#!/usr/bin/env python
"""arm_learning.py: Source code of the model learning on 2D arm control of musculoskeletal systems
This module demonstrates how to use a gym musculoskeletal environment to learn a model to learn a user defined trajectory mimicking
Example:
You can directly execute with python command ::
$ python arm_learning.py
It saves the best models every user-defined steps for comparison
"""
__author__ = "Berat Denizdurduran"
__copyright__ = "Copyright 2022, Berat Denizdurduran"
__license__ = "public, published"
__version__ = "1.0.0"
__email__ = "berat.denizdurduran@alpineintuition.ch"
__status__ = "After-publication"
import math
import random
import sys
import os
from arm_files.arm_musculo import Arm2DVecEnv, Arm2DEnv
import numpy as np
import gym
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from torch.distributions import LogNormal
import matplotlib as mpl
mpl.use("Agg")
import matplotlib.pyplot as plt
use_cuda = torch.cuda.is_available()
print(use_cuda)
device = torch.device("cuda" if use_cuda else "cpu")
from pathlib import Path
base_dir = Path(__file__).resolve().parent.parent
sys.path.append(str(base_dir))
from multiprocessing_env import SubprocVecEnv
num_envs = 16
def make_env():
def _thunk():
env = Arm2DVecEnv(visualize=False)
return env
return _thunk
envs = [make_env() for i in range(num_envs)]
envs = SubprocVecEnv(envs)
env = Arm2DVecEnv(visualize=False)
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0., std=0.01)
nn.init.constant_(m.bias, 0.1)
class ActorCritic(nn.Module):
def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(num_inputs, hidden_size),
nn.PReLU(),
nn.Linear(hidden_size, hidden_size),
nn.PReLU(),
nn.Linear(hidden_size, hidden_size),
nn.PReLU(),
nn.Linear(hidden_size, 1),
)
self.actor = nn.Sequential(
nn.Linear(num_inputs, hidden_size),
nn.Tanh(),
nn.Linear(hidden_size, hidden_size),
nn.Tanh(),
nn.Linear(hidden_size, hidden_size),
nn.Tanh(),
nn.Linear(hidden_size, num_outputs),
nn.Tanh(),
nn.Threshold(0.0, 0.0)
)
self.log_std = nn.Parameter(torch.ones(1, num_outputs) * std).data.squeeze()
self.apply(init_weights)
def forward(self, x):
value = self.critic(x)
mu = self.actor(x)
std = self.log_std.exp().expand_as(mu)
std = std.to(device)
dist = Normal(mu, std*0.1)
return dist, value
def plot(frame_idx, rewards):
plt.figure(figsize=(12,8))
plt.subplot(111)
plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1]))
plt.plot(rewards)
plt.savefig("results/arm_ppo_{}".format(frame_idx))
plt.close()
def test_env(num_steps):
state = env.reset()
done = False
total_reward = 0
for i in range(num_steps):
state = torch.FloatTensor(state).unsqueeze(0).to(device)
dist, _ = model_musculo(state)
action = dist.sample().cpu().numpy()[0]
next_state, reward, done, _ = env.step(action)
state = next_state
total_reward -= reward
envs.reset()
return total_reward
def compute_gae(next_value, rewards, masks, values, gamma=0.9, tau=0.99):
values = values + [next_value]
gae = 0
returns = []
for step in reversed(range(len(rewards))):
delta = rewards[step] + gamma * values[step + 1] * masks[step] - values[step]
gae = delta + gamma * tau * masks[step] * gae
returns.insert(0, gae + values[step])
return returns
def ppo_iter(mini_batch_size, states, actions, log_probs, returns, advantage):
batch_size = states.size(0)
for _ in range(batch_size // mini_batch_size):
rand_ids = np.random.randint(0, batch_size, mini_batch_size)
yield states[rand_ids, :], actions[rand_ids, :], log_probs[rand_ids, :], returns[rand_ids, :], advantage[rand_ids, :]
def ppo_update(ppo_epochs, mini_batch_size, states, actions, log_probs, returns, advantages, clip_param=0.2):
for _ in range(ppo_epochs):
for state, action, old_log_probs, return_, advantage in ppo_iter(mini_batch_size, states, actions, log_probs, returns, advantages):
dist, value = model_musculo(state)
entropy = dist.entropy().mean()
new_log_probs = dist.log_prob(action)
ratio = (new_log_probs - old_log_probs).exp()
surr1 = ratio * advantage
surr2 = torch.clamp(ratio, 1.0 - clip_param, 1.0 + clip_param) * advantage
actor_loss = - torch.min(surr1, surr2).mean()
critic_loss = (return_ - value).pow(2).mean()
loss = 0.5 * critic_loss + actor_loss - 0.001 * entropy
optimizer_musculo.zero_grad()
loss.backward()
optimizer_musculo.step()
num_inputs = 14#envs.observation_space.shape[0]
num_outputs = 14#envs.action_space.shape[0]
state = envs.reset()
#Hyper params:
hidden_size = 32
lr = 3e-4
betas = (0.9, 0.999)
eps = 1e-08
weight_decay = 0.001
num_steps = 75
mini_batch_size = 150
ppo_epochs = 150
threshold_reward = -200
model_musculo = ActorCritic(num_inputs, num_outputs, hidden_size).to(device)
optimizer_musculo = optim.Adam(model_musculo.parameters(), lr=lr)
frame_idx = 0
test_rewards = []
# To continue learning from user defined checkpoint uncomment following lines
#model_id = 65400
#ppo_model_arm_loaded = torch.load("results/ppo_model_arm_musculo_{}".format(model_id))
#model_musculo.load_state_dict(ppo_model_arm_loaded['model_state_dict'])
#optimizer_musculo.load_state_dict(ppo_model_arm_loaded['optimizer_state_dict'])
#frame_idx = ppo_model_arm_loaded['epoch']
#test_rewards = ppo_model_arm_loaded['loss']
range_steps = 50000
for steps in range(range_steps):
log_probs = []
values = []
states = []
actions = []
rewards = []
masks = []
entropy = 0
for _ in range(num_steps):
state = torch.FloatTensor(state).to(device)
dist, value = model_musculo(state)
action = dist.sample()
log_prob = dist.log_prob(action)
actions.append(action)
action = action.cpu().numpy()
next_state, reward, done, _ = envs.step(action)
entropy += dist.entropy().mean()
log_probs.append(log_prob)
values.append(value)
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device))
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device))
states.append(state)
state = next_state
frame_idx += 1
if frame_idx % 100 == 0:
test_reward = np.mean([test_env(num_steps) for _ in range(10)])
test_rewards.append(test_reward)
plot(frame_idx, test_rewards)
print("Iter: {} - Testing, Current Error: {}".format(frame_idx, test_reward))
if frame_idx % 100 == 0:
print("Iter: {} - Saving model".format(frame_idx))
ppo_model_arm_musculo = {
'epoch': frame_idx,
'model_state_dict': model_musculo.state_dict(),
'optimizer_state_dict': optimizer_musculo.state_dict(),
'loss': test_rewards}
torch.save(ppo_model_arm_musculo, "results/ppo_model_arm_musculo_{}".format(frame_idx))
envs.reset()
next_state = torch.FloatTensor(next_state).to(device)
_, next_value = model_musculo(next_state)
returns = compute_gae(next_value, rewards, masks, values)
returns = torch.cat(returns).detach()
log_probs = torch.cat(log_probs).detach()
values = torch.cat(values).detach()
states = torch.cat(states)
actions = torch.cat(actions)
advantage = returns - values
ppo_update(ppo_epochs, mini_batch_size, states, actions, log_probs, returns, advantage)
input('Learning finished! Press any key to exit.')