\n", |
|
|
332 |
" </tbody>\n", |
|
|
333 |
"</table>\n", |
|
|
334 |
"</div>" |
|
|
335 |
], |
|
|
336 |
"text/plain": [ |
|
|
337 |
" Case Meniscus_tear\n", |
|
|
338 |
"0 0000 0\n", |
|
|
339 |
"1 0001 1\n", |
|
|
340 |
"2 0002 0\n", |
|
|
341 |
"3 0003 1\n", |
|
|
342 |
"4 0004 0" |
|
|
343 |
] |
|
|
344 |
}, |
|
|
345 |
"execution_count": 7, |
|
|
346 |
"metadata": {}, |
|
|
347 |
"output_type": "execute_result" |
|
|
348 |
} |
|
|
349 |
], |
|
|
350 |
"source": [ |
|
|
351 |
"train_meniscus = pd.read_csv(data_path/'train-meniscus.csv', header=None,\n", |
|
|
352 |
" names=['Case', 'Meniscus_tear'], \n", |
|
|
353 |
" dtype={'Case': str, 'Meniscus_tear': np.int64})\n", |
|
|
354 |
"print(train_meniscus.groupby('Meniscus_tear').count())\n", |
|
|
355 |
"train_meniscus.head()" |
|
|
356 |
] |
|
|
357 |
}, |
|
|
358 |
{ |
|
|
359 |
"cell_type": "code", |
|
|
360 |
"execution_count": 8, |
|
|
361 |
"metadata": {}, |
|
|
362 |
"outputs": [], |
|
|
363 |
"source": [ |
|
|
364 |
"def load_one_stack(case, data_path=train_path, plane='coronal'):\n", |
|
|
365 |
" fpath = data_path/plane/'{}.npy'.format(case)\n", |
|
|
366 |
" return np.load(fpath)\n", |
|
|
367 |
"\n", |
|
|
368 |
"def load_stacks(case, data_path=train_path):\n", |
|
|
369 |
" x = {}\n", |
|
|
370 |
" planes = ['coronal', 'sagittal', 'axial']\n", |
|
|
371 |
" for i, plane in enumerate(planes):\n", |
|
|
372 |
" x[plane] = load_one_stack(case, data_path, plane=plane)\n", |
|
|
373 |
" return x\n", |
|
|
374 |
"\n", |
|
|
375 |
"def load_partial_stacks(case, data_path=train_path, slice_limit=None):\n", |
|
|
376 |
" x = {}\n", |
|
|
377 |
" planes = ['coronal', 'sagittal', 'axial']\n", |
|
|
378 |
" if not slice_limit:\n", |
|
|
379 |
" return load_stacks(case, data_path)\n", |
|
|
380 |
" else:\n", |
|
|
381 |
" for i, plane in enumerate(planes):\n", |
|
|
382 |
" data = load_one_stack(case, data_path, plane)\n", |
|
|
383 |
" if slice_limit >= data.shape[0]:\n", |
|
|
384 |
" x[plane] = data\n", |
|
|
385 |
" else:\n", |
|
|
386 |
" mid_slice = data.shape[0] // 2\n", |
|
|
387 |
" lower = mid_slice - (slice_limit // 2)\n", |
|
|
388 |
" upper = mid_slice + (slice_limit // 2)\n", |
|
|
389 |
" x[plane] = data[lower:upper, :, :]\n", |
|
|
390 |
" return x\n", |
|
|
391 |
" " |
|
|
392 |
] |
|
|
393 |
}, |
|
|
394 |
{ |
|
|
395 |
"cell_type": "code", |
|
|
396 |
"execution_count": 9, |
|
|
397 |
"metadata": {}, |
|
|
398 |
"outputs": [ |
|
|
399 |
{ |
|
|
400 |
"name": "stdout", |
|
|
401 |
"output_type": "stream", |
|
|
402 |
"text": [ |
|
|
403 |
"(36, 256, 256)\n", |
|
|
404 |
"255\n" |
|
|
405 |
] |
|
|
406 |
} |
|
|
407 |
], |
|
|
408 |
"source": [ |
|
|
409 |
"case = train_abnl.Case[0]\n", |
|
|
410 |
"x = load_one_stack(case)\n", |
|
|
411 |
"print(x.shape)\n", |
|
|
412 |
"print(x.max())" |
|
|
413 |
] |
|
|
414 |
}, |
|
|
415 |
{ |
|
|
416 |
"cell_type": "code", |
|
|
417 |
"execution_count": 10, |
|
|
418 |
"metadata": {}, |
|
|
419 |
"outputs": [ |
|
|
420 |
{ |
|
|
421 |
"data": { |
|
|
422 |
"text/plain": [ |
|
|
423 |
"dict_keys(['coronal', 'sagittal', 'axial'])" |
|
|
424 |
] |
|
|
425 |
}, |
|
|
426 |
"execution_count": 10, |
|
|
427 |
"metadata": {}, |
|
|
428 |
"output_type": "execute_result" |
|
|
429 |
} |
|
|
430 |
], |
|
|
431 |
"source": [ |
|
|
432 |
"x = load_stacks(case)\n", |
|
|
433 |
"x.keys()" |
|
|
434 |
] |
|
|
435 |
}, |
|
|
436 |
{ |
|
|
437 |
"cell_type": "code", |
|
|
438 |
"execution_count": 11, |
|
|
439 |
"metadata": {}, |
|
|
440 |
"outputs": [], |
|
|
441 |
"source": [ |
|
|
442 |
"class KneePlot():\n", |
|
|
443 |
" def __init__(self, x: dict, figsize=(10, 10)):\n", |
|
|
444 |
" self.x = x\n", |
|
|
445 |
" self.planes = list(x.keys())\n", |
|
|
446 |
" self.slice_nums = {plane: self.x[plane].shape[0] for plane in self.planes}\n", |
|
|
447 |
" self.figsize = figsize\n", |
|
|
448 |
" \n", |
|
|
449 |
" def _plot_slices(self, plane, im_slice): \n", |
|
|
450 |
" fig, ax = plt.subplots(1, 1, figsize=self.figsize)\n", |
|
|
451 |
" ax.imshow(self.x[plane][im_slice, :, :])\n", |
|
|
452 |
" plt.show()\n", |
|
|
453 |
" \n", |
|
|
454 |
" def draw(self):\n", |
|
|
455 |
" planes_widget = Dropdown(options=self.planes)\n", |
|
|
456 |
" plane_init = self.planes[0]\n", |
|
|
457 |
" slice_init = self.slice_nums[plane_init] - 1\n", |
|
|
458 |
" slices_widget = IntSlider(min=0, max=slice_init, value=slice_init//2)\n", |
|
|
459 |
" def update_slices_widget(*args):\n", |
|
|
460 |
" slices_widget.max = self.slice_nums[planes_widget.value] - 1\n", |
|
|
461 |
" slices_widget.value = slices_widget.max // 2\n", |
|
|
462 |
" planes_widget.observe(update_slices_widget, 'value')\n", |
|
|
463 |
" interact(self._plot_slices, plane=planes_widget, im_slice=slices_widget)\n", |
|
|
464 |
" \n", |
|
|
465 |
" def resize(self, figsize): self.figsize = figsize\n" |
|
|
466 |
] |
|
|
467 |
}, |
|
|
468 |
{ |
|
|
469 |
"cell_type": "code", |
|
|
470 |
"execution_count": 12, |
|
|
471 |
"metadata": {}, |
|
|
472 |
"outputs": [ |
|
|
473 |
{ |
|
|
474 |
"data": { |
|
|
475 |
"application/vnd.jupyter.widget-view+json": { |
|
|
476 |
"model_id": "78a08edf6b3d4417b695f1b118188a9c", |
|
|
477 |
"version_major": 2, |
|
|
478 |
"version_minor": 0 |
|
|
479 |
}, |
|
|
480 |
"text/plain": [ |
|
|
481 |
"interactive(children=(Dropdown(description='plane', options=('coronal', 'sagittal', 'axial'), value='coronal')…" |
|
|
482 |
] |
|
|
483 |
}, |
|
|
484 |
"metadata": {}, |
|
|
485 |
"output_type": "display_data" |
|
|
486 |
} |
|
|
487 |
], |
|
|
488 |
"source": [ |
|
|
489 |
"plot = KneePlot(x)\n", |
|
|
490 |
"plot.draw()" |
|
|
491 |
] |
|
|
492 |
}, |
|
|
493 |
{ |
|
|
494 |
"cell_type": "code", |
|
|
495 |
"execution_count": null, |
|
|
496 |
"metadata": {}, |
|
|
497 |
"outputs": [], |
|
|
498 |
"source": [] |
|
|
499 |
} |
|
|
500 |
], |
|
|
501 |
"metadata": { |
|
|
502 |
"kernelspec": { |
|
|
503 |
"display_name": "Python 3", |
|
|
504 |
"language": "python", |
|
|
505 |
"name": "python3" |
|
|
506 |
}, |
|
|
507 |
"language_info": { |
|
|
508 |
"codemirror_mode": { |
|
|
509 |
"name": "ipython", |
|
|
510 |
"version": 3 |
|
|
511 |
}, |
|
|
512 |
"file_extension": ".py", |
|
|
513 |
"mimetype": "text/x-python", |
|
|
514 |
"name": "python", |
|
|
515 |
"nbconvert_exporter": "python", |
|
|
516 |
"pygments_lexer": "ipython3", |
|
|
517 |
"version": "3.7.2" |
|
|
518 |
} |
|
|
519 |
}, |
|
|
520 |
"nbformat": 4, |
|
|
521 |
"nbformat_minor": 2 |
|
|
522 |
} |