[c21284]: / drl / arm_files / osim.py

Download this file

912 lines (744 with data), 40.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
import math
import numpy as np
import os
from osim.env.utils.mygym import convert_to_gym
import gym
import opensim
import random
## OpenSim interface
# The amin purpose of this class is to provide wrap all
# the necessery elements of OpenSim in one place
# The actual RL environment then only needs to:
# - open a model
# - actuate
# - integrate
# - read the high level description of the state
# The objective, stop condition, and other gym-related
# methods are enclosed in the OsimEnv class
class OsimModel(object):
# Initialize simulation
stepsize = 0.01
model = None
state = None
state0 = None
joints = []
bodies = []
brain = None
verbose = False
istep = 0
state_desc_istep = None
prev_state_desc = None
state_desc = None
integrator_accuracy = None
maxforces = []
curforces = []
def __init__(self, model_path, visualize, integrator_accuracy = 1e-6):
self.integrator_accuracy = integrator_accuracy
self.model = opensim.Model(model_path)
self.model_state = self.model.initSystem()
self.brain = opensim.PrescribedController()
# Enable the visualizer
self.model.setUseVisualizer(visualize)
self.muscleSet = self.model.getMuscles()
self.forceSet = self.model.getForceSet()
self.bodySet = self.model.getBodySet()
self.jointSet = self.model.getJointSet()
self.markerSet = self.model.getMarkerSet()
self.contactGeometrySet = self.model.getContactGeometrySet()
if self.verbose:
self.list_elements()
# Add actuators as constant functions. Then, during simulations
# we will change levels of constants.
# One actuartor per each muscle
for j in range(self.muscleSet.getSize()):
func = opensim.Constant(1.0)
self.brain.addActuator(self.muscleSet.get(j))
self.brain.prescribeControlForActuator(j, func)
self.maxforces.append(self.muscleSet.get(j).getMaxIsometricForce())
self.curforces.append(1.0)
self.noutput = self.muscleSet.getSize()
self.model.addController(self.brain)
self.model_state = self.model.initSystem()
def list_elements(self):
print("JOINTS")
for i in range(self.jointSet.getSize()):
print(i,self.jointSet.get(i).getName())
print("\nBODIES")
for i in range(self.bodySet.getSize()):
print(i,self.bodySet.get(i).getName())
print("\nMUSCLES")
for i in range(self.muscleSet.getSize()):
print(i,self.muscleSet.get(i).getName())
print("\nFORCES")
for i in range(self.forceSet.getSize()):
print(i,self.forceSet.get(i).getName())
print("\nMARKERS")
for i in range(self.markerSet.getSize()):
print(i,self.markerSet.get(i).getName())
def actuate(self, action):
if np.any(np.isnan(action)):
raise ValueError("NaN passed in the activation vector. Values in [0,1] interval are required.")
action = np.clip(np.array(action), 0.0, 1.0)
self.last_action = action
brain = opensim.PrescribedController.safeDownCast(self.model.getControllerSet().get(0))
functionSet = brain.get_ControlFunctions()
for j in range(functionSet.getSize()):
func = opensim.Constant.safeDownCast(functionSet.get(j))
func.setValue( float(action[j]) )
"""
Directly modifies activations in the current state.
"""
def set_activations(self, activations):
if np.any(np.isnan(activations)):
raise ValueError("NaN passed in the activation vector. Values in [0,1] interval are required.")
for j in range(self.muscleSet.getSize()):
self.muscleSet.get(j).setActivation(self.state, activations[j])
self.reset_manager()
"""
Get activations in the given state.
"""
def get_activations(self):
return [self.muscleSet.get(j).getActivation(self.state) for j in range(self.muscleSet.getSize())]
def compute_state_desc(self):
self.model.realizeAcceleration(self.state)
res = {}
## Joints
res["joint_pos"] = {}
res["joint_vel"] = {}
res["joint_acc"] = {}
for i in range(self.jointSet.getSize()):
joint = self.jointSet.get(i)
name = joint.getName()
res["joint_pos"][name] = [joint.get_coordinates(i).getValue(self.state) for i in range(joint.numCoordinates())]
res["joint_vel"][name] = [joint.get_coordinates(i).getSpeedValue(self.state) for i in range(joint.numCoordinates())]
res["joint_acc"][name] = [joint.get_coordinates(i).getAccelerationValue(self.state) for i in range(joint.numCoordinates())]
## Bodies
res["body_pos"] = {}
res["body_vel"] = {}
res["body_acc"] = {}
res["body_pos_rot"] = {}
res["body_vel_rot"] = {}
res["body_acc_rot"] = {}
for i in range(self.bodySet.getSize()):
body = self.bodySet.get(i)
name = body.getName()
res["body_pos"][name] = [body.getTransformInGround(self.state).p()[i] for i in range(3)]
res["body_vel"][name] = [body.getVelocityInGround(self.state).get(1).get(i) for i in range(3)]
res["body_acc"][name] = [body.getAccelerationInGround(self.state).get(1).get(i) for i in range(3)]
res["body_pos_rot"][name] = [body.getTransformInGround(self.state).R().convertRotationToBodyFixedXYZ().get(i) for i in range(3)]
res["body_vel_rot"][name] = [body.getVelocityInGround(self.state).get(0).get(i) for i in range(3)]
res["body_acc_rot"][name] = [body.getAccelerationInGround(self.state).get(0).get(i) for i in range(3)]
## Forces
res["forces"] = {}
for i in range(self.forceSet.getSize()):
force = self.forceSet.get(i)
name = force.getName()
values = force.getRecordValues(self.state)
res["forces"][name] = [values.get(i) for i in range(values.size())]
## Muscles
res["muscles"] = {}
for i in range(self.muscleSet.getSize()):
muscle = self.muscleSet.get(i)
name = muscle.getName()
res["muscles"][name] = {}
res["muscles"][name]["activation"] = muscle.getActivation(self.state)
res["muscles"][name]["fiber_length"] = muscle.getFiberLength(self.state)
res["muscles"][name]["fiber_velocity"] = muscle.getFiberVelocity(self.state)
res["muscles"][name]["fiber_force"] = muscle.getFiberForce(self.state)
# We can get more properties from here http://myosin.sourceforge.net/2125/classOpenSim_1_1Muscle.html
## Markers
res["markers"] = {}
for i in range(self.markerSet.getSize()):
marker = self.markerSet.get(i)
name = marker.getName()
res["markers"][name] = {}
res["markers"][name]["pos"] = [marker.getLocationInGround(self.state)[i] for i in range(3)]
res["markers"][name]["vel"] = [marker.getVelocityInGround(self.state)[i] for i in range(3)]
res["markers"][name]["acc"] = [marker.getAccelerationInGround(self.state)[i] for i in range(3)]
## Other
res["misc"] = {}
res["misc"]["mass_center_pos"] = [self.model.calcMassCenterPosition(self.state)[i] for i in range(3)]
res["misc"]["mass_center_vel"] = [self.model.calcMassCenterVelocity(self.state)[i] for i in range(3)]
res["misc"]["mass_center_acc"] = [self.model.calcMassCenterAcceleration(self.state)[i] for i in range(3)]
return res
def get_state_desc(self):
if self.state_desc_istep != self.istep:
self.prev_state_desc = self.state_desc
self.state_desc = self.compute_state_desc()
self.state_desc_istep = self.istep
return self.state_desc
def set_strength(self, strength):
self.curforces = strength
for i in range(len(self.curforces)):
self.muscleSet.get(i).setMaxIsometricForce(self.curforces[i] * self.maxforces[i])
def get_body(self, name):
return self.bodySet.get(name)
def get_joint(self, name):
return self.jointSet.get(name)
def get_muscle(self, name):
return self.muscleSet.get(name)
def get_marker(self, name):
return self.markerSet.get(name)
def get_contact_geometry(self, name):
return self.contactGeometrySet.get(name)
def get_force(self, name):
return self.forceSet.get(name)
def get_action_space_size(self):
return self.noutput
def set_integrator_accuracy(self, integrator_accuracy):
self.integrator_accuracy = integrator_accuracy
def reset_manager(self):
self.manager = opensim.Manager(self.model)
self.integrator_accuracy = 1e-6
self.manager.setIntegratorAccuracy(self.integrator_accuracy)
#print(f"Set Integrator Accuracy is {self.integrator_accuracy}")
self.manager.initialize(self.state)
def reset(self):
self.state = self.model.initializeState()
self.model.equilibrateMuscles(self.state)
self.state.setTime(0)
self.istep = 0
self.reset_manager()
def get_state(self):
return opensim.State(self.state)
def set_state(self, state):
self.state = state
self.istep = int(self.state.getTime() / self.stepsize) # TODO: remove istep altogether
self.reset_manager()
def integrate(self):
# Define the new endtime of the simulation
self.istep = self.istep + 1
# Integrate till the new endtime
self.state = self.manager.integrate(self.stepsize * self.istep)
## OpenAI interface
# The amin purpose of this class is to provide wrap all
# the functions of OpenAI gym. It is still an abstract
# class but closer to OpenSim. The actual classes of
# environments inherit from this one and:
# - select the model file
# - define the rewards and stopping conditions
# - define an obsernvation as a function of state
class OsimEnv(gym.Env):
action_space = None
observation_space = None
osim_model = None
istep = 0
verbose = False
visualize = False
spec = None
time_limit = 1e10
prev_state_desc = None
model_path = None # os.path.join(os.path.dirname(__file__), '../models/MODEL_NAME.osim')
metadata = {
'render.modes': ['human'],
'video.frames_per_second' : None
}
def get_reward(self):
raise NotImplementedError
def is_done(self):
return False
def __init__(self, visualize = True, integrator_accuracy = 5e-5):
self.visualize = visualize
self.integrator_accuracy = integrator_accuracy
self.load_model()
def load_model(self, model_path = None):
if model_path:
self.model_path = model_path
self.osim_model = OsimModel(self.model_path, self.visualize, integrator_accuracy = self.integrator_accuracy)
# Create specs, action and observation spaces mocks for compatibility with OpenAI gym
self.spec = Spec()
self.spec.timestep_limit = self.time_limit
self.action_space = ( [0.0] * self.osim_model.get_action_space_size(), [1.0] * self.osim_model.get_action_space_size() )
# self.observation_space = ( [-math.pi*100] * self.get_observation_space_size(), [math.pi*100] * self.get_observation_space_s
self.observation_space = ( [0] * self.get_observation_space_size(), [0] * self.get_observation_space_size() )
self.action_space = convert_to_gym(self.action_space)
self.observation_space = convert_to_gym(self.observation_space)
def get_state_desc(self):
return self.osim_model.get_state_desc()
def get_prev_state_desc(self):
return self.prev_state_desc
def get_observation(self):
# This one will normally be overwrtitten by the environments
# In particular, for the gym we want a vector and not a dictionary
return self.osim_model.get_state_desc()
def get_observation_dict(self):
return self.osim_model.get_state_desc()
def get_observation_space_size(self):
return 0
def get_action_space_size(self):
return self.osim_model.get_action_space_size()
def reset(self, project=True, obs_as_dict=True, init_pose=None):
self.osim_model.reset()
if not project:
return self.get_state_desc()
if obs_as_dict:
return self.get_observation_dict()
return self.get_observation()
def step(self, action, project=True, obs_as_dict=True):
self.prev_state_desc = self.get_state_desc()
self.osim_model.actuate(action)
self.osim_model.integrate()
if project:
if obs_as_dict:
obs = self.get_observation_dict()
else:
obs = self.get_observation()
else:
obs = self.get_state_desc()
return [ obs, self.get_reward(), self.is_done() or (self.osim_model.istep >= self.spec.timestep_limit), {} ]
def render(self, mode='human', close=False):
return
class Spec(object):
def __init__(self, *args, **kwargs):
self.id = 0
self.timestep_limit = 300
class L2M2019Env(OsimEnv):
# to change later:
# muscle v: normalize by max_contraction_velocity, 15 lopt / s
model = '2D'
# from gait14dof22musc_20170320.osim
MASS = 75.16460000000001 # 11.777 + 2*(9.3014 + 3.7075 + 0.1 + 1.25 + 0.2166) + 34.2366
G = 9.80665 # from gait1dof22muscle
LENGTH0 = 1 # leg length
footstep = {}
footstep['n'] = 0
footstep['new'] = False
footstep['r_contact'] = 1
footstep['l_contact'] = 1
dict_muscle = { 'abd': 'HAB',
'add': 'HAD',
'iliopsoas': 'HFL',
'glut_max': 'GLU',
'hamstrings': 'HAM',
'rect_fem': 'RF',
'vasti': 'VAS',
'bifemsh': 'BFSH',
'gastroc': 'GAS',
'soleus': 'SOL',
'tib_ant': 'TA'}
act2mus = [0, 1, 4, 7, 3, 2, 5, 6, 8, 9, 10, 11, 12, 15, 18, 14, 13, 16, 17, 19, 20, 21]
# maps muscle order in action to muscle order in gait14dof22musc_20170320.osim
# muscle order in action
# HAB, HAD, HFL, GLU, HAM, RF, VAS, BFSH, GAS, SOL, TA
# muscle order in gait14dof22musc_20170320.osim
# HAB, HAD, HAM, BFSH, GLU, HFL, RF, VAS, GAS, SOL, TA
# or abd, add, hamstrings, bifemsh, glut_max, iliopsoas, rect_fem, vasti, gastroc, soleus, tib_ant
INIT_POSE = np.array([
0, # forward speed
0, # rightward speed
0.94, # pelvis height
0*np.pi/180, # trunk lean
0*np.pi/180, # [right] hip adduct
0*np.pi/180, # hip flex
0*np.pi/180, # knee extend
0*np.pi/180, # ankle flex
0*np.pi/180, # [left] hip adduct
0*np.pi/180, # hip flex
0*np.pi/180, # knee extend
0*np.pi/180]) # ankle flex
obs_vtgt_space = np.array([[-10] * 2*11*11, [10] * 2*11*11])
obs_body_space = np.array([[-1.0] * 97, [1.0] * 97])
obs_body_space[:,0] = [0, 3] # pelvis height
obs_body_space[:,1] = [-np.pi, np.pi] # pelvis pitch
obs_body_space[:,2] = [-np.pi, np.pi] # pelvis roll
obs_body_space[:,3] = [-20, 20] # pelvis vel (forward)
obs_body_space[:,4] = [-20, 20] # pelvis vel (leftward)
obs_body_space[:,5] = [-20, 20] # pelvis vel (upward)
obs_body_space[:,6] = [-10*np.pi, 10*np.pi] # pelvis angular vel (pitch)
obs_body_space[:,7] = [-10*np.pi, 10*np.pi] # pelvis angular vel (roll)
obs_body_space[:,8] = [-10*np.pi, 10*np.pi] # pelvis angular vel (yaw)
obs_body_space[:,[9 + x for x in [0, 44]]] = np.array([[-5, 5]]).transpose() # (r,l) ground reaction force normalized to bodyweight (forward)
obs_body_space[:,[10 + x for x in [0, 44]]] = np.array([[-5, 5]]).transpose() # (r, l) ground reaction force normalized to bodyweight (rightward)
obs_body_space[:,[11 + x for x in [0, 44]]] = np.array([[-10, 10]]).transpose() # (r, l) ground reaction force normalized to bodyweight (upward)
obs_body_space[:,[12 + x for x in [0, 44]]] = np.array([[-45*np.pi/180, 90*np.pi/180]]).transpose() # (r, l) joint: (+) hip abduction
obs_body_space[:,[13 + x for x in [0, 44]]] = np.array([[-180*np.pi/180, 45*np.pi/180]]).transpose() # (r, l) joint: (+) hip extension
obs_body_space[:,[14 + x for x in [0, 44]]] = np.array([[-180*np.pi/180, 15*np.pi/180]]).transpose() # (r, l) joint: (+) knee extension
obs_body_space[:,[15 + x for x in [0, 44]]] = np.array([[-45*np.pi/180, 90*np.pi/180]]).transpose() # (r, l) joint: (+) ankle extension (plantarflexion)
obs_body_space[:,[16 + x for x in [0, 44]]] = np.array([[-5*np.pi, 5*np.pi]]).transpose() # (r, l) joint: (+) hip abduction
obs_body_space[:,[17 + x for x in [0, 44]]] = np.array([[-5*np.pi, 5*np.pi]]).transpose() # (r, l) joint: (+) hip extension
obs_body_space[:,[18 + x for x in [0, 44]]] = np.array([[-5*np.pi, 5*np.pi]]).transpose() # (r, l) joint: (+) knee extension
obs_body_space[:,[19 + x for x in [0, 44]]] = np.array([[-5*np.pi, 5*np.pi]]).transpose() # (r, l) joint: (+) ankle extension (plantarflexion)
obs_body_space[:,[20 + x for x in list(range(0, 33, 3)) + list(range(44, 77, 3))]] = np.array([[0, 3]]).transpose() # (r, l) muscle forces, normalized to maximum isometric force
obs_body_space[:,[21 + x for x in list(range(0, 33, 3)) + list(range(44, 77, 3))]] = np.array([[0, 3]]).transpose() # (r, l) muscle lengths, normalized to optimal length
obs_body_space[:,[22 + x for x in list(range(0, 33, 3)) + list(range(44, 77, 3))]] = np.array([[-50, 50]]).transpose() # (r, l) muscle velocities, normalized to optimal length per second
def get_model_key(self):
return self.model
def set_difficulty(self, difficulty):
self.difficulty = difficulty
if difficulty == 0:
self.time_limit = 1000
if difficulty == 1:
self.time_limit = 1000
if difficulty == 2:
self.time_limit = 1000
print("difficulty 2 for Round 1")
if difficulty == 3:
self.time_limit = 2500 # 25 sec
print("difficulty 3 for Round 2")
self.spec.timestep_limit = self.time_limit
def __init__(self, visualize=True, integrator_accuracy=5e-5, difficulty=3, seed=None, report=None):
if difficulty not in [0, 1, 2, 3]:
raise ValueError("difficulty level should be in [0, 1, 2, 3].")
self.model_paths = {}
self.model_paths['3D'] = os.path.join(os.path.dirname(__file__), '../models/gait14dof22musc_20170320.osim')
#self.model_paths['2D'] = os.path.join(os.path.dirname(__file__), '../models/gait14dof22musc_planar_20170320.osim')
self.model_paths['2D'] = os.path.join(os.path.dirname(__file__), '../models/ppo_loco_exo.osim')
self.model_path = self.model_paths[self.get_model_key()]
super(L2M2019Env, self).__init__(visualize=visualize, integrator_accuracy=integrator_accuracy)
self.Fmax = {}
self.lopt = {}
for leg, side in zip(['r_leg', 'l_leg'], ['r', 'l']):
self.Fmax[leg] = {}
self.lopt[leg] = {}
for MUS, mus in zip( ['HAB', 'HAD', 'HFL', 'GLU', 'HAM', 'RF', 'VAS', 'BFSH', 'GAS', 'SOL', 'TA'],
['abd', 'add', 'iliopsoas', 'glut_max', 'hamstrings', 'rect_fem', 'vasti', 'bifemsh', 'gastroc', 'soleus', 'tib_ant']):
muscle = self.osim_model.muscleSet.get('{}_{}'.format(mus,side))
Fmax = muscle.getMaxIsometricForce()
lopt = muscle.getOptimalFiberLength()
self.Fmax[leg][MUS] = muscle.getMaxIsometricForce()
self.lopt[leg][MUS] = muscle.getOptimalFiberLength()
self.set_difficulty(difficulty)
if report:
bufsize = 0
self.observations_file = open('%s-obs.csv' % (report,),'w', bufsize)
self.actions_file = open('%s-act.csv' % (report,),'w', bufsize)
self.get_headers()
# create target velocity field
from envs.target import VTgtField
self.vtgt = VTgtField(visualize=visualize, version=self.difficulty, dt=self.osim_model.stepsize, seed=seed)
self.obs_vtgt_space = self.vtgt.vtgt_space
def reset(self, project=True, seed=None, init_pose=None, obs_as_dict=True):
self.t = 0
self.init_reward()
self.vtgt.reset(version=self.difficulty, seed=seed)
self.footstep['n'] = 0
self.footstep['new'] = False
self.footstep['r_contact'] = 1
self.footstep['l_contact'] = 1
# initialize state
self.osim_model.state = self.osim_model.model.initializeState()
if init_pose is None:
init_pose = self.INIT_POSE
state = self.osim_model.get_state()
QQ = state.getQ()
QQDot = state.getQDot()
for i in range(17):
QQDot[i] = 0
QQ[3] = 0 # x: (+) forward
QQ[5] = 0 # z: (+) right
QQ[1] = 0*np.pi/180 # roll
QQ[2] = 0*np.pi/180 # yaw
QQDot[3] = init_pose[0] # forward speed
QQDot[5] = init_pose[1] # forward speed
QQ[4] = init_pose[2] # pelvis height
QQ[0] = -init_pose[3] # trunk lean: (+) backward
QQ[7] = -init_pose[4] # right hip abduct
QQ[6] = -init_pose[5] # right hip flex
QQ[13] = init_pose[6] # right knee extend
QQ[15] = -init_pose[7] # right ankle flex
QQ[10] = -init_pose[8] # left hip adduct
QQ[9] = -init_pose[9] # left hip flex
QQ[14] = init_pose[10] # left knee extend
QQ[16] = -init_pose[11] # left ankle flex
state.setQ(QQ)
state.setU(QQDot)
self.osim_model.set_state(state)
self.osim_model.model.equilibrateMuscles(self.osim_model.state)
self.osim_model.state.setTime(0)
self.osim_model.istep = 0
self.osim_model.reset_manager()
d = super(L2M2019Env, self).get_state_desc()
pose = np.array([d['body_pos']['pelvis'][0], -d['body_pos']['pelvis'][2], d['joint_pos']['ground_pelvis'][2]])
self.v_tgt_field, self.flag_new_v_tgt_field = self.vtgt.update(pose)
if not project:
return self.get_state_desc()
if obs_as_dict:
return self.get_observation_dict()
return self.get_observation()
def load_model(self, model_path = None):
super(L2M2019Env, self).load_model(model_path)
observation_space = np.concatenate((self.obs_vtgt_space, self.obs_body_space), axis=1)
self.observation_space = convert_to_gym(observation_space)
def step(self, action, project=True, obs_as_dict=True):
action_mapped = [action[i] for i in self.act2mus]
_, reward, done, info = super(L2M2019Env, self).step(action_mapped, project=project, obs_as_dict=obs_as_dict)
self.t += self.osim_model.stepsize
self.update_footstep()
d = super(L2M2019Env, self).get_state_desc()
self.pose = np.array([d['body_pos']['pelvis'][0], -d['body_pos']['pelvis'][2], d['joint_pos']['ground_pelvis'][2]])
self.v_tgt_field, self.flag_new_v_tgt_field = self.vtgt.update(self.pose)
if project:
if obs_as_dict:
obs = self.get_observation_dict()
else:
obs = self.get_observation()
else:
obs = self.get_state_desc()
return obs, reward, done, info
def change_model(self, model='3D', difficulty=3, seed=0):
if self.model != model:
self.model = model
self.load_model(self.model_paths[self.get_model_key()])
self.set_difficulty(difficulty)
def is_done(self):
state_desc = self.get_state_desc()
return state_desc['body_pos']['pelvis'][1] < 0.6
def update_footstep(self):
state_desc = self.get_state_desc()
# update contact
r_contact = True if state_desc['forces']['foot_r'][1] < -0.05*(self.MASS*self.G) else False
l_contact = True if state_desc['forces']['foot_l'][1] < -0.05*(self.MASS*self.G) else False
self.footstep['new'] = False
if (not self.footstep['r_contact'] and r_contact) or (not self.footstep['l_contact'] and l_contact):
self.footstep['new'] = True
self.footstep['n'] += 1
self.footstep['r_contact'] = r_contact
self.footstep['l_contact'] = l_contact
def get_observation_dict(self):
state_desc = self.get_state_desc()
obs_dict = {}
obs_dict['v_tgt_field'] = state_desc['v_tgt_field']
# pelvis state (in local frame)
obs_dict['pelvis'] = {}
obs_dict['pelvis']['height'] = state_desc['body_pos']['pelvis'][1]
obs_dict['pelvis']['pitch'] = -state_desc['joint_pos']['ground_pelvis'][0] # (+) pitching forward
obs_dict['pelvis']['roll'] = state_desc['joint_pos']['ground_pelvis'][1] # (+) rolling around the forward axis (to the right)
yaw = state_desc['joint_pos']['ground_pelvis'][2]
dx_local, dy_local = rotate_frame( state_desc['body_vel']['pelvis'][0],
state_desc['body_vel']['pelvis'][2],
yaw)
dz_local = state_desc['body_vel']['pelvis'][1]
obs_dict['pelvis']['vel'] = [ dx_local, # (+) forward
-dy_local, # (+) leftward
dz_local, # (+) upward
-state_desc['joint_vel']['ground_pelvis'][0], # (+) pitch angular velocity
state_desc['joint_vel']['ground_pelvis'][1], # (+) roll angular velocity
state_desc['joint_vel']['ground_pelvis'][2]] # (+) yaw angular velocity
# leg state
for leg, side in zip(['r_leg', 'l_leg'], ['r', 'l']):
obs_dict[leg] = {}
grf = [ f/(self.MASS*self.G) for f in state_desc['forces']['foot_{}'.format(side)][0:3] ] # forces normalized by bodyweight
grm = [ m/(self.MASS*self.G) for m in state_desc['forces']['foot_{}'.format(side)][3:6] ] # forces normalized by bodyweight
grfx_local, grfy_local = rotate_frame(-grf[0], -grf[2], yaw)
if leg == 'r_leg':
obs_dict[leg]['ground_reaction_forces'] = [ grfx_local, # (+) forward
grfy_local, # (+) lateral (rightward)
-grf[1]] # (+) upward
if leg == 'l_leg':
obs_dict[leg]['ground_reaction_forces'] = [ grfx_local, # (+) forward
-grfy_local, # (+) lateral (leftward)
-grf[1]] # (+) upward
# joint angles
obs_dict[leg]['joint'] = {}
obs_dict[leg]['joint']['hip_abd'] = -state_desc['joint_pos']['hip_{}'.format(side)][1] # (+) hip abduction
obs_dict[leg]['joint']['hip'] = -state_desc['joint_pos']['hip_{}'.format(side)][0] # (+) extension
obs_dict[leg]['joint']['knee'] = state_desc['joint_pos']['knee_{}'.format(side)][0] # (+) extension
obs_dict[leg]['joint']['ankle'] = -state_desc['joint_pos']['ankle_{}'.format(side)][0] # (+) extension
# joint angular velocities
obs_dict[leg]['d_joint'] = {}
obs_dict[leg]['d_joint']['hip_abd'] = -state_desc['joint_vel']['hip_{}'.format(side)][1] # (+) hip abduction
obs_dict[leg]['d_joint']['hip'] = -state_desc['joint_vel']['hip_{}'.format(side)][0] # (+) extension
obs_dict[leg]['d_joint']['knee'] = state_desc['joint_vel']['knee_{}'.format(side)][0] # (+) extension
obs_dict[leg]['d_joint']['ankle'] = -state_desc['joint_vel']['ankle_{}'.format(side)][0] # (+) extension
# muscles
for MUS, mus in zip( ['HAB', 'HAD', 'HFL', 'GLU', 'HAM', 'RF', 'VAS', 'BFSH', 'GAS', 'SOL', 'TA'],
['abd', 'add', 'iliopsoas', 'glut_max', 'hamstrings', 'rect_fem', 'vasti', 'bifemsh', 'gastroc', 'soleus', 'tib_ant']):
obs_dict[leg][MUS] = {}
obs_dict[leg][MUS]['f'] = state_desc['muscles']['{}_{}'.format(mus,side)]['fiber_force']/self.Fmax[leg][MUS]
obs_dict[leg][MUS]['l'] = state_desc['muscles']['{}_{}'.format(mus,side)]['fiber_length']/self.lopt[leg][MUS]
obs_dict[leg][MUS]['v'] = state_desc['muscles']['{}_{}'.format(mus,side)]['fiber_velocity']/self.lopt[leg][MUS]
return obs_dict
## Values in the observation vector
# 'vtgt_field': vtgt vectors in body frame (2*11*11 = 242 values)
# 'pelvis': height, pitch, roll, 6 vel (9 values)
# for each 'r_leg' and 'l_leg' (*2)
# 'ground_reaction_forces' (3 values)
# 'joint' (4 values)
# 'd_joint' (4 values)
# for each of the eleven muscles (*11)
# normalized 'f', 'l', 'v' (3 values)
# 242 + 9 + 2*(3 + 4 + 4 + 11*3) = 339
def get_observation(self):
obs_dict = self.get_observation_dict()
# Augmented environment from the L2R challenge
res = []
# target velocity field (in body frame)
v_tgt = np.ndarray.flatten(obs_dict['v_tgt_field'])
res += v_tgt.tolist()
res.append(obs_dict['pelvis']['height'])
res.append(obs_dict['pelvis']['pitch'])
res.append(obs_dict['pelvis']['roll'])
res.append(obs_dict['pelvis']['vel'][0]/self.LENGTH0)
res.append(obs_dict['pelvis']['vel'][1]/self.LENGTH0)
res.append(obs_dict['pelvis']['vel'][2]/self.LENGTH0)
res.append(obs_dict['pelvis']['vel'][3])
res.append(obs_dict['pelvis']['vel'][4])
res.append(obs_dict['pelvis']['vel'][5])
for leg in ['r_leg', 'l_leg']:
res += obs_dict[leg]['ground_reaction_forces']
res.append(obs_dict[leg]['joint']['hip_abd'])
res.append(obs_dict[leg]['joint']['hip'])
res.append(obs_dict[leg]['joint']['knee'])
res.append(obs_dict[leg]['joint']['ankle'])
res.append(obs_dict[leg]['d_joint']['hip_abd'])
res.append(obs_dict[leg]['d_joint']['hip'])
res.append(obs_dict[leg]['d_joint']['knee'])
res.append(obs_dict[leg]['d_joint']['ankle'])
for MUS in ['HAB', 'HAD', 'HFL', 'GLU', 'HAM', 'RF', 'VAS', 'BFSH', 'GAS', 'SOL', 'TA']:
res.append(obs_dict[leg][MUS]['f'])
res.append(obs_dict[leg][MUS]['l'])
res.append(obs_dict[leg][MUS]['v'])
return res
def get_observation_clipped(self):
obs = self.get_observation()
return np.clip(obs, self.observation_space.low, self.observation_space.high)
def get_observation_space_size(self):
return 339
def get_state_desc(self):
d = super(L2M2019Env, self).get_state_desc()
#state_desc['joint_pos']
#state_desc['joint_vel']
#state_desc['joint_acc']
#state_desc['body_pos']
#state_desc['body_vel']
#state_desc['body_acc']
#state_desc['body_pos_rot']
#state_desc['body_vel_rot']
#state_desc['body_acc_rot']
#state_desc['forces']
#state_desc['muscles']
#state_desc['markers']
#state_desc['misc']
if self.difficulty in [0, 1, 2, 3]:
d['v_tgt_field'] = self.v_tgt_field # shape: (2, 11, 11)
else:
raise ValueError("difficulty level should be in [0, 1, 2, 3].")
return d
def init_reward(self):
self.init_reward_1()
def init_reward_1(self):
self.d_reward = {}
self.d_reward['weight'] = {}
self.d_reward['weight']['footstep'] = 10
self.d_reward['weight']['effort'] = 1
self.d_reward['weight']['v_tgt'] = 1
self.d_reward['weight']['v_tgt_R2'] = 3
self.d_reward['alive'] = 0.1
self.d_reward['effort'] = 0
self.d_reward['footstep'] = {}
self.d_reward['footstep']['effort'] = 0
self.d_reward['footstep']['del_t'] = 0
self.d_reward['footstep']['del_v'] = 0
def get_reward(self):
if self.difficulty == 3: # Round 2
return self.get_reward_2()
return self.get_reward_1()
def get_reward_1(self): # for L2M2019 Round 1
state_desc = self.get_state_desc()
if not self.get_prev_state_desc():
return 0
reward = 0
dt = self.osim_model.stepsize
# alive reward
# should be large enough to search for 'success' solutions (alive to the end) first
reward += self.d_reward['alive']
# effort ~ muscle fatigue ~ (muscle activation)^2
ACT2 = 0
for muscle in sorted(state_desc['muscles'].keys()):
ACT2 += np.square(state_desc['muscles'][muscle]['activation'])
self.d_reward['effort'] += ACT2*dt
self.d_reward['footstep']['effort'] += ACT2*dt
self.d_reward['footstep']['del_t'] += dt
# reward from velocity (penalize from deviating from v_tgt)
p_body = [state_desc['body_pos']['pelvis'][0], -state_desc['body_pos']['pelvis'][2]]
v_body = [state_desc['body_vel']['pelvis'][0], -state_desc['body_vel']['pelvis'][2]]
v_tgt = self.vtgt.get_vtgt(p_body).T
self.d_reward['footstep']['del_v'] += (v_body - v_tgt)*dt
# footstep reward (when made a new step)
if self.footstep['new']:
# footstep reward: so that solution does not avoid making footsteps
# scaled by del_t, so that solution does not get higher rewards by making unnecessary (small) steps
reward_footstep_0 = self.d_reward['weight']['footstep']*self.d_reward['footstep']['del_t']
# deviation from target velocity
# the average velocity a step (instead of instantaneous velocity) is used
# as velocity fluctuates within a step in normal human walking
#reward_footstep_v = -self.reward_w['v_tgt']*(self.footstep['del_vx']**2)
reward_footstep_v = -self.d_reward['weight']['v_tgt']*np.linalg.norm(self.d_reward['footstep']['del_v'])/self.LENGTH0
# panalize effort
reward_footstep_e = -self.d_reward['weight']['effort']*self.d_reward['footstep']['effort']
self.d_reward['footstep']['del_t'] = 0
self.d_reward['footstep']['del_v'] = 0
self.d_reward['footstep']['effort'] = 0
reward += reward_footstep_0 + reward_footstep_v + reward_footstep_e
# success bonus
if not self.is_done() and (self.osim_model.istep >= self.spec.timestep_limit): #and self.failure_mode is 'success':
# retrieve reward (i.e. do not penalize for the simulation terminating in a middle of a step)
#reward_footstep_0 = self.d_reward['weight']['footstep']*self.d_reward['footstep']['del_t']
#reward += reward_footstep_0 + 100
reward += reward_footstep_0 + 10
return reward
def get_reward_2(self): # for L2M2019 Round 2
state_desc = self.get_state_desc()
if not self.get_prev_state_desc():
return 0
reward = 0
dt = self.osim_model.stepsize
# alive reward
# should be large enough to search for 'success' solutions (alive to the end) first
reward += self.d_reward['alive']
# effort ~ muscle fatigue ~ (muscle activation)^2
ACT2 = 0
for muscle in sorted(state_desc['muscles'].keys()):
ACT2 += np.square(state_desc['muscles'][muscle]['activation'])
self.d_reward['effort'] += ACT2*dt
self.d_reward['footstep']['effort'] += ACT2*dt
self.d_reward['footstep']['del_t'] += dt
# reward from velocity (penalize from deviating from v_tgt)
p_body = [state_desc['body_pos']['pelvis'][0], -state_desc['body_pos']['pelvis'][2]]
v_body = [state_desc['body_vel']['pelvis'][0], -state_desc['body_vel']['pelvis'][2]]
v_tgt = self.vtgt.get_vtgt(p_body).T
self.d_reward['footstep']['del_v'] += (v_body - v_tgt)*dt
# simulation ends successfully
flag_success = (not self.is_done() # model did not fall down
and (self.osim_model.istep >= self.spec.timestep_limit) # reached end of simulatoin
and self.footstep['n'] > 5) # took more than 5 footsteps (to prevent standing still)
# footstep reward (when made a new step)
if self.footstep['new'] or flag_success:
# footstep reward: so that solution does not avoid making footsteps
# scaled by del_t, so that solution does not get higher rewards by making unnecessary (small) steps
reward_footstep_0 = self.d_reward['weight']['footstep']*self.d_reward['footstep']['del_t']
# deviation from target velocity
# the average velocity a step (instead of instantaneous velocity) is used
# as velocity fluctuates within a step in normal human walking
#reward_footstep_v = -self.reward_w['v_tgt']*(self.footstep['del_vx']**2)
reward_footstep_v = -self.d_reward['weight']['v_tgt_R2']*np.linalg.norm(self.d_reward['footstep']['del_v'])/self.LENGTH0
# panalize effort
reward_footstep_e = -self.d_reward['weight']['effort']*self.d_reward['footstep']['effort']
self.d_reward['footstep']['del_t'] = 0
self.d_reward['footstep']['del_v'] = 0
self.d_reward['footstep']['effort'] = 0
reward += reward_footstep_0 + reward_footstep_v + reward_footstep_e
# task bonus: if stayed enough at the first target
if self.flag_new_v_tgt_field:
reward += 500
return reward
class L2M2019VecEnv(L2M2019Env):
#init_pose = [0.0, 0.0, 0.0, 0.0]
def reset(self, project=True, seed=None, init_pose=None, obs_as_dict=True):
obs = super(L2M2019VecEnv, self).reset(project=True, seed=None, init_pose=None, obs_as_dict=True)
if np.isnan(obs).any():
obs = np.nan_to_num(obs)
return obs
def step(self, action, project=True, obs_as_dict=True):
if np.isnan(action).any():
action = np.nan_to_num(action)
obs, reward, done, info = super(L2M2019VecEnv, self).step(action, project=True, obs_as_dict=obs_as_dict)
if np.isnan(obs).any():
obs = np.nan_to_num(obs)
done = True
reward -10
return obs, reward, done, info
def rotate_frame(x, y, theta):
x_rot = np.cos(theta)*x - np.sin(theta)*y
y_rot = np.sin(theta)*x + np.cos(theta)*y
return x_rot, y_rot