import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torchvision
from torchvision import datasets, models
from torchvision import transforms as T
from torch.utils.data import DataLoader, Dataset
import numpy as np
import matplotlib.pyplot as plt
import os
import time
import pandas as pd
from skimage import io, transform
import matplotlib.image as mpimg
from PIL import Image
from sklearn.metrics import roc_auc_score
import torch.nn.functional as F
import scipy
import random
import pickle
import scipy.io as sio
import itertools
from scipy.ndimage.interpolation import shift
import copy
import warnings
warnings.filterwarnings("ignore")
plt.ion()
from dataloader_2d import *
from dataloader_3d import *
train_path = '/beegfs/ark576/new_knee_data/train'
val_path = '/beegfs/ark576/new_knee_data/val'
test_path = '/beegfs/ark576/new_knee_data/test'
train_file_names = sorted(pickle.load(open(train_path + '/train_file_names.p','rb')))
val_file_names = sorted(pickle.load(open(val_path + '/val_file_names.p','rb')))
test_file_names = sorted(pickle.load(open(test_path + '/test_file_names.p','rb')))
transformed_dataset = {'train': KneeMRIDataset(train_path,train_file_names, train_data= True, flipping=False, normalize= True),
'validate': KneeMRIDataset(val_path,val_file_names, normalize= True),
'test': KneeMRIDataset(test_path,test_file_names, normalize= True)
}
dataloader = {x: DataLoader(transformed_dataset[x], batch_size=5,
shuffle=True, num_workers=0) for x in ['train', 'validate','test']}
data_sizes ={x: len(transformed_dataset[x]) for x in ['train', 'validate','test']}
def plot_hist(hist_dict,hist_type,chart_type = 'semi-log'):
if chart_type == 'log-log':
plt.loglog(range(len(hist_dict['train'])),hist_dict['train'], label='Train ' + hist_type)
plt.loglog(range(len(hist_dict['validate'])),hist_dict['validate'], label = 'Validation ' + hist_type)
if chart_type == 'semi-log':
plt.semilogy(range(len(hist_dict['train'])),hist_dict['train'], label='Train ' + hist_type)
plt.semilogy(range(len(hist_dict['validate'])),hist_dict['validate'], label = 'Validation ' + hist_type)
plt.xlabel('Epochs')
plt.ylabel(hist_type)
plt.legend()
plt.show()
def dice_loss(true,scores, epsilon = 1e-4,p = 2):
preds = F.softmax(scores)
N, C, sh1, sh2 = true.size()
true = true.view(N, C, -1)
preds = preds.view(N, C, -1)
wts = torch.sum(true, dim = 2) + epsilon
wts = 1/torch.pow(wts,p)
wts = torch.clamp(wts,0,0.1)
wts[wts == 0.1] = 0
wts = wts/(torch.sum(wts,dim = 1)[:,None])
prod = torch.sum(true*preds,dim = 2)
sum_tnp = torch.sum(true + preds, dim = 2)
num = torch.sum(wts * prod, dim = 1)
denom = torch.sum(wts * sum_tnp, dim = 1) + epsilon
loss = 1 - 2*(num/denom)
return torch.mean(loss)
def dice_loss_2(true,scores, epsilon = 1e-4,p = 2):
preds = F.softmax(scores)
N, C, sh1, sh2 = true.size()
true = true.view(N, C, -1)
preds = preds.view(N, C, -1)
wts = torch.sum(true, dim = 2) + epsilon
wts = 1/torch.pow(wts,p)
wts = torch.clamp(wts,0,0.1)
wts[wts == 0.1] = 1e-6
wts[:,-1] = 1e-15
wts = wts/(torch.sum(wts,dim = 1)[:,None])
prod = torch.sum(true*preds,dim = 2)
sum_tnp = torch.sum(true + preds, dim = 2)
num = torch.sum(wts * prod, dim = 1)
denom = torch.sum(wts * sum_tnp, dim = 1) + epsilon
loss = 1 - 2*(num/denom)
return torch.mean(loss)
def segments(seg_1, seg_2, seg_3):
seg_tot = seg_1 + seg_2 + seg_3
seg_none = (seg_tot == 0).type(torch.FloatTensor)
seg_all = torch.cat((seg_1.unsqueeze(1),seg_2.unsqueeze(1),seg_3.unsqueeze(1),seg_none.unsqueeze(1)), dim = 1)
return seg_all
seg_sum = torch.zeros(3)
for i, data in enumerate(dataloader['train']):
input, segF, segP, segT,_ = data
seg_sum[0] += torch.sum(segF)
seg_sum[1] += torch.sum(segP)
seg_sum[2] += torch.sum(segT)
mean_s_sum = seg_sum/i
def dice_loss_3(true,scores, epsilon = 1e-4,p = 2, mean=mean_s_sum):
preds = F.softmax(scores)
N, C, sh1, sh2 = true.size()
true = true.view(N, C, -1)
preds = preds.view(N, C, -1)
wts = torch.sum(true, dim = 2) + epsilon
mean = 1/torch.pow(mean,p)
wts[:,:-1] = mean[None].repeat(N,1)
wts[:,-1] = 0
wts = wts/(torch.sum(wts,dim = 1)[:,None])
prod = torch.sum(true*preds,dim = 2)
sum_tnp = torch.sum(true + preds, dim = 2)
num = torch.sum(wts * prod, dim = 1)
denom = torch.sum(wts * sum_tnp, dim = 1) + epsilon
loss = 1 - 2*(num/denom)
return torch.mean(loss)
def predict(scores,smooth = False,filter_size = 3):
preds = F.softmax(scores)
pred_class = (torch.max(preds, dim = 1)[1])
class_0_pred_seg = (pred_class == 0).type(torch.cuda.FloatTensor)
class_1_pred_seg = (pred_class == 1).type(torch.cuda.FloatTensor)
class_2_pred_seg = (pred_class == 2).type(torch.cuda.FloatTensor)
if smooth:
class_0_pred_seg = F.avg_pool2d(class_0_pred_seg,filter_size,1,int((filter_size-1)/2))>0.5
class_1_pred_seg = F.avg_pool2d(class_1_pred_seg,filter_size,1,int((filter_size-1)/2))>0.5
class_2_pred_seg = F.avg_pool2d(class_2_pred_seg,filter_size,1,int((filter_size-1)/2))>0.5
return class_0_pred_seg.data.type(torch.cuda.FloatTensor), class_1_pred_seg.data.type(torch.cuda.FloatTensor)\
, class_2_pred_seg.data.type(torch.cuda.FloatTensor)
def dice_score(true,scores,smooth = False,filter_size = 3, epsilon = 1e-7):
N ,C, sh1, sh2 = true.size()
true = true.view(N,C,-1)
class_0_pred_seg,class_1_pred_seg,class_2_pred_seg = predict(scores, smooth = smooth,filter_size = filter_size)
class_0_pred_seg = class_0_pred_seg.view(N,-1)
class_1_pred_seg = class_1_pred_seg.view(N,-1)
class_2_pred_seg = class_2_pred_seg.view(N,-1)
true = true.data.type(torch.cuda.FloatTensor)
def numerator(truth,pred, idx):
return(torch.sum(truth[:,idx,:] * pred,dim = 1)) + epsilon/2
def denominator(truth,pred,idx):
return(torch.sum(truth[:,idx,:]+pred,dim = 1)) + epsilon
dice_score_class_0 = torch.mean(2*(numerator(true,class_0_pred_seg,0))/(denominator(true,class_0_pred_seg,0)))
dice_score_class_1 = torch.mean(2*(numerator(true,class_1_pred_seg,1))/(denominator(true,class_1_pred_seg,1)))
dice_score_class_2 = torch.mean(2*(numerator(true,class_2_pred_seg,2))/(denominator(true,class_2_pred_seg,2)))
return (dice_score_class_0,dice_score_class_1, dice_score_class_2)
def entropy_loss(true,scores,mean = mean_s_sum,epsilon = 1e-4, p=2):
N,C,sh1,sh2 = true.size()
wts = Variable(torch.zeros(4).cuda()) + epsilon
mean = 1/torch.pow(mean,p)
wts[:-1] = mean
wts[-1] = 1e-9
wts = wts/(torch.sum(wts))
log_prob = F.log_softmax(scores)
prod = (log_prob*true).view(N,C,-1)
prod_t = torch.transpose(prod,1,2)
loss = -torch.mean(prod_t*wts)
return loss
def image_to_mask(img, femur, patellar, tibia,femur_pr,patellar_pr,tibia_pr,cm = None):
masked_1 = np.ma.masked_where(femur == 0, femur)
masked_2 = np.ma.masked_where(patellar == 0,patellar)
masked_3 = np.ma.masked_where(tibia == 0, tibia)
masked_1_pr = np.ma.masked_where(femur_pr == 0, femur_pr)
masked_2_pr = np.ma.masked_where(patellar_pr == 0,patellar_pr)
masked_3_pr = np.ma.masked_where(tibia_pr == 0, tibia_pr)
masked_cm = np.ma.masked_where(cm ==-1000,cm)
x = 3
plt.figure(figsize=(20,10))
plt.subplot(1,x,1)
plt.imshow(img, 'gray', interpolation='none')
plt.subplot(1,x,2)
plt.imshow(img, 'gray', interpolation='none')
if np.sum(femur) != 0:
plt.imshow(masked_1, 'spring', interpolation='none', alpha=0.9)
if np.sum(patellar) != 0:
plt.imshow(masked_2, 'coolwarm_r', interpolation='none', alpha=0.9)
if np.sum(tibia) != 0:
plt.imshow(masked_3, 'Wistia', interpolation='none', alpha=0.9)
plt.subplot(1,x,3)
plt.imshow(img, 'gray', interpolation='none')
if np.sum(femur_pr) != 0:
plt.imshow(masked_1_pr, 'spring', interpolation='none', alpha=0.9)
if np.sum(patellar_pr) != 0:
plt.imshow(masked_2_pr, 'coolwarm_r', interpolation='none', alpha=0.9)
if np.sum(tibia_pr) != 0:
plt.imshow(masked_3_pr, 'Wistia', interpolation='none', alpha=0.9)
plt.show()
if cm is not None:
plt.figure(figsize=(20,20))
plt.imshow(masked_cm,'coolwarm_r')
plt.colorbar()
plt.show()
def generate_noise(true):
return Variable((2*torch.rand(true.size())-1)*0.1).cuda()
def save_segmentations_2d(model,prediction_models, dataloader,data_sizes,batch_size,phase,model_name,\
num_samples = 7, smooth = False, filter_size = 3):
y_preds = []
name_list = []
num_samples = num_samples
if phase == 'train':
path = '/beegfs/ark576/Knee Cartilage Data/Train Data/'
if phase == 'validate':
path = '/beegfs/ark576/Knee Cartilage Data/Validation Data/'
if phase == 'test':
path = '/beegfs/ark576/Knee Cartilage Data/Test Data/'
for i in prediction_models:
for param in i.parameters():
param.requires_grad = False
for i,data in enumerate(dataloader[phase]):
input, segF,segP, segT,variable_name = data
input = Variable(input).cuda()
input_pp = []
for j in prediction_models:
output = j(input)
preds_m = predict_pp(output)
input_pp.append(preds_m)
input_pp = torch.cat(input_pp,dim = 1)
output_pp = model(input_pp)
preds = predict(output_pp,smooth = smooth, filter_size=filter_size)
preds = torch.cat((preds[0][:,None],preds[1][:,None],preds[2][:,None]),dim = 1)
y_preds.append(preds.cpu().numpy())
name_list.append(variable_name)
list_of_names = list(itertools.chain(*name_list))
y_preds = np.concatenate(y_preds).astype(np.uint8)
for i in range(num_samples):
name = list_of_names[i*15][:-3]
pred_segment = y_preds[i*15:(i+1)*15]
file_name = path + name
variable = sio.loadmat(file_name)
temp_variable = {}
temp_variable['MDnr'] = variable['MDnr']
preds_all = pred_segment[[0,1,7,8,9,10,11,12,13,14,2,3,4,5,6],:]
temp_variable['Predicted_segment_F'] = np.transpose(preds_all[:,0,:,:],(1,2,0))
temp_variable['Predicted_segment_P'] = np.transpose(preds_all[:,1,:,:],(1,2,0))
temp_variable['Predicted_segment_T'] = np.transpose(preds_all[:,2,:,:],(1,2,0))
save_path = '/beegfs/ark576/knee-segments/predictions/'+ model_name +'/'+phase+'/'
sio.savemat(save_path+name,temp_variable,appendmat=False, do_compression=True)
def save_segmentations_2d_prob(model,prediction_models, dataloader,data_sizes,batch_size,phase,model_name,\
num_samples = 7, smooth = False, filter_size = 3):
y_preds = []
name_list = []
num_samples = num_samples
if phase == 'train':
path = '/beegfs/ark576/Knee Cartilage Data/Train Data/'
if phase == 'validate':
path = '/beegfs/ark576/Knee Cartilage Data/Validation Data/'
if phase == 'test':
path = '/beegfs/ark576/Knee Cartilage Data/Test Data/'
for i in prediction_models:
for param in i.parameters():
param.requires_grad = False
for i,data in enumerate(dataloader[phase]):
input, segF,segP, segT,variable_name = data
input = Variable(input).cuda()
input_pp = []
for j in prediction_models:
output = j(input)
preds_m = predict_pp(output)
input_pp.append(preds_m)
input_pp = torch.cat(input_pp,dim = 1)
output_pp = model(input_pp)
preds = F.softmax(output_pp)
y_preds.append(preds.data.cpu().numpy())
name_list.append(variable_name)
list_of_names = list(itertools.chain(*name_list))
y_preds = np.concatenate(y_preds)
for i in range(num_samples):
name = list_of_names[i*15][:-3]
pred_segment = y_preds[i*15:(i+1)*15]
file_name = path + name
variable = sio.loadmat(file_name)
temp_variable = {}
temp_variable['NUFnr'] = variable['NUFnr']
temp_variable['GT_F'] = variable['SegmentationF']
temp_variable['GT_P'] = variable['SegmentationP']
temp_variable['GT_T'] = variable['SegmentationT']
preds_all = pred_segment[[0,1,7,8,9,10,11,12,13,14,2,3,4,5,6],:]
temp_variable['Predicted_prob'] = preds_all
save_path = '/beegfs/ark576/knee-segments/predictions/'+ model_name +'/'+phase+'/'
sio.savemat(save_path+name+'_prob',temp_variable,appendmat=False, do_compression=True)
from sklearn.metrics import confusion_matrix
def dice_score_image(pred,true,epsilon = 1e-5):
num = 2*np.sum(pred*true) + epsilon
pred_norm = np.sum(pred)
true_norm = np.sum(true)
if pred_norm == 0 or true_norm == 0:
return None
else:
denom = pred_norm + true_norm + epsilon
return num/denom
def save_segmentations_3D(model, dataloader,data_sizes,batch_size,phase,model_name, num_samples = 7):
y_preds = []
name_list = []
num_samples = num_samples
if phase == 'train':
path = '/beegfs/ark576/Knee Cartilage Data/Train Data/'
if phase == 'validate':
path = '/beegfs/ark576/Knee Cartilage Data/Validation Data/'
if phase == 'test':
path = '/beegfs/ark576/Knee Cartilage Data/Test Data/'
for data in dataloader[phase]:
input, segments, variable_name = data
input = Variable(input).cuda()
output = model(input)
output_reshaped = torch.transpose(output,2,1).contiguous().view(-1,4,256,256)
preds = predict(output_reshaped)
preds = torch.cat((preds[0][:,None],preds[1][:,None],preds[2][:,None]),dim = 1)
y_preds.append(preds.cpu().numpy())
name_list.append(variable_name)
list_of_names = list(itertools.chain(*name_list))
y_preds = np.concatenate(y_preds).astype(np.uint8)
for i in range(num_samples):
name = list_of_names[i]
preds_all = y_preds[i*15:(i+1)*15]
file_name = path + name
variable = sio.loadmat(file_name)
temp_variable = {}
temp_variable['MDnr'] = variable['MDnr']
temp_variable['Predicted_segment_F'] = np.transpose(preds_all[:,0,:,:],(1,2,0))
temp_variable['Predicted_segment_T'] = np.transpose(preds_all[:,1,:,:],(1,2,0))
temp_variable['Predicted_segment_P'] = np.transpose(preds_all[:,2,:,:],(1,2,0))
save_path = '/beegfs/ark576/knee-segments/predictions/'+ model_name +'/'+phase+'/'
sio.savemat(save_path+name,temp_variable,appendmat=False, do_compression=True)
def make_certainity_maps(scores):
probs = F.softmax(scores)
pred_prob,idx = (torch.max(probs, dim = 1))
pred_prob_c = torch.clamp(pred_prob,0.00001,0.999999)
ret_value = torch.log(pred_prob_c) - torch.log((1-pred_prob_c))
ret_value[idx==3]=-1000
return ret_value