2369 lines (2368 with data), 606.3 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Knee Cartilage Segmentation using Classic Machine Models "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#Import the required packages\n",
"import numpy as np\n",
"import pandas as pd\n",
"from scipy.io import loadmat\n",
"import matplotlib.pyplot as plt\n",
"import imageio"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"#Extract the patches of spricified shape and stride and return one dimensional array\n",
"\n",
"def extract_patches(arr,arr_target,patch_shape,stride,num):\n",
" new_shape=((arr.shape[0]-patch_shape)//stride)+1\n",
" #print(\"input shape\",arr.shape)\n",
" #print(\"new shape\",new_shape)\n",
" arr_out=np.zeros((new_shape,new_shape,patch_shape,patch_shape))\n",
" target_out=np.zeros((new_shape,new_shape,patch_shape,patch_shape))\n",
" #print(\"output shape\",arr_out.shape)\n",
" for j in range(arr_out.shape[0]):\n",
" for k in range(arr_out.shape[1]):\n",
" arr_out[j,k] = arr[stride*j:stride*j+patch_shape,stride*k:stride*k+patch_shape]\n",
" target_out[j,k] = arr_target[stride*j:stride*j+patch_shape,stride*k:stride*k+patch_shape]\n",
" print(\"output shape\",target_out.shape)\n",
" output_reshaped=arr_out.reshape(arr_out.shape[0],arr_out.shape[1],-1)\n",
" output_reshaped=output_reshaped.reshape(-1,output_reshaped.shape[2])\n",
" \n",
" target_reshaped=target_out.reshape(target_out.shape[0],target_out.shape[1],-1)\n",
" target_label=target_reshaped[:,:,112]\n",
" target_label=target_label.reshape(-1)\n",
" pos=np.arange(target_label.shape[0])\n",
" pos1=pos//new_shape\n",
" pos2=pos%new_shape\n",
" l=target_label.shape[0]\n",
" nslice=np.array([num]*l)\n",
"\n",
"\n",
" return output_reshaped,(target_label>0).astype('int'),pos1,pos2,nslice"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#Function take list of file names and return corresponding one dimensional vector for each image\n",
"def return_dataset(listlabels,dset):\n",
" feature_list=[]\n",
" target_list=[]\n",
" for i in listlabels:\n",
" if dset==0:\n",
" image=loadmat('/beegfs/ark576/Knee Cartilage Data/Train Data/{}'.format(i))\n",
" elif dset==1:\n",
" image=loadmat('/beegfs/ark576/Knee Cartilage Data/Validation Data/{}'.format(i))\n",
" else:\n",
" image=loadmat('/beegfs/ark576/Knee Cartilage Data/Test Data/{}'.format(i))\n",
" \n",
" targets_all=image['SegmentationF']+image['SegmentationT']+image['SegmentationP']\n",
" \n",
" #handle 15 slices which you are not yet doing \n",
" for k in range(15):\n",
" im=image['MDnr'][:,:,k]\n",
" #print(targets_all[:,:,i].shape)\n",
" features,target,pos1,pos2,ls=extract_patches(im,targets_all[:,:,k],15,1,k)\n",
" feature_full=features\n",
" #feature_full=np.insert(features,0,pos1,axis=1)\n",
" #feature_full=np.insert(feature_full,0,pos2,axis=1)\n",
" #feature_full=np.insert(feature_full,0,ls,axis=1)\n",
" feature_list.append(feature_full)\n",
" target_list.append(target)\n",
" final_feature=np.vstack(feature_list)\n",
" final_target=np.concatenate(np.vstack(target_list),axis=0)\n",
" return final_feature,final_target\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"with open(\"/beegfs/ark576/Knee Cartilage Data/Train Data/train_file_names\",'rb') as f:\n",
" train_list=pickle.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"#train set\n",
"train_x,train_y=return_dataset(train_list,0)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Under Sampling\n",
"list_train_x=[]\n",
"list_train_y=[]\n",
"import random\n",
"zero_index=np.where(train_y==0)[0]\n",
"non_zero_index=np.where(train_y!=0)[0]\n",
"sampled_idx=random.sample(list(zero_index),len(zero_index)//10)\n",
"sampled_train_x_zero=train_x[sampled_idx]\n",
"sampled_train_y_zero=train_y[sampled_idx]\n",
"sampled_train_x_non_z=train_x[non_zero_index]\n",
"sampled_train_y_non_z=train_y[non_zero_index]\n",
"list_train_x.append(sampled_train_x_zero)\n",
"list_train_x.append(sampled_train_x_non_z)\n",
"list_train_y.append(sampled_train_y_zero)\n",
"list_train_y.append(sampled_train_y_non_z)\n",
"final_train_x=np.vstack(list_train_x)\n",
"final_train_y=np.concatenate(list_train_y,axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"#Normalizing\n",
"train_min=np.min(final_train_x)\n",
"train_max=np.max(final_train_x)\n",
"train_norm_x=(final_train_x-train_min)/train_max"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n",
"output shape (242, 242, 15, 15)\n"
]
}
],
"source": [
"#Validation set\n",
"import pickle\n",
"with open(\"/beegfs/ark576/Knee Cartilage Data/Validation Data/val_file_names\",'rb') as f:\n",
" val_list=pickle.load(f)\n",
"val_x,val_y=return_dataset(val_list,1)\n",
"val_norm_x=(val_x-train_min)/train_max"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"with open(\"train_x\",'wb') as f:\n",
" pickle.dump(\"train_x\",f)\n",
"with open(\"train_y\",'wb') as f:\n",
" pickle.dump(\"train_y\",f)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(30746100, 228)"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_x.shape"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"RandomForestClassifier(bootstrap=True, class_weight='balanced',\n",
" criterion='gini', max_depth=None, max_features='auto',\n",
" max_leaf_nodes=None, min_impurity_decrease=0.0,\n",
" min_impurity_split=None, min_samples_leaf=5,\n",
" min_samples_split=10, min_weight_fraction_leaf=0.0,\n",
" n_estimators=128, n_jobs=1, oob_score=False, random_state=None,\n",
" verbose=0, warm_start=False)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Train a random forest classifier on trainset\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"\n",
"random_forest = RandomForestClassifier(n_estimators=128,class_weight='balanced',min_samples_split=10,min_samples_leaf=5)\n",
"random_forest.fit(train_norm_x,final_train_y)"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.98839120559447347"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Run the model for validation set\n",
"from sklearn import metrics\n",
"proba_val=random_forest.predict_proba(val_norm_x)[:,1]\n",
"score=metrics.roc_auc_score(val_y,proba_val)\n",
"score"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"fpr_val, tpr_val, thresholds_val=metrics.roc_curve(val_y,proba_val)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### AUC ROC Curve for validation dataset"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAFmNJREFUeJzt3X2MXfV95/H3d2Y8HtvYYGPzEBtiJzFJvEqpkglkN9mUJNoW6EpstZEKqRpt2q6LNmRXWq0EXantSitFqqrVRtWSIDdlo+QP6G6LEtR1w+62TdiK0mIqcCAE1jELtnkaGzB4bM99ON/9417b1+P7ZPvO3Dl33i/JunPO+c0539/M6MOP33mKzESSNFrGhl2AJGnwDHdJGkGGuySNIMNdkkaQ4S5JI8hwl6QRZLhL0ggy3CVpBBnukjSCJoZ14I0bN+bWrVuHdXhJKqUnn3zycGZu6tVuaOG+detW9uzZM6zDS1IpRcRL/bRzWkaSRpDhLkkjyHCXpBFkuEvSCDLcJWkE9Qz3iLg/It6IiGc6bI+I+IOI2BcReyPio4MvU5J0PvoZuX8LuLnL9luA7c1/O4FvXHxZkqSL0fM698x8NCK2dmlyG/DtbLyv7/GIuCwirs7MVwdUo5aIzKRIKDKpF0mRSa1IiuLM+swz7ZLm+qLxKsfi1PpsfO9craAooFYUzX1CvUiS5qsfW94AmWfV0bo+26w7u+Z2688comV76z7OY3/Zbsdd99Hj2B2Od9ZRLrL+DiX3rKndz77b8ejx8+r0+2l/7O4/i0419frbmb/+7H33+vvq/9itjae3buDT1/W8D+miDOImps3AgZblg81154R7ROykMbrn2muvHcChR09mMlup8/bxCtV6UqkVVGoFx+ZqzBybo1ormKsVHK/UOFmtU60ntaKgVm+E5clqnUqtYK5eMFetN0P4TPAWzWAtipavE05W62ft73ilTrVenG5Xb36/pAsX0fi88+feX4pw71tm7gJ2AUxPT49sVBRFcmS2wpuzFY4cm6NWJK+9c5J3TlQ5eqJKpV5w9HiVZ145ysqJcY421781W6FWnP+PZXwsmBgLJifGWLVinMmJMSYnxpiaGGdiPIgIxgLGWj7Hx4IVY8FYNLZvvGQlqycb7VeMjbFqsrGfU98z3mzb+F6I5j4mxuL0/iI4fazgzLFoOXacWgdMrRhnvPm9Y2PBeARjY2e2A0RLP6N1fcuGaLOu9TvbtT1nf23btt/HWUeJ7m177e/sei6s/k776FX/2XV2+pmfu79O9dDHsc/8nPs/Xmuj8/ldtrY/n99lp/bnc7z5bYZhEOF+CLimZXlLc91IykwOvnWCF15/l8PH5njt6ByvHm0sH5mtUK0VHJ6tUKkVHfexYjxYPTnBprUreWu2yj94zzouW72C1ZMTzNUKrlo3RQRcs2EVk+ONkF0zOc7qlRNMjo+xfk2j7aoV441wHRvuH5GkpWcQ4f4wcFdEPAjcCBwdhfn2oyeq/O3+I/z1vsMcfOsEs3M1njl0lEq9oFo/e3R9+ZpJrrp0isvXTLJ14xrWTa3gqkunWDs1waWrVnDVuimmVoyzenKc91y2iqkV40PqlaTlome4R8QDwE3Axog4CPwusAIgM+8DdgO3AvuA48CXFqrYhXSyWueBv3uZP37iAO+erHHo7RNnbV87NcG2TWu4cu0U//D9l3Pluik+fPVatqxfbVhLWnL6uVrmjh7bE/jywCpaRJnJ0weP8tX/8Rx7D73NyWpjKmXzZav4ymc/wMe3buBDV6/lirVTQ65Uks7P0B75O0zHKzW+8zcv8b2nXuHHr77D5PgYN75vAzs//T4+9YGNQz8RIkkXa1mFe7Ve8I0f/JQ/+usXOXqiyrqpCf7157bza5/cymWrJ4ddniQNzLIJ96cOvM2//eOn2H94lun3rufLn/0AN123yVG6pJG0LML9r55/g9/8zpOsm5rgP//y9fyzn91sqEsaaSMf7j98YYad397DNRtW88C//ARXrvPkqKTRN9Lh/tOZY/zmd/Zw7YbVPLDzE171ImnZGNnnuRdF8tvfbTyl+FtfusFgl7SsjGy43/tX+3jsp0f4dz//Qa7ZsHrY5UjSohrJcD/w5nG+9hf/l5/fcSW/9sltwy5HkhbdSIb7dx5/iczk39/6YR+qJWlZGrlwr9ULHvr7Q3z2Q1ewdeOaYZcjSUMxcuH+lz95g8PH5vjnH90y7FIkaWhGLtz/bO+rbLxkks99+MphlyJJQzNS4T47V+N/P/c6/3j7JiYnRqprknReRioBH31hhuOVulMykpa9kQr3Hzw/w9qVE3x82/phlyJJQzUy4Z6ZPLb/MDe+bwMrJ3wzkqTlbWTC/cXDsxx48wQ3ffCKYZciSUM3MuH+9y+/DcD0VqdkJGlkwv2ZQ0dZPTnO9ivWDrsUSRq6kQn3F15/l+1XXMK4jxuQpNEI98xk78GjfGTLpcMuRZKWhJEI94NvneDYXI0PX71u2KVI0pIwEuH+/47MAvCBTZcMuRJJWhpGItxffvM4AFt8KYckASMS7vtnZplaMcZ7LvVVepIEIxLuLx05zrUbVhPhlTKSBCMS7i8ePsY2X8whSaeVPtwzk1fePsmW9c63S9IppQ/3I7MVTlTrbFm/atilSNKS0Ve4R8TNEfF8ROyLiHvabN8YEd+PiKcj4tmI+NLgS23v1JUy13qljCSd1jPcI2IcuBe4BdgB3BERO+Y1uwt4OjOvB24C/lNETA641rYOvXUCgM2O3CXptH5G7jcA+zJzf2ZWgAeB2+a1eQ1YG43LVS4B3gRqA620g9ffOQnAVeu8DFKSTpnoo81m4EDL8kHgxnlt/hD4C+AVYC3wy5lZDKTCHg4fqzA5Psalq1YsxuEkqRQGdUL1t4C9wHuAnwX+S0Sc86CXiNgZEXsiYs/MzMxADvz6OyfZtHal17hLUot+wv0QcE3L8pbmulafBP57NuwDXgQ+NH9HmbkrM6czc3rTpk0XWvNZXjt6kqu8M1WSztJPuD8BbI+Ibc2TpLcDD89r8xPgcwARcSXwQWD/IAvt5PV3T3LF2pWLcShJKo2e4Z6ZNRpXwzwCPAf8t8x8NiLujIg7m82+CkxHxF4ac+93Z+bhhSq6pTZH7pLURj8nVMnM3cDueevua/l6Bvingy2tt3fnahyv1LnacJeks5T6DtXXjzYug7zSyyAl6SylDvfDxyoAbLrEOXdJalXqcD96ogrAOq9xl6SzlDrc3z7eGLmvX7MoTzqQpNIodbgfmW2E+4bVhrsktSp1uL81W2HVinFWTY4PuxRJWlLKHe7Hq2xwSkaSzlHqcD96ouIDwySpjVKH+5uzFdavMdwlab5Sh/vRE1VH7pLURqnD/d2TNdauNNwlab5Sh/vbJ6pcttpwl6T5ShvuJ6t1KrXCu1MlqY3ShvuxucYrWtdO9fVgS0laVsob7icb4b5m0nCXpPlKG+6zlWa4rzTcJWm+0ob7yWodgNU+ekCSzlHacD9eaYS7z5WRpHOVNtxnmydUHblL0rlKG+7H5hoj90ucc5ekc5Q23E9UnZaRpE5KG+4nm3PuUysMd0mar7zhfmrkbrhL0jlKG+4nqnUmxoIV46XtgiQtmNIm44lq3fl2SeqgtOF+slp3vl2SOihtuB+v1J1vl6QOShvuJ6uGuyR1UuJwL5hyzl2S2iptuJ+o1lk5UdryJWlBlTYd52qFJ1QlqYO+wj0ibo6I5yNiX0Tc06HNTRHxVEQ8GxE/HGyZ56rUCkfuktRBz6duRcQ4cC/wT4CDwBMR8XBm/rilzWXA14GbM/PliLhioQo+Za5WZ9Jwl6S2+knHG4B9mbk/MyvAg8Bt89p8AXgoM18GyMw3BlvmueaqjtwlqZN+0nEzcKBl+WBzXavrgPUR8YOIeDIivthuRxGxMyL2RMSemZmZC6u4qVIvWDnhnLsktTOooe8E8DHgF4FfAH47Iq6b3ygzd2XmdGZOb9q06aIOOOfVMpLUUT9vujgEXNOyvKW5rtVB4EhmzgKzEfEocD3wwkCqbKNSL5xzl6QO+knHJ4DtEbEtIiaB24GH57X5HvCpiJiIiNXAjcBzgy31jMxs3MRkuEtSWz1H7plZi4i7gEeAceD+zHw2Iu5sbr8vM5+LiO8De4EC+GZmPrNQRVfrCcBKr3OXpLb6egFpZu4Gds9bd9+85d8Hfn9wpXU2V2u8qGPSZ7lLUlulTMdKrQBwzl2SOihlOs41w92rZSSpvVKmY7XeCHdfsSdJ7ZUyHU+HuyN3SWqrlOlYqTWulvGEqiS1V8p0rNRPnVCNIVciSUtTKcP91LTM5LjXuUtSO+UM99qpE6qO3CWpnVKG+5wnVCWpq1Km4+mR+1gpy5ekBVfKdDzzbJlSli9JC66U6VipN54t401MktReKdOx2rzO3ROqktReKcP9zHXupSxfkhZcKdOx4glVSeqqlOlYK7wUUpK6KWU61orGnPvEmHPuktROOcO9brhLUjflDPfmyH3ccJektsoZ7vWCibEgwnCXpHbKGe5FOmqXpC5KGe7VeuGLOiSpi1ImZL1Ixr07VZI6KmW4V+vJhDcwSVJHpUzIelH4XBlJ6qKU4V6re0JVkropZbhXi/Rxv5LURSkTsl4U3p0qSV2UMtydlpGk7koZ7vUimfCEqiR11Fe4R8TNEfF8ROyLiHu6tPt4RNQi4vODK/FcjTtUS/nfJUlaFD0TMiLGgXuBW4AdwB0RsaNDu98D/uegi5yvXqRz7pLURT/D3xuAfZm5PzMrwIPAbW3afQX4U+CNAdbXVq0onHOXpC76CffNwIGW5YPNdadFxGbgl4BvDK60zhy5S1J3g5q4/hpwd2YW3RpFxM6I2BMRe2ZmZi74YD4VUpK6m+ijzSHgmpblLc11raaBB5vPV98I3BoRtcz8bmujzNwF7AKYnp7OCy26brhLUlf9hPsTwPaI2EYj1G8HvtDaIDO3nfo6Ir4F/Nn8YB+kepGM+6IOSeqoZ7hnZi0i7gIeAcaB+zPz2Yi4s7n9vgWu8RyO3CWpu35G7mTmbmD3vHVtQz0z/8XFl9Wd4S5J3ZXyTqB6JmOGuyR1VM5w91JISeqqtOHuCVVJ6qyU4V4UTstIUjelDPd6Oi0jSd2UM9wLHLlLUhelDPfMxGyXpM5KGe719ISqJHVTznAvkjDcJamjUoZ7Jt6hKkldlDLcffyAJHVXznDPxFkZSeqslOGenlCVpK5KGe71Ihkz3CWpo1KGe5F4nbskdVG6cM9svJ3PO1QlqbPShXu9aIa70zKS1FHpwr2Z7V4KKUldlDDcG+nuwF2SOitduDez3WkZSeqidOFeP3VC1WyXpI5KF+5FekJVknopXbhn0fg03CWps9KFe+G0jCT1VLpwr3sTkyT1VLpwd85dknorXbh7KaQk9Va6cPcmJknqrYTh3vj0ee6S1Fn5wv1UupvtktRR6cL9FOfcJamzvsI9Im6OiOcjYl9E3NNm+69ExN6I+FFEPBYR1w++1IbTc+4LdQBJGgE9wz0ixoF7gVuAHcAdEbFjXrMXgZ/LzI8A/xHYNehCTzl9tUxp/59DkhZePxF5A7AvM/dnZgV4ELittUFmPpaZbzUXHwe2DLbMM86M3B27S1In/YT7ZuBAy/LB5rpOfh3483YbImJnROyJiD0zMzP9V9ni9PlUs12SOhro5EZEfIZGuN/dbntm7srM6cyc3rRp0wUexTtUJamXiT7aHAKuaVne0lx3loj4GeCbwC2ZeWQw5Z3Lkbsk9dbPyP0JYHtEbIuISeB24OHWBhFxLfAQ8KuZ+cLgyzzDxw9IUm89R+6ZWYuIu4BHgHHg/sx8NiLubG6/D/gd4HLg69EI3VpmTi9EwV4KKUm99TMtQ2buBnbPW3dfy9e/AfzGYEvrVEvjMxy5S1JHpbta3Jd1SFJvpQt3R+6S1Fv5wh1H7pLUS+nC3UshJam30oV7vSgAp2UkqZvShXu13hi6H5+rD7kSSVq6ShfuE83J9rVTfV3FKUnLUunCvTnl7py7JHVRvnA//ZY9012SOilhuDcfP2C2S1JH5Qv35qfZLkmdlS/cTXdJ6ql84Y6v2ZOkXkoX7niHqiT1VLpwd1ZGknorX7j7VEhJ6ql84Y6XQkpSL+UL99M3MUmSOilfuDc/HblLUmflC3cvdJeknsoX7s1PR+6S1Fnpwh3n3CWpp9KF+5mrZYx3SeqkfOHuyF2SeipvuJvuktRR+cK9+emDwySps/KFuy/rkKSeyhfuwy5AkkqgfOHunLsk9VS6cMeXdUhST32Fe0TcHBHPR8S+iLinzfaIiD9obt8bER8dfKkNjtwlqbee4R4R48C9wC3ADuCOiNgxr9ktwPbmv53ANwZc52k+fkCSeutn5H4DsC8z92dmBXgQuG1em9uAb2fD48BlEXH1gGsFWm9iMt0lqZN+wn0zcKBl+WBz3fm2GQhf1iFJvS3qCdWI2BkReyJiz8zMzAXt4+pLp/jFj1zN2qmJAVcnSaOjn4Q8BFzTsrylue5825CZu4BdANPT0xd0yfrH3ruBj713w4V8qyQtG/2M3J8AtkfEtoiYBG4HHp7X5mHgi82rZj4BHM3MVwdcqySpTz1H7plZi4i7gEeAceD+zHw2Iu5sbr8P2A3cCuwDjgNfWriSJUm99DVxnZm7aQR467r7Wr5O4MuDLU2SdKFKeIeqJKkXw12SRpDhLkkjyHCXpBFkuEvSCIpTbzZa9ANHzAAvXeC3bwQOD7CcMrDPy4N9Xh4ups/vzcxNvRoNLdwvRkTsyczpYdexmOzz8mCfl4fF6LPTMpI0ggx3SRpBZQ33XcMuYAjs8/Jgn5eHBe9zKefcJUndlXXkLknqYkmH+1J6Mfdi6aPPv9Ls648i4rGIuH4YdQ5Srz63tPt4RNQi4vOLWd9C6KfPEXFTRDwVEc9GxA8Xu8ZB6+Nve2NEfD8inm72udRPl42I+yPijYh4psP2hc2vzFyS/2g8XvinwPuASeBpYMe8NrcCfw4E8Angb4dd9yL0+R8B65tf37Ic+tzS7i9pPJ3088OuexF+z5cBPwaubS5fMey6F6HP/wH4vebXm4A3gclh134Rff408FHgmQ7bFzS/lvLIfUm9mHuR9OxzZj6WmW81Fx+n8darMuvn9wzwFeBPgTcWs7gF0k+fvwA8lJkvA2Rm2fvdT59fA9ZGRACX0Aj32uKWOTiZ+SiNPnSyoPm1lMN9Sb2Ye5Gcb39+ncZ/+cusZ58jYjPwS8A3FrGuhdTP7/k6YH1E/CAinoyILy5adQujnz7/IbADeAX4EfBvMrNYnPKGYkHzy7dMl1REfIZGuH9q2LUsgq8Bd2dm0RjULQsTwMeAzwGrgL+JiMcz84XhlrWgfgvYC3wGeD/wvyLi/2TmO8Mtq5yWcrgP7MXcJdJXfyLiZ4BvArdk5pFFqm2h9NPnaeDBZrBvBG6NiFpmfndxShy4fvp8EDiSmbPAbEQ8ClwPlDXc++nzJ4GvZmNCel9EvAh8CPi7xSlx0S1ofi3laZnl+GLunn2OiGuBh4BfHZFRXM8+Z+a2zNyamVuBPwH+VYmDHfr72/4e8KmImIiI1cCNwHOLXOcg9dPnn9D4PxUi4krgg8D+Ra1ycS1ofi3ZkXsuwxdz99nn3wEuB77eHMnWssQPXeqzzyOlnz5n5nMR8X0a0xQF8M3MbHtJXRn0+Xv+KvBfI2IvjYHn3ZlZ2qdFRsQDwE3Axog4CPwusAIWJ7+8Q1WSRtBSnpaRJF0gw12SRpDhLkkjyHCXpBFkuEvSCDLcJWkEGe6SNIIMd0kaQf8f7geF4XZCuckAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b832231bfd0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(fpr_val,tpr_val)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualizing the prediction"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ratio of number of predicted 1/ true 1 = 2.45799553519\n",
"ration of number of predicted 0/ true 0 = 0.991883144492\n"
]
}
],
"source": [
"#For one image, some statistics\n",
"print(\"ratio of number of predicted 1/ true 1 = \",sum(pp)/sum(val_y))\n",
"print(\"ration of number of predicted 0/ true 0 = \",sum(pp==0)/sum(val_y==0))"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"reshaped_pp=pp.reshape(7,15,121,121)\n",
"reshaped_val_y=val_y.reshape(7,15,121,121)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x2ad54e67c710>"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADlVJREFUeJzt3X+oX3d9x/Hna0marHVqMiWkTVmDBKXKbPWirY5NzFw7J6b7p6SsI9sKYdCNKoJL5h/+VVAmon9MR7BqNruWUrs1FGeMUZEhVuMaXJsYk+lqY5OmrpuKgyzV9/74nuJ3t/fmE7/nfn/cu+cDwveczznne94kX155fz/nnHtTVUjShfzStAuQNPsMCklNBoWkJoNCUpNBIanJoJDUZFBIahpbUCS5McnxJCeT7B7XeSSNX8Zxw1WSVcC3gbcAp4CvA7dU1dElP5mksVs9pvd9HXCyqr4DkOReYDuwYFBckrW1jsvGVIokgB/znz+oqpeOcuy4guIK4Imh9VPA64d3SLIL2AWwjkt5fbaNqRRJAJ+v+x8f9dipTWZW1d6qmququTWsnVYZki7CuILi+8CVQ+ubuzFJy9C4guLrwNYkW5JcAuwA9o/pXJLGbCxzFFX1bJI/Aw4Aq4CPV9Vj4ziXpPEb12QmVfUZ4DPjen9Jk+OdmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKaRgyLJlUm+mORokseS3NGNb0hyMMmJ7nX90pUraRr6dBTPAu+qqquB64Dbk1wN7AYOVdVW4FC3LmkZGzkoqup0Vf1Lt/xj4BhwBbAd2Nfttg+4qW+RkqZr9VK8SZKrgGuBh4GNVXW623QG2LjIMbuAXQDruHQpypA0Jr0nM5O8APg08I6q+tHwtqoqoBY6rqr2VtVcVc2tYW3fMiSNUa+gSLKGQUjcXVUPdMNPJdnUbd8EnO1XoqRp63PVI8BdwLGq+uDQpv3Azm55J/Dg6OVJmgV95ijeCPwh8K9JjnRjfwm8D7gvyW3A48DN/UqUNG0jB0VV/TOQRTZvG/V9Jc0e78yU1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUY3TgySMcePJIe0dpxhkUkpoMCklNBoWkJoNCUpNBIanJoJDUtCS/10P/13OXRG+4/JopVyItDTsKSU0GhaQmg0JSk0EhqcmgkNRkUEhq8vLoEvJJUa1UvTuKJKuSPJLkoW59Q5KDSU50r+v7lylpmpbiq8cdwLGh9d3AoaraChzq1iUtY72CIslm4PeAjw0Nbwf2dcv7gJv6nEPS9PWdo/gQ8G7gV4bGNlbV6W75DLCx5zmWHW/d1kozckeR5G3A2ar6xmL7VFUBtcjxu5IcTnL4POdGLUPSBPTpKN4IvD3JW4F1wAuTfAp4KsmmqjqdZBNwdqGDq2ovsBfghdmwYJgsN3YSWqlG7iiqak9Vba6qq4AdwBeq6lZgP7Cz220n8GDvKiVN1ThuuHof8JYkJ4Df7tYlLWNLcsNVVX0J+FK3/B/AtqV43+XGn0OhlcpbuCU1GRSSmgwKSU0GhaQmg0JSk4+ZLyGvdmilsqOQ1GRQSGoyKMbgwJNH/GlXWlEMCklNTmaOgZOaWmnsKCQ1GRSSmgwKSU0GxRJa7GqHV0G03BkUkpoMiiV0w+XXXPCKh12FliuDQlKTQSGpyaCQ1GRQSGoyKCbMS6VajgwKSU0GxQS0LptKs86gkNRkUEzQcFfhXIWWE4NCUlOvoEjy4iT3J/lWkmNJrk+yIcnBJCe61/VLVayk6ejbUXwY+GxVvQJ4NXAM2A0cqqqtwKFuXZ35E5t+BdFyMHJQJHkR8JvAXQBV9T9V9V/AdmBft9s+4Ka+RUqarj4dxRbgaeATSR5J8rEklwEbq+p0t88ZYGPfIlciOwstJ32CYjXwGuCjVXUt8BPmfc2oqgJqoYOT7EpyOMnh85zrUYakcesTFKeAU1X1cLd+P4PgeCrJJoDu9exCB1fV3qqaq6q5NaztUcbKYlehWTRyUFTVGeCJJC/vhrYBR4H9wM5ubCfwYK8KJU1d39/r8efA3UkuAb4D/DGD8LkvyW3A48DNPc+xoj03T2EnoVnWKyiq6ggwt8CmbX3eV9Js8TeFzYj5V0Dmj0nTZFDMoPlfRwwMTZvPekhqsqOYYXYWmhV2FJKa7CiWgfmdxEKXUu02NE52FJKa7CiWoRsuv+Z5XYVdhsbJjkJSkx3FMnUx8xZeLdFSMShWiFHDYCmeMTGIVj6/ekhqsqP4f+4X6QYW6z4upiux61je7CgkNdlR6KK1uoIDTx6xc1ih7CgkNRkUWjJ2EyuXQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNTUKyiS7ElyNMmjSe5Jsi7JhiQHk5zoXtcvVbGSpmPkoEhyFbALeG1VvQpYBewAdgOHqmorcKhbl7SM9ekofgScB345yWrgUuBJYDuwr9tnH3BTrwolTd3IQVFVzwAfAL4HnAZ+WFWfAzZW1elutzPAxt5VSpqqPl89Xga8E9gCXA5cluTW4X2qqoBa5PhdSQ4nOXyec6OWIWkC+nz1mAO+UlVPV9V54AHgDcBTSTYBdK9nFzq4qvZW1VxVza1hbY8yJI1bn6A4DlyX5NIkAbYBx4D9wM5un53Ag/1KlDRtI//MzKo6kuRvgcPAz4BHgL3AC4D7ktwGPA7cvBSFSpqeXj9ct6reD7x/3vA5Bt2FpBXCOzMlNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNzaBI8vEkZ5M8OjS2IcnBJCe61/VD2/YkOZnkeJIbxlW4pMm5mI7ik8CN88Z2A4eqaitwqFsnydXADuCV3TEfSbJqyaqVNBXNoKiqLwPPzBveDuzrlvcBNw2N31tV56rqu8BJ4HVLVKukKRl1jmJjVZ3uls8AG7vlK4AnhvY71Y1JWsZ6T2ZWVQH1ix6XZFeSw0kOn+dc3zIkjdGoQfFUkk0A3evZbvz7wJVD+23uxp6nqvZW1VxVza1h7YhlSJqEUYNiP7CzW94JPDg0viPJ2iRbgK3A1/qVKGnaVrd2SHIP8CbgJUlOAe8F3gfcl+Q24HHgZoCqeizJfcBR4Fng9qr66ZhqlzQhzaCoqlsW2bRtkf3vBO7sU5Sk2eKdmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKZmUCT5eJKzSR4dGvurJN9K8s0k/5DkxUPb9iQ5meR4khvGVbikybmYjuKTwI3zxg4Cr6qqXwe+DewBSHI1sAN4ZXfMR5KsWrJqJU1FMyiq6svAM/PGPldVz3arXwU2d8vbgXur6lxVfRc4CbxuCeuVNAVLMUfxJ8A/dctXAE8MbTvVjUlaxlb3OTjJe4BngbtHOHYXsAtgHZf2KUPSmI0cFEn+CHgbsK2qqhv+PnDl0G6bu7Hnqaq9wN7uvZ7+fN3/E+AHo9YzBi/Bei7Eei5sFuv5tVEPHikoktwIvBv4rar676FN+4G/T/JB4HJgK/C11vtV1UuTHK6quVHqGQfruTDrubAZreeqUY9vBkWSe4A3AS9Jcgp4L4OrHGuBg0kAvlpVf1pVjyW5DzjK4CvJ7VX101GLkzQbmkFRVbcsMHzXBfa/E7izT1GSZsss3Zm5d9oFzGM9F2Y9F7ai6snP5yElaWGz1FFImlEzERRJbuyeDTmZZPcUzn9lki8mOZrksSR3dOMbkhxMcqJ7XT/BmlYleSTJQzNQy4uT3N8933MsyfVTrmdP92/1aJJ7kqybZD2LPP+06PnH/fzTJJ7HmnpQdM+C/DXwu8DVwC3dMyOT9Czwrqq6GrgOuL2rYTdwqKq2Aoe69Um5Azg2tD7NWj4MfLaqXgG8uqtrKvUkuYrBjXqvrapXAasYPF80yXo+yfOff1rw/BN6/mmhepb2eayqmuof4HrgwND6HmDPlGt6EHgLcBzY1I1tAo5P6PybGXzY3gw81I1Nq5YXAd+lm88aGp9WPRu6D/4GBlftHgJ+Z9L1AFcBj7b+PuZ/noEDwPXjrmfett8H7u5Tz9Q7Cmbs+ZDuf6xrgYeBjVV1utt0Btg4oTI+xOCGtp8NjU2rli3A08Anuq9CH0ty2bTqqapngA8A3wNOAz+sqs9Nq54hi51/Fj7fvZ/HmoWgmBlJXgB8GnhHVf1oeFsN4nfsl4iSvA04W1XfWGyfSdXSWQ28BvhoVV0L/IR5bf0k60nyMuCdDALscuCyJLdOq56FTPv8w/o8jzVsFoLiop8PGackaxiExN1V9UA3/FSSTd32TcDZCZTyRuDtSf4duBd4c5JPTakWGPyPc6qqHu7W72cQHNOqZw74SlU9XVXngQeAN0yxnucsdv6pfb6Hnsf6gy68Rq5nFoLi68DWJFuSXMJgomX/JAvI4D70u4BjVfXBoU37gZ3d8k4GcxdjVVV7qmpzDe7L3wF8oapunUYtXT1ngCeSvLwb2sbgFv2p1MNgLuC6JJd2/27bGEyuTque5yx2/v3AjiRrk2zhIp9/6mvoeay31/Ofx/rF65nEBNRFTMS8lcEE1b8B75nC+X+DQav4TeBI9+etwK8ymFQ8AXwe2DDhut7Ezyczp1YLcA1wuPv7+Udg/ZTr+QsGYfUo8HcMnjuaWD3APQzmR84z6Lhuu9D5gfd0n+3jwO9OqJ6TDOYinvs8/02ferwzU1LTLHz1kDTjDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1/S9bb/rkUAUQcwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e59bb00>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(reshaped_val_y[3,8,:,:])"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x2ad54e6da320>"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADr5JREFUeJzt3XGonXd9x/H3Z0marBU1mRLSpqxBglJlWr1oq2MTM9fqxHT/lJR1ZFshDLpRRXDJ/MO/CspE9I/pCFbNZtdSYmdDccY0KjLEalyDaxNjMl1tbNLUdVNxkKX63R/nKZ6l995fes495zk3vl8Qznl+z/Oc55ubw+f+zu/5/U5SVUjSYn6t7wIkzT6DQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmiYWFEluSHIsyYkkOyd1HUmTl0lMuEqyAvgu8FbgJPBN4OaqOrLkF5M0cSsn9LqvB05U1fcAktwDbAXmDYpLsrrWcNmESpEE8FP+60dV9dJRzp1UUFwBPD60fRJ4w/ABSXYAOwDWcClvyJYJlSIJ4MHa+9io5/Y2mFlVu6tqrqrmVrG6rzIkXYBJBcUPgSuHtjd2bZKWoUkFxTeBzUk2JbkE2Absm9C1JE3YRMYoquqZJH8B7AdWAJ+sqkcncS1JkzepwUyq6vPA5yf1+pKmx5mZkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkppGDIsmVSb6c5EiSR5Pc3rWvS3IgyfHuce3SlSupD+P0KJ4B3lNVVwPXArcluRrYCRysqs3AwW5b0jI2clBU1amq+tfu+U+Bo8AVwFZgT3fYHuDGcYuU1K+VS/EiSa4CrgEeAtZX1alu12lg/QLn7AB2AKzh0qUoQ9KEjD2YmeQFwGeBd1XVT4b3VVUBNd95VbW7quaqam4Vq8ctQ9IEjRUUSVYxCIm7quq+rvnJJBu6/RuAM+OVKKlv49z1CHAncLSqPjy0ax+wvXu+Hbh/9PIkzYJxxijeBPwx8G9JDndtfw18ALg3ya3AY8BN45UoqW8jB0VV/QuQBXZvGfV1Jc0eZ2ZKajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg2IJ7X/iMPufONw+UFpmDApJTUvy5boauP7y1/RdgjQR9igkNRkUkpoMiiXiIKYuZgaFpCaDYgl5e1QXK4NCUpO3R8dkD0K/CuxRSGoyKCQ1GRSSmsYOiiQrkjyc5IFue12SA0mOd49rxy9TUp+WokdxO3B0aHsncLCqNgMHu21Jy9hYQZFkI/AHwCeGmrcCe7rne4Abx7mGpP6N26P4CPBe4BdDbeur6lT3/DSwfsxrSOrZyEGR5B3Amar61kLHVFUBtcD5O5IcSnLoHGdHLUPSFIwz4epNwDuTvB1YA7wwyWeAJ5NsqKpTSTYAZ+Y7uap2A7sBXph184aJpNkwco+iqnZV1caqugrYBnypqm4B9gHbu8O2A/ePXaWkXk1iHsUHgLcmOQ78XrctaRlbkrUeVfUV4Cvd8/8EtizF60qaDc7MlNRkUEhqMigkNRkUkpoMCklNBoWWPb+rdPIMCklNBsUE+BuuH/7cJ8egGNP1l7+m+X+O+gbWcmdQSGry6/onyF7EdDzbo/PnPTn2KCQ1GRRT5G88LVcGhaQmxyiWyPCdD3sO/Xr259+6G6ULZ49CUpNBMQEXMrdCS8+f++QYFFPm5CstRwaFpCYHM3XR8ePH0rNHIanJoJigxQbXHKvQcmJQSGoyKKbA23Za7gwKSU0GRc8cq9ByYFBIahorKJK8OMneJN9JcjTJdUnWJTmQ5Hj3uHapipXUj3F7FB8FvlBVrwBeDRwFdgIHq2ozcLDbFotPBPIjiGbZyEGR5EXA7wB3AlTV/1bVfwNbgT3dYXuAG8ctUlK/xulRbAKeAj6V5OEkn0hyGbC+qk51x5wG1o9bpKR+jRMUK4HXAh+vqmuAn3Hex4yqKqDmOznJjiSHkhw6x9kxypA0aeMExUngZFU91G3vZRAcTybZANA9npnv5KraXVVzVTW3itVjlLG8tCZfOU6hWTRyUFTVaeDxJC/vmrYAR4B9wPaubTtw/1gVSurduMvM/xK4K8klwPeAP2UQPvcmuRV4DLhpzGv8yvE7HzVrxgqKqjoMzM2za8s4rytptjgzsycuFNNyYlD0zO+s0HJgUEhq8jszZ8Ri/4HQfL0KP7ZomuxRSGqyRzGDnu0tnH+bdLhnsdDYhT0NTYI9CklNGSzH6NcLs67ekOU99WL/E4en9tv8Qu6E2LPQ+R6svd+qqvnmPTXZo5DUZI9imZtU78I7LRefcXoUBsUS6nONRh8TswyO5cWPHpImytujF4n5frtPupcx6uvbE1l+7FFIarJHcRFbbLHZ83kNF6bJHoWkJnsUS2ihqdez5vnWdf7x9jB+9dijkNRkUGiqZrWXpcX50WOCZv0jyKgutr+P2uxRSGoyKCbAL87VxcagkNTkGMUE2avQxcIehaQmg0JSk0EhqWmsoEiyK8mRJI8kuTvJmiTrkhxIcrx7XLtUxUrqx8hBkeQqYAfwuqp6FbAC2AbsBA5W1WbgYLctaRkbp0fxE+Ac8OtJVgKXAk8AW4E93TF7gBvHqlBS70YOiqp6GvgQ8APgFPDjqvoisL6qTnWHnQbWj12lpF6N89HjZcC7gU3A5cBlSW4ZPqYG39w777f3JtmR5FCSQ+c4O2oZkqZgnI8ec8DXquqpqjoH3Ae8EXgyyQaA7vHMfCdX1e6qmququVWsHqMM6f/b/8RhvzNjiY0TFMeAa5NcmiTAFuAosA/Y3h2zHbh/vBIl9W3kKdxVdTjJ3wOHgF8ADwO7gRcA9ya5FXgMuGkpCpXUn7HWelTVB4EPntd8lkHvQtJFwkVhuui4GG/pOYVbUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIampGRRJPpnkTJJHhtrWJTmQ5Hj3uHZo364kJ5IcS3L9pAqXND0X0qP4NHDDeW07gYNVtRk42G2T5GpgG/DK7pyPJVmxZNVK6kUzKKrqq8DT5zVvBfZ0z/cANw6131NVZ6vq+8AJ4PVLVKuknow6RrG+qk51z08D67vnVwCPDx13smuTtIyNPZhZVQXU8z0vyY4kh5IcOsfZccuQNEGjBsWTSTYAdI9nuvYfAlcOHbexa3uOqtpdVXNVNbeK1SOWIWkaRg2KfcD27vl24P6h9m1JVifZBGwGvjFeiZL6trJ1QJK7gTcDL0lyEng/8AHg3iS3Ao8BNwFU1aNJ7gWOAM8At1XVzydUu6QpaQZFVd28wK4tCxx/B3DHOEVJmi3OzJTUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDU1gyLJJ5OcSfLIUNvfJPlOkm8n+ackLx7atyvJiSTHklw/qcIlTc+F9Cg+DdxwXtsB4FVV9VvAd4FdAEmuBrYBr+zO+ViSFUtWraReNIOiqr4KPH1e2xer6plu8+vAxu75VuCeqjpbVd8HTgCvX8J6JfVgKcYo/gz45+75FcDjQ/tOdm2SlrGV45yc5H3AM8BdI5y7A9gBsIZLxylD0oSNHBRJ/gR4B7Clqqpr/iFw5dBhG7u256iq3cDu7rWeerD2/gz40aj1TMBLsJ7FWM/iZrGe3xz15JGCIskNwHuB362q/xnatQ/4xyQfBi4HNgPfaL1eVb00yaGqmhulnkmwnsVZz+JmtJ6rRj2/GRRJ7gbeDLwkyUng/QzucqwGDiQB+HpV/XlVPZrkXuAIg48kt1XVz0ctTtJsaAZFVd08T/Odixx/B3DHOEVJmi2zNDNzd98FnMd6Fmc9i7uo6skvxyElaX6z1KOQNKNmIiiS3NCtDTmRZGcP178yyZeTHEnyaJLbu/Z1SQ4kOd49rp1iTSuSPJzkgRmo5cVJ9nbre44mua7nenZ1/1aPJLk7yZpp1rPA+qcFrz/p9U/TWI/Ve1B0a0H+FngbcDVwc7dmZJqeAd5TVVcD1wK3dTXsBA5W1WbgYLc9LbcDR4e2+6zlo8AXquoVwKu7unqpJ8lVDCbqva6qXgWsYLC+aJr1fJrnrn+a9/pTWv80Xz1Lux6rqnr9A1wH7B/a3gXs6rmm+4G3AseADV3bBuDYlK6/kcGb7S3AA11bX7W8CPg+3XjWUHtf9azr3vjrGNy1ewD4/WnXA1wFPNL6eZz/fgb2A9dNup7z9v0hcNc49fTeo2DG1od0v7GuAR4C1lfVqW7XaWD9lMr4CIMJbb8Yauurlk3AU8Cnuo9Cn0hyWV/1VNXTwIeAHwCngB9X1Rf7qmfIQtefhff32OuxZiEoZkaSFwCfBd5VVT8Z3leD+J34LaIk7wDOVNW3FjpmWrV0VgKvBT5eVdcAP+O8bv0060nyMuDdDALscuCyJLf0Vc98+r7+sHHWYw2bhaC44PUhk5RkFYOQuKuq7uuan0yyodu/ATgzhVLeBLwzyX8A9wBvSfKZnmqBwW+ck1X1ULe9l0Fw9FXPHPC1qnqqqs4B9wFv7LGeZy10/d7e30Prsf6oC6+R65mFoPgmsDnJpiSXMBho2TfNAjKYh34ncLSqPjy0ax+wvXu+ncHYxURV1a6q2liDefnbgC9V1S191NLVcxp4PMnLu6YtDKbo91IPg7GAa5Nc2v27bWEwuNpXPc9a6Pr7gG1JVifZxAWufxrX0Hqsd9Zz12M9/3qmMQB1AQMxb2cwQPXvwPt6uP5vM+gqfhs43P15O/AbDAYVjwMPAuumXNeb+eVgZm+1AK8BDnU/n88Ba3uu568YhNUjwD8wWHc0tXqAuxmMj5xj0OO6dbHrA+/r3tvHgLdNqZ4TDMYinn0//9049TgzU1LTLHz0kDTjDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1/R8c7E4jajkFvwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e6297f0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(reshaped_pp[3,8,:,:])"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADjpJREFUeJzt3X/IXmd9x/H3Z0marBVnMiWkTVmDBKXKtPqgrY5NzFyrE9P9U1LWkW2FMOhGFcEl8w//KigT0T+mI1g1m11Lqd0airONUZEhVuMaXJsYk+lqY5OmrtsUN7JUv/vjPpk3T58nV3qf5/7xJO8XhPuc65xzny/Jzee5znVfV55UFZJ0Lr807QIkzT6DQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmsYWFEluSHIkybEkO8d1H0njl3FMuEqyAvgu8DbgOPBN4OaqOrTkN5M0divH9L5vAI5V1fcAktwDbAUWDIpLsrrWcNmYSpEE8BP+40dV9bJRrh1XUFwBPDm0fxx44/AJSXYAOwDWcClvzJYxlSIJ4It13xOjXju1wcyq2l1Vc1U1t4rV0ypD0nkYV1D8ELhyaH9j1yZpGRpXUHwT2JxkU5JLgG3A3jHdS9KYjWWMoqqeS/KnwEPACuBTVfX4OO4lafzGNZhJVX0e+Py43l/S5DgzU1KTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1DRyUCS5MsmXkxxK8niS27v2dUn2JTnava5dunIlTUOfHsVzwHur6mrgWuC2JFcDO4H9VbUZ2N/tS1rGRg6KqjpRVf/cbf8EOAxcAWwF9nSn7QFu7FukpOlauRRvkuQq4BrgEWB9VZ3oDp0E1i9yzQ5gB8AaLl2KMiSNSe/BzCQvAj4HvLuqfjx8rKoKqIWuq6rdVTVXVXOrWN23DElj1CsokqxiEBJ3VdX9XfPTSTZ0xzcAp/qVKGna+nzrEeBO4HBVfWTo0F5ge7e9HXhg9PIkzYI+YxRvBv4A+JckB7u2vwA+CNyb5FbgCeCmfiVKmraRg6Kq/gnIIoe3jPq+kmaPMzMlNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpp6B0WSFUkeTfJgt78uyb4kR7vXtf3LlDRNS9GjuB04PLS/E9hfVZuB/d2+pGWsV1Ak2Qj8LvDJoeatwJ5uew9wY597SJq+vj2KjwLvA34+1La+qk502yeB9T3vIWnKRg6KJO8ETlXVtxY7p6oKqEWu35HkQJIDZzg9ahmSJmBlj2vfDLwryTuANcCLk3wWeDrJhqo6kWQDcGqhi6tqN7Ab4MVZt2CYSJoNI/coqmpXVW2sqquAbcCXquoWYC+wvTttO/BA7yolTdU45lF8EHhbkqPAb3f7kpaxPo8e/6+qvgJ8pdv+d2DLUryvpNngzExJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMihfooacO8tBTB6ddhjRRBoWkJoNCUpNBIanJoJDUZFBIajIoJDUtye/1uBic/Ur0+stfO+VKpMmzRyGpyaCQ1GRQvEDOzNTFqFdQJHlJkvuSfCfJ4STXJVmXZF+So93r2qUqVtJ09O1RfAz4QlW9EngNcBjYCeyvqs3A/m5/2bv+8tc6kKmL1shBkeRXgN8E7gSoqv+tqv8EtgJ7utP2ADf2LVLSdPXpUWwCngE+neTRJJ9MchmwvqpOdOecBNb3LVLSdPUJipXA64BPVNU1wE+Z95hRVQXUQhcn2ZHkQJIDZzjdowxJ49YnKI4Dx6vqkW7/PgbB8XSSDQDd66mFLq6q3VU1V1Vzq1jdowxJ4zZyUFTVSeDJJK/omrYAh4C9wPaubTvwQK8KJU1d3yncfwbcleQS4HvAHzEIn3uT3Ao8AdzU8x6SpqxXUFTVQWBugUNb+ryvpNnizMwROUNTFxOD4gVy4pUuRgaFpCaDQlKTQSGpyf/hakSOU+hiYo9CUpNBIanJoJDUZFCMkZOydKEwKCQ1GRSSmgyKCfARRMudQSGpyaCYIHsVWq4MCklNBsUYuSRdFwqDQlKTQTFhfgOi5cigmAAfQbTcGRSSmgyKKfERRMuJQSGpyaCYoIXGKexZaDkwKCQ1GRQT5jcgWo4MCklNvYIiya4kh5I8luTuJGuSrEuyL8nR7nXtUhV7IZnfs3CsQrNs5KBIchWwA3h9Vb0aWAFsA3YC+6tqM7C/29ciFgoMadb06VH8GDgD/HKSlcClwFPAVmBPd84e4MZeFUqaupF/AVBVPZvkw8APgP8BHq6qh5Osr6oT3WkngfVLUOcF72yvYqFHEAc/NW19Hj1eDrwH2ARcDlyW5Jbhc6qqgFrk+h1JDiQ5cIbTo5YhaQL6PHrMAV+rqmeq6gxwP/Am4OkkGwC611MLXVxVu6tqrqrmVrG6RxkXFidlaRb1CYojwLVJLk0SYAtwGNgLbO/O2Q480K9ESdPWZ4ziYJK/AQ4APwceBXYDLwLuTXIr8ARw01IUejEZHq8YdnbfMQtNWq/fZl5VHwI+NK/5NIPehaQLRK+g0HjN7zmc7VE89NRBexWaKINiGfErVE2Laz0kNdmjWIYWmvK90NenrV7G+X7lam9F9igkNdmjWOYWG/Ccvz3q+0lgj0LSebBHcYGxR6BxsEchqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGpqBkWSTyU5leSxobZ1SfYlOdq9rh06tivJsSRHklw/rsIlTc759Cg+A9wwr20nsL+qNgP7u32SXA1sA17VXfPxJCuWrFpJU9EMiqr6KvDsvOatwJ5uew9w41D7PVV1uqq+DxwD3rBEtUqaklHHKNZX1Ylu+ySwvtu+Anhy6LzjXZukZaz3YGZVFVAv9LokO5IcSHLgDKf7liFpjEYNiqeTbADoXk917T8Erhw6b2PX9jxVtbuq5qpqbhWrRyxD0iSMGhR7ge3d9nbggaH2bUlWJ9kEbAa+0a9ESdPW/JWCSe4G3gK8NMlx4APAB4F7k9wKPAHcBFBVjye5FzgEPAfcVlU/G1PtkiakGRRVdfMih7Yscv4dwB19ipI0W5yZKanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIamoGRZJPJTmV5LGhtr9M8p0k307y90leMnRsV5JjSY4kuX5chUuanPPpUXwGuGFe2z7g1VX168B3gV0ASa4GtgGv6q75eJIVS1atpKloBkVVfRV4dl7bw1X1XLf7dWBjt70VuKeqTlfV94FjwBuWsF5JU7AUYxR/DPxjt30F8OTQseNdm6RlbGWfi5O8H3gOuGuEa3cAOwDWcGmfMiSN2chBkeQPgXcCW6qquuYfAlcOnbaxa3ueqtoN7O7e65kv1n0/BX40aj1j8FKs51ys59xmsZ5fG/XikYIiyQ3A+4Dfqqr/Hjq0F/i7JB8BLgc2A99ovV9VvSzJgaqaG6WecbCec7Oec5vReq4a9fpmUCS5G3gL8NIkx4EPMPiWYzWwLwnA16vqT6rq8ST3AocYPJLcVlU/G7U4SbOhGRRVdfMCzXee4/w7gDv6FCVptszSzMzd0y5gHus5N+s5twuqnvxiHFKSFjZLPQpJM2omgiLJDd3akGNJdk7h/lcm+XKSQ0keT3J7174uyb4kR7vXtROsaUWSR5M8OAO1vCTJfd36nsNJrptyPbu6f6vHktydZM0k61lk/dOi9x/3+qdJrMeaelB0a0H+Cng7cDVwc7dmZJKeA95bVVcD1wK3dTXsBPZX1WZgf7c/KbcDh4f2p1nLx4AvVNUrgdd0dU2lniRXMZio9/qqejWwgsH6oknW8xmev/5pwftPaP3TQvUs7XqsqprqH+A64KGh/V3ArinX9ADwNuAIsKFr2wAcmdD9NzL4sL0VeLBrm1YtvwJ8n248a6h9WvWs6z746xh8a/cg8DuTrge4Cnis9fcx//MMPARcN+565h37PeCuPvVMvUfBjK0P6X5iXQM8AqyvqhPdoZPA+gmV8VEGE9p+PtQ2rVo2Ac8An+4ehT6Z5LJp1VNVzwIfBn4AnAD+q6oenlY9Qxa7/yx8vnuvx5qFoJgZSV4EfA54d1X9ePhYDeJ37F8RJXkncKqqvrXYOZOqpbMSeB3wiaq6Bvgp87r1k6wnycuB9zAIsMuBy5LcMq16FjLt+w/rsx5r2CwExXmvDxmnJKsYhMRdVXV/1/x0kg3d8Q3AqQmU8mbgXUn+DbgHeGuSz06pFhj8xDleVY90+/cxCI5p1TMHfK2qnqmqM8D9wJumWM9Zi91/ap/vofVYv9+F18j1zEJQfBPYnGRTkksYDLTsnWQBGcxDvxM4XFUfGTq0F9jebW9nMHYxVlW1q6o21mBe/jbgS1V1yzRq6eo5CTyZ5BVd0xYGU/SnUg+DsYBrk1za/bttYTC4Oq16zlrs/nuBbUlWJ9nEea5/6mtoPda76vnrsV54PZMYgDqPgZh3MBig+lfg/VO4/28w6Cp+GzjY/XkH8KsMBhWPAl8E1k24rrfwi8HMqdUCvBY40P39/AOwdsr1/DmDsHoM+FsG644mVg9wN4PxkTMMely3nuv+wPu7z/YR4O0TqucYg7GIs5/nv+5TjzMzJTXNwqOHpBlnUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanp/wCbDf7TqGfY1AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54eac62b0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADwpJREFUeJzt3X/sXXV9x/Hnay20KwZtp2laykZjGpdqNnCNgC6bsXMgM5b9Q0rG0m0szRK2oDGRVv/wLxLMjHF/TJcG1GYySFNxNMStlKpxixEto3HQWtvpkEpLcWzTONMVfe+Pe5jX8v1+P+Xe7/3x/fp8JM0953POueedb29e93M+93PuTVUhSXP5hUkXIGn6GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNQ0sqBIcn2SY0lOJNkxqvNIGr2MYsJVkiXAN4G3AyeBrwE3V9WReT+ZpJFbOqLnfRNwoqq+BZDkfmALMGNQXJxltZxLRlSKJIAf8J/fq6rXDHLsqILiMuDpvvWTwNX9OyTZDmwHWM4Krs7mEZUiCeCR2vvUoMdObDCzqnZV1aaq2nQRyyZVhqQLMKqg+C5wed/6uq5N0gI0qqD4GrAhyfokFwNbgX0jOpekERvJGEVVvZDkz4H9wBLgE1X15CjOJWn0RjWYSVV9DvjcqJ5f0vg4M1NSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNQ0cFAkuTzJF5IcSfJkktu79lVJDiQ53j2unL9yJU3CMD2KF4D3VtVG4BrgtiQbgR3AwaraABzs1iUtYAMHRVWdqqp/6ZZ/ABwFLgO2ALu73XYDNw5bpKTJWjofT5LkCuAq4FFgdVWd6jadBlbPcsx2YDvAclbMRxmSRmTowcwkrwA+A7y7qr7fv62qCqiZjquqXVW1qao2XcSyYcuQNEJDBUWSi+iFxL1V9UDX/GySNd32NcCZ4UqUNGnDfOoR4B7gaFV9pG/TPmBbt7wNeHDw8iRNg2HGKN4C/CHwr0kOd23vB+4C9iS5FXgKuGm4EiVN2sBBUVX/DGSWzZsHfV5J08eZmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTUMHRZIlSR5P8lC3virJgSTHu8eVw5cpaZLmo0dxO3C0b30HcLCqNgAHu3VJC9hQQZFkHfB7wN19zVuA3d3ybuDGYc4hafKG7VF8FHgf8JO+ttVVdapbPg2sHvIcU23/M4fZ/8zhSZchjdTAQZHkncCZqnpstn2qqoCa5fjtSQ4lOXSOs4OWIWkMlg5x7FuAdyW5AVgOXJrk08CzSdZU1akka4AzMx1cVbuAXQCXZtWMYSJpOgzco6iqnVW1rqquALYCn6+qW4B9wLZut23Ag0NXKWmiRjGP4i7g7UmOA7/TrS8ajkno59Ewlx7/r6q+CHyxW/4PYPN8PK+k6eDMTElNBsXLdN3aK7lu7ZUvafdyRIuZQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0ExpNkmYEmLiUEhqcmgGCHvNNViYVBIajIoxsCehRY6g0JS07x8cY2Y8ZMPPw3RYmGPQlKTQSGpyaCQ1GRQSGoyKMbAj0e10BkUkpr8eHQM/JhUC509CklNBoWkJoNiBBy8nH/+TSdrqKBI8qoke5N8I8nRJNcmWZXkQJLj3ePK+SpW0mSkqgY/ONkN/FNV3Z3kYmAF8H7g+aq6K8kOYGVV3THX81yaVXV1/F1jtb3Yq3CA+OV7pPY+VlWbBjl24B5FklcCvwXcA1BV/1tV/wVsAXZ3u+0Gbhz0HJKmwzCXHuuB54BPJnk8yd1JLgFWV9Wpbp/TwOphi5Q0WcMExVLgjcDHq+oq4IfAjv4dqnddM+O1TZLtSQ4lOXSOs0OUIWnUhplwdRI4WVWPdut76QXFs0nWVNWpJGuAMzMdXFW7gF3QG6MYoo6p4fXz6Pm3nYyBexRVdRp4OsnruqbNwBFgH7Cta9sGPDhUhZImbtgp3H8B3Nt94vEt4I/phc+eJLcCTwE3DXmOBceehRaboYKiqg4DM33c4med0iLizMx54qxBLWbePTqkmQLCSw4tNvYoJDXZoxiB83sZ9jC00NmjkNRkUMyTuXoN3iKthc6gkNTkGMWQ+nsSLy7be5j9b+B4zcJkj0JSkz2KEZitZ7H/mcOL+h3VOSWLl0Ghl22uSyuDYXHy0kNSkz0KvWz2Gn7+2KOQ1GRQjNB1a6/03XeEnMg2PgaFpCaDYsx8F9RCZFBIavJTDy1Yjv+Mjz2KMZhpUNNLEC0kBoWkJoNiwuxZaCEwKCQ1GRRj5OCbFiqDQlKTQTFms03rdqxC08ygkNQ0VFAk2ZnkSJInktyXZHmSVUkOJDnePa6cr2IXk7l6FgvVQq5dcxt4ZmaSK4DtwMaq+lGSPcBWYCNwsKruSrID2AHcMQ+1LkozfW3etP8auoHw82eYHsX3gXPALyZZCqwAngG2ALu7fXYDNw5VoaSJG7hHUVXPJ/kw8B3gR8DDVfVwktVVdarb7TSweh7qXPTm6lmcv8+kzFbPtPeANLyBexRJXgu8B1gPrAUuSXJL/z5VVUDNcvz2JIeSHDrH2UHLkDQGw9w9ugn4clU9B5DkAeDNwLNJ1lTVqSRrgDMzHVxVu4BdAJdm1Yxhop81qXfuVs/GnsTiN8wYxTHgmiQrkgTYDBwF9gHbun22AQ8OV6KkSUvv6mDAg5M76IXBT4DHgT8FXgHsAX4ZeAq4qaqen+t5Ls2qujqbB65jsfOHdTQfHqm9j1XVpkGOHeqLa6rqQ8CHzms+S693IWmRcGbmAuAX32jS/Cq8Be5CwmK2y5T5/mnA/ufz0mhxsUchqckexQIy6L0h47pEuW7tlbOey0lZC5s9CklN9ij0M4Z9x59p0HU+nleTZY9CUpM9igVuthuz9j9zeNZ395mOH3V9WtjsUUhqGmoK93xxCrc0esNM4bZHIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqakZFEk+keRMkif62lYlOZDkePe4sm/bziQnkhxLct2oCpc0PhfSo/gUcP15bTuAg1W1ATjYrZNkI7AVeH13zMeSLJm3aiVNRDMoqupLwPPnNW8BdnfLu4Eb+9rvr6qzVfVt4ATwpnmqVdKEDDpGsbqqTnXLp4HV3fJlwNN9+53s2iQtYEMPZlbva7xf9ld5J9me5FCSQ+c4O2wZkkZo0KB4NskagO7xTNf+XeDyvv3WdW0vUVW7qmpTVW26iGUDliFpHAYNin3Atm55G/BgX/vWJMuSrAc2AF8drkRJk9b8ScEk9wFvBV6d5CTwQeAuYE+SW4GngJsAqurJJHuAI8ALwG1V9eMR1S5pTJpBUVU3z7Jpxp/2qqo7gTuHKUrSdHFmpqQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqakZFEk+keRMkif62v4yyTeSfD3JZ5O8qm/bziQnkhxLct2oCpc0PhfSo/gUcP15bQeAN1TVrwHfBHYCJNkIbAVe3x3zsSRL5q1aSRPRDIqq+hLw/HltD1fVC93qV4B13fIW4P6qOltV3wZOAG+ax3olTcB8jFH8CfAP3fJlwNN92052bZIWsKXDHJzkA8ALwL0DHLsd2A6wnBXDlCFpxAYOiiR/BLwT2FxV1TV/F7i8b7d1XdtLVNUuYFf3XM89Unt/CHxv0HpG4NVYz1ysZ27TWM+vDHrwQEGR5HrgfcBvV9X/9G3aB/xdko8Aa4ENwFdbz1dVr0lyqKo2DVLPKFjP3KxnblNazxWDHt8MiiT3AW8FXp3kJPBBep9yLAMOJAH4SlX9WVU9mWQPcITeJcltVfXjQYuTNB2aQVFVN8/QfM8c+98J3DlMUZKmyzTNzNw16QLOYz1zs565Lap68tNxSEma2TT1KCRNqakIiiTXd/eGnEiyYwLnvzzJF5IcSfJkktu79lVJDiQ53j2uHGNNS5I8nuShKajlVUn2dvf3HE1y7YTr2dn9Xz2R5L4ky8dZzyz3P816/lHf/zSO+7EmHhTdvSB/DbwD2Ajc3N0zMk4vAO+tqo3ANcBtXQ07gINVtQE42K2Py+3A0b71SdbyV8A/VtWvAr/e1TWRepJcQW+i3m9U1RuAJfTuLxpnPZ/ipfc/zXj+Md3/NFM983s/VlVN9B9wLbC/b30nsHPCNT0IvB04Bqzp2tYAx8Z0/nX0XmxvAx7q2iZVyyuBb9ONZ/W1T6qeVd0LfxW9T+0eAn533PUAVwBPtP4e57+egf3AtaOu57xtvw/cO0w9E+9RMGX3h3TvWFcBjwKrq+pUt+k0sHpMZXyU3oS2n/S1TaqW9cBzwCe7S6G7k1wyqXqq6nngw8B3gFPAf1fVw5Oqp89s55+G1/fQ92NNQ1BMjSSvAD4DvLuqvt+/rXrxO/KPiJK8EzhTVY/Nts+4auksBd4IfLyqrgJ+yHnd+nHWk+S1wHvoBdha4JIkt0yqnplM+vz9hrkfq980BMUF3x8ySkkuohcS91bVA13zs0nWdNvXAGfGUMpbgHcl+XfgfuBtST49oVqg945zsqoe7db30guOSdWzCfhyVT1XVeeAB4A3T7CeF812/om9vvvux/qDLrwGrmcaguJrwIYk65NcTG+gZd84C0hvHvo9wNGq+kjfpn3Atm55G72xi5Gqqp1Vta568/K3Ap+vqlsmUUtXz2ng6SSv65o205uiP5F66I0FXJNkRff/tpne4Oqk6nnRbOffB2xNsizJei7w/qdh9d2P9a566f1YL7+ecQxAXcBAzA30Bqj+DfjABM7/m/S6il8HDnf/bgB+id6g4nHgEWDVmOt6Kz8dzJxYLcCVwKHu7/P3wMoJ13MHvbB6Avhbevcdja0e4D564yPn6PW4bp3r/MAHutf2MeAdY6rnBL2xiBdfz38zTD3OzJTUNA2XHpKmnEEhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkpv8D971xM2zAOa0AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ec1edd8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADj1JREFUeJzt3HHMXXV9x/H3Z21pB8bZTtMUSgYxjQbNBH2ioMtm7BzojGX/kJKxdBtJs4QtaExcO//wLxLNjNE/pksjajcZhCAbDXFCrRqzGNE6iIPW2k6HVFuKY5vGLV3R7/64B717eJ7+6j3Pved5yvuVNPec3znnnm/am09/53d/v5uqQpLO5peGLkDS8mdQSGoyKCQ1GRSSmgwKSU0GhaQmg0JS09SCIsl1SY4kOZZk17TuI2n6Mo0JV0lWAd8C3gwcB74G3FhVh5b8ZpKmbvWU3ve1wLGq+jZAkruAbcCCQXFB1tY6LppSKZIAfsR//KCqXjLJtdMKikuAJ8b2jwOvGz8hyU5gJ8A6LuR12TqlUiQBfK7ueXzSawcbzKyqPVU1V1Vza1g7VBmSzsG0guJ7wKVj+5u7Nkkr0LSC4mvAliSXJ7kA2A7sm9K9JE3ZVMYoquqZJH8KPACsAj5eVY9N416Spm9ag5lU1WeAz0zr/SXNjjMzJTUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTRMHRZJLk3whyaEkjyW5tWvfkGR/kqPd6/qlK1fSEPr0KJ4B3lVVVwBXA7ckuQLYBRyoqi3AgW5f0go2cVBU1Ymq+udu+0fAYeASYBuwtzttL3B93yIlDWv1UrxJksuAq4CHgI1VdaI7dBLYuMg1O4GdAOu4cCnKkDQlvQczk7wA+DTwjqr64fixqiqgFrquqvZU1VxVza1hbd8yJE1Rr6BIsoZRSNxRVfd2zU8m2dQd3wSc6leipKH1+dYjwO3A4ar64NihfcCObnsHcN/k5UlaDvqMUbwB+APgX5I80rX9BfA+4O4kNwOPAzf0K1HS0CYOiqr6JyCLHN466ftKWn6cmSmpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1NQ7KJKsSvJwkvu7/Q1J9ic52r2u71+mpCEtRY/iVuDw2P4u4EBVbQEOdPuSVrBeQZFkM/C7wMfGmrcBe7vtvcD1fe4haXh9exQfAt4N/HSsbWNVnei2TwIbe95D0sAmDookbwNOVdXXFzunqgqoRa7fmeRgkoNnOD1pGZJmYHWPa98AvD3JW4F1wAuTfAp4MsmmqjqRZBNwaqGLq2oPsAfghdmwYJhIWh4m7lFU1e6q2lxVlwHbgc9X1U3APmBHd9oO4L7eVUoa1DTmUbwPeHOSo8Bvd/uSVrA+jx4/U1VfBL7Ybf87sHUp3ncleOD7jwBw7cVXDlyJND3OzJTUZFBIajIoJDUZFJKaDApJTQaFpCaDQlLTksyjeD5z/oSeD+xR9PTA9x/52aQr6XxlUEhqMih6uvbiK7n24ivtVei8ZlBIajIoJDUZFJKa/Hq0J8cm9Hxgj0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIauoVFElelOSeJN9McjjJNUk2JNmf5Gj3un6pipU0jL49ig8Dn62qlwOvAg4Du4ADVbUFONDtS1rBJg6KJL8C/CZwO0BV/W9V/SewDdjbnbYXuL5vkZKG1adHcTnwFPCJJA8n+ViSi4CNVXWiO+cksLFvkSuNv8yt802foFgNvBr4aFVdBfyYeY8ZVVVALXRxkp1JDiY5eIbTPcqQNG19guI4cLyqHur272EUHE8m2QTQvZ5a6OKq2lNVc1U1t4a1PcoY1rO/wi2dzyYOiqo6CTyR5GVd01bgELAP2NG17QDu61WhpMH1/c3MPwPuSHIB8G3gjxiFz91JbgYeB27oeQ9JA+sVFFX1CDC3wKGtfd5X0vLizExJTf5c/xQ8O7j57FekDnZqpbNHIanJoJDUZFBIajIolpBTt3W+MigkNRkUS+Rs32zY09BKZ1BIanIexRTMnz9hb0IrnT2KJeRKUp2vDApJTQbFDPkIopXKoJDU5GDmFLS+Km2dIy039igkNRkUM+C3IVrpDApJTQbFQJzWrZXEoJghHz+0UhkUkpoMihmbP7DpI4hWAoNCUpMTrgYyf2XpeK/CsQwtN/YoJDUZFANbaDKW4xZabgwKSU29giLJ7iSHkjya5M4k65JsSLI/ydHudf1SFXs+s2eh5WzioEhyGbATeE1VvRJYBWwHdgEHqmoLcKDb1zlaaCDTwNDQ+vQofgicAX45yWrgQuD7wDZgb3fOXuD6XhVKGtzEX49W1dNJPgB8F/gf4MGqejDJxqo60Z12Eti4BHU+ryz0CDL+utA50jT1efR4KfBO4HLgYuCiJDeNn1NVBdQi1+9McjDJwTOcnrQMSTPQ59FjDvhyVT1VVWeAe4HXA08m2QTQvZ5a6OKq2lNVc1U1t4a1Pco4//l7Fhpan6A4Alyd5MIkAbYCh4F9wI7unB3Aff1KlDS0PmMUjyT5G+Ag8FPgYWAP8ALg7iQ3A48DNyxFofr/07797U3NUq+1HlX1fuD985pPM+pdSDpPuChsBZq/TH2xY9JSMShWOINBs+BaD0lNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNzaBI8vEkp5I8Ota2Icn+JEe71/Vjx3YnOZbkSJJrp1W4pNk5lx7FJ4Hr5rXtAg5U1RbgQLdPkiuA7cArums+kmTVklUraRDNoKiqLwFPz2veBuzttvcC14+131VVp6vqO8Ax4LVLVKukgUw6RrGxqk502yeBjd32JcATY+cd79okrWC9BzOrqoD6Ra9LsjPJwSQHz3C6bxmSpmjSoHgyySaA7vVU1/494NKx8zZ3bc9RVXuqaq6q5tawdsIyJM3CpEGxD9jRbe8A7htr355kbZLLgS3AV/uVKGloq1snJLkTeCPw4iTHgfcC7wPuTnIz8DhwA0BVPZbkbuAQ8AxwS1X9ZEq1S5qRZlBU1Y2LHNq6yPm3Abf1KUrS8uLMTElNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUlMzKJJ8PMmpJI+Otf1lkm8m+UaSv0/yorFju5McS3IkybXTKlzS7JxLj+KTwHXz2vYDr6yqXwe+BewGSHIFsB14RXfNR5KsWrJqJQ2iGRRV9SXg6XltD1bVM93uV4DN3fY24K6qOl1V3wGOAa9dwnolDWApxij+GPjHbvsS4ImxY8e7Nkkr2Oo+Fyd5D/AMcMcE1+4EdgKs48I+ZUiasomDIskfAm8DtlZVdc3fAy4dO21z1/YcVbUH2NO911Ofq3t+DPxg0nqm4MVYz9lYz9ktx3p+bdKLJwqKJNcB7wZ+q6r+e+zQPuDvknwQuBjYAny19X5V9ZIkB6tqbpJ6psF6zs56zm6Z1nPZpNc3gyLJncAbgRcnOQ68l9G3HGuB/UkAvlJVf1JVjyW5GzjE6JHklqr6yaTFSVoemkFRVTcu0Hz7Wc6/DbitT1GSlpflNDNzz9AFzGM9Z2c9Z3de1ZOfj0NK0sKWU49C0jK1LIIiyXXd2pBjSXYNcP9Lk3whyaEkjyW5tWvfkGR/kqPd6/oZ1rQqycNJ7l8GtbwoyT3d+p7DSa4ZuJ7d3b/Vo0nuTLJulvUssv5p0ftPe/3TLNZjDR4U3VqQvwLeAlwB3NitGZmlZ4B3VdUVwNXALV0Nu4ADVbUFONDtz8qtwOGx/SFr+TDw2ap6OfCqrq5B6klyGaOJeq+pqlcCqxitL5plPZ/kueufFrz/jNY/LVTP0q7HqqpB/wDXAA+M7e8Gdg9c033Am4EjwKaubRNwZEb338zow/Ym4P6ubahafgX4Dt141lj7UPVs6D74Gxh9a3c/8Duzrge4DHi09fcx//MMPABcM+165h37PeCOPvUM3qNgma0P6f7Hugp4CNhYVSe6QyeBjTMq40OMJrT9dKxtqFouB54CPtE9Cn0syUVD1VNVTwMfAL4LnAD+q6oeHKqeMYvdfzl8vnuvx1oOQbFsJHkB8GngHVX1w/FjNYrfqX9FlORtwKmq+vpi58yqls5q4NXAR6vqKuDHzOvWz7KeJC8F3skowC4GLkpy01D1LGTo+4/rsx5r3HIIinNeHzJNSdYwCok7qurervnJJJu645uAUzMo5Q3A25P8G3AX8KYknxqoFhj9j3O8qh7q9u9hFBxD1TMHfLmqnqqqM8C9wOsHrOdZi91/sM/32Hqs3+/Ca+J6lkNQfA3YkuTyJBcwGmjZN8sCMpqHfjtwuKo+OHZoH7Cj297BaOxiqqpqd1VtrtG8/O3A56vqpiFq6eo5CTyR5GVd01ZGU/QHqYfRWMDVSS7s/t22MhpcHaqeZy12/33A9iRrk1zOOa5/6mtsPdbb67nrsX7xemYxAHUOAzFvZTRA9a/Aewa4/28w6ip+A3ik+/NW4FcZDSoeBT4HbJhxXW/k54OZg9UCXAkc7P5+/gFYP3A9f84orB4F/pbRuqOZ1QPcyWh85AyjHtfNZ7s/8J7us30EeMuM6jnGaCzi2c/zX/epx5mZkpqWw6OHpGXOoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlLT/wGb9fk7GR/FXgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ec6cef0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADw1JREFUeJzt3X/sXXV9x/Hna7S0A6O20zSFktGYRlPNFNco6LIZOwc6Y9k/pGQs3UbSLGELGhNt5x/+RYKZMfrHdGlE7SaDNJVJQ5xQqsYsRrTMxgEV2+mQSktxbNM4w4q+98c96M2X77efcs/3/vh++3wkzb3nc865593bb1/3cz7nc743VYUknc2vTbsASbPPoJDUZFBIajIoJDUZFJKaDApJTQaFpKaxBUWSa5I8muR4kl3jOo6k8cs4JlwluQD4LvA24ATwTeD6qnpk0Q8maexWjOl13wAcr6rvASS5E9gGzBsUF2ZVrebiMZUiCeAn/NePqurlo+w7rqC4FHh8aPkE8MbhDZLsBHYCrOYi3pitYypFEsD9tf+xUfed2mBmVe2pqi1VtWUlq6ZVhqRzMK6g+CFw2dDyhq5N0hI0rqD4JrApycYkFwLbgQNjOpakMRvLGEVVPZvkL4F7gQuAT1XVw+M4lqTxG9dgJlX1BeAL43p9SZPjzExJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlLTyEGR5LIkX07ySJKHk9zcta9NcjDJse5xzeKVK2ka+vQongXeW1WbgSuBm5JsBnYBh6pqE3CoW5a0hI0cFFV1sqr+tXv+E+AocCmwDdjbbbYXuLZvkZKma8VivEiSy4ErgAeAdVV1slt1Cli3wD47gZ0Aq7loMcqQNCa9BzOTvAj4HPDuqvrx8LqqKqDm26+q9lTVlqraspJVfcuQNEa9giLJSgYhcXtV3dU1P5lkfbd+PXC6X4mSpq3PVY8AtwFHq+ojQ6sOADu65zuAu0cvT9Is6DNG8WbgT4B/S3Kka/tr4FZgX5IbgceA6/qVKGnaRg6KqvoXIAus3jrq60qaPc7MlNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhq6h0USS5I8q0k93TLa5McTHKse1zTv0xJ07QYPYqbgaNDy7uAQ1W1CTjULUtawnoFRZINwB8Cnxxq3gbs7Z7vBa7tcwxJ09e3R/FR4H3AL4ba1lXVye75KWBdz2NImrKRgyLJO4HTVfXgQttUVQG1wP47kxxOcvgMz4xahqQJWNFj3zcD70ryDmA18OIknwWeTLK+qk4mWQ+cnm/nqtoD7AF4cdbOGyZLyb1PHPnl86sved0UK5EW38g9iqraXVUbqupyYDvwpaq6ATgA7Og22wHc3btKSVM1jnkUtwJvS3IM+P1uWdIS1ufU45eq6ivAV7rn/wlsXYzXXQqGTznmtnkKouXCmZmSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMih6uvqS1zlfQsueQfEC3fvEkXknWUnLmUEhqWlRpnCfD5yWrfOZPQpJTQbFOWoNWtrTWFyOBc0Wg0JSk2MUi8TfcLW4fA9niz0KSU0GhWaaYxWzwVOPRWR3eXy8PD1d9igkNdmj6Mlu8Xg914PwfZ4uexSSmgyKnrx7VOcDg0JSk2MUPTkaPxlzxyp8vyfLHoWkJoNCUpNBsUi8fDcZDh5PR6+gSPLSJPuTfCfJ0SRXJVmb5GCSY93jmsUqVtJ09O1RfAz4YlW9CngtcBTYBRyqqk3AoW75vOB9CVquRg6KJC8Bfhe4DaCq/q+q/hvYBuztNtsLXNu3SEnT1efy6EbgKeDTSV4LPAjcDKyrqpPdNqeAdf1KnG3D58vP9Sa8hKflps+pxwrg9cAnquoK4KfMOc2oqgJqvp2T7ExyOMnhMzzTowxJ49YnKE4AJ6rqgW55P4PgeDLJeoDu8fR8O1fVnqraUlVbVrKqRxnT5biEzgcjB0VVnQIeT/LKrmkr8AhwANjRte0A7u5VoaSp6zuF+6+A25NcCHwP+DMG4bMvyY3AY8B1PY8x0852G7RjFVouegVFVR0Btsyzamuf15U0W5yZKanJoJDUZFBIajIoNHO83Dx7DApJTQbFIvES6OLxvZw9BoWkJoNiApzm/cL4Xs0eg0JSk7+FexH5rVb9+L7NLnsUY7DQ73X0P4KWKoNCUpOnHpq6uT0tL4/OHnsUkpoMijGab6zCS6XP53d1zD6DQlKTYxSamoV6Vvc+ccQexoyxRyGpyR7FBMw3Ecvfp/l8vhezy6DQRAwHo4O5S4+nHpKa7FFM0HyfpufbZCMHKpcmexSSmgyKCXNykZYig0JSUwZfOD5dL87aemPOzy8XO9sVAHseWkz31/4Hq2q+b/ZrskchqalXUCTZneSRJA8luSPJ6iRrkxxMcqx7XLNYxS5HZxuzWA43kM39Oyz1v8/5auRTjySXA18GNlfVz5LsA74AbAaerqpbk+wC1lTV+8/2WufzqcdcS+lUZL5Lu+fb5d6lZFqnHj8GzgC/nmQFcBHwBLAN2Nttsxe4tscxJM2AkSdcVdXTST4M/AD4GXBfVd2XZF1Vnew2OwWsW4Q6zxvDn8Bnm5w1C5/U8/2ujVmoS4tv5B5FklcA7wE2ApcAFye5YXibGpzXzHtuk2RnksNJDp/hmVHLkDQBfU49tgBfq6qnquoMcBfwJuDJJOsBusfT8+1cVXuqaktVbVnJqh5lLF9LbXLWUqpVL0yfoHgUuDLJRUkCbAWOAgeAHd02O4C7+5Uoadr6jFEcSfL3wGHgF8C3gD3Ai4B9SW4EHgOuW4xCz2fL7fdZtC6RLsW/03LX6+7RqvoQ8KE5zc8w6F1IWia8zXwJme+KyCjzFl7opCc/4WVQLFELfc/ptGc+nktwGTxLj/d6SGqyR7HE9fkG9XF8sttbWJ7sUUhqskexTPhJrnGyRyGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKamkGR5FNJTid5aKhtbZKDSY51j2uG1u1OcjzJo0muHlfhkibnXHoUnwGumdO2CzhUVZuAQ90ySTYD24FXd/t8PMkFi1atpKloBkVVfRV4ek7zNmBv93wvcO1Q+51V9UxVfR84DrxhkWqVNCWjjlGsq6qT3fNTwLru+aXA40PbnejaJC1hvQczq6qAeqH7JdmZ5HCSw2d4pm8ZksZo1KB4Msl6gO7xdNf+Q+Cyoe02dG3PU1V7qmpLVW1ZyaoRy5A0CaMGxQFgR/d8B3D3UPv2JKuSbAQ2Ad/oV6KkaWt+SXGSO4C3AC9LcgL4IHArsC/JjcBjwHUAVfVwkn3AI8CzwE1V9fMx1S5pQppBUVXXL7Bq6wLb3wLc0qcoSbPFmZmSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaSmZlAk+VSS00keGmr7myTfSfLtJP+U5KVD63YnOZ7k0SRXj6twSZNzLj2KzwDXzGk7CLymqn4L+C6wGyDJZmA78Opun48nuWDRqpU0Fc2gqKqvAk/Pabuvqp7tFr8ObOiebwPurKpnqur7wHHgDYtYr6QpWIwxij8H/rl7finw+NC6E12bpCVsRZ+dk3wAeBa4fYR9dwI7AVZzUZ8yJI3ZyEGR5E+BdwJbq6q65h8Clw1ttqFre56q2gPs6V7rqftr/0+BH41azxi8DOs5G+s5u1ms5zdH3XmkoEhyDfA+4Peq6n+HVh0A/jHJR4BLgE3AN1qvV1UvT3K4qraMUs84WM/ZWc/ZzWg9l4+6fzMoktwBvAV4WZITwAcZXOVYBRxMAvD1qvqLqno4yT7gEQanJDdV1c9HLU7SbGgGRVVdP0/zbWfZ/hbglj5FSZotszQzc8+0C5jDes7Oes5uWdWTX41DStL8ZqlHIWlGzURQJLmmuzfkeJJdUzj+ZUm+nOSRJA8nublrX5vkYJJj3eOaCdZ0QZJvJblnBmp5aZL93f09R5NcNeV6dnf/Vg8luSPJ6knWs8D9Twsef9z3P03ifqypB0V3L8jfAm8HNgPXd/eMTNKzwHurajNwJXBTV8Mu4FBVbQIOdcuTcjNwdGh5mrV8DPhiVb0KeG1X11TqSXI5g4l6v11VrwEuYHB/0STr+QzPv/9p3uNP6P6n+epZ3Puxqmqqf4CrgHuHlncDu6dc093A24BHgfVd23rg0QkdfwODH7a3Avd0bdOq5SXA9+nGs4bap1XP2u4Hfy2Dq3b3AH8w6XqAy4GHWu/H3J9n4F7gqnHXM2fdHwG396ln6j0KZuz+kO4T6wrgAWBdVZ3sVp0C1k2ojI8ymND2i6G2adWyEXgK+HR3KvTJJBdPq56qehr4MPAD4CTwP1V137TqGbLQ8Wfh57v3/VizEBQzI8mLgM8B766qHw+vq0H8jv0SUZJ3Aqer6sGFtplULZ0VwOuBT1TVFcBPmdOtn2Q9SV4BvIdBgF0CXJzkhmnVM59pH39Yn/uxhs1CUJzz/SHjlGQlg5C4varu6pqfTLK+W78eOD2BUt4MvCvJfwB3Am9N8tkp1QKDT5wTVfVAt7yfQXBMq54twNeq6qmqOgPcBbxpivU8Z6HjT+3ne+h+rD/uwmvkemYhKL4JbEqyMcmFDAZaDkyygAzmod8GHK2qjwytOgDs6J7vYDB2MVZVtbuqNtRgXv524EtVdcM0aunqOQU8nuSVXdNWBlP0p1IPg7GAK5Nc1P27bWUwuDqtep6z0PEPANuTrEqykXO8/6mvofux3lXPvx/rhdcziQGocxiIeQeDAap/Bz4wheP/DoOu4reBI92fdwC/wWBQ8RhwP7B2wnW9hV8NZk6tFuB1wOHu/fk8sGbK9byfQVg9BPwDg/uOJlYPcAeD8ZEzDHpcN57t+MAHup/tR4G3T6ie4wzGIp77ef67PvU4M1NS0yycekiacQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmv4fI6x4l1m7lLwAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ed198d0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADjxJREFUeJzt3H/oXXd9x/Hna0marBU1mRLSpqxBglJltvpFWx2bGLtWV0z3j6SsI9sKYdCNKoJL5h/+VahMRP+YjmDVbHYtpXZrKM42jYoMsRpn0DYxJtPVxiZNXTcVB1mq7/1xT/Xy7febT3rP9/74xucDwr3nc86555Xk8rqfe77nfFNVSNLZ/Ma0A0iafRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1ja0oklyX5EiSY0l2jus4ksYv47jgKskK4LvANcBx4OvAjVV1aMkPJmnsVo7pdd8AHKuq7wEkuRvYCixYFBdkda3hojFFkQTwU/77R1X18lH2HVdRXAI8MbR8HHjj8AZJdgA7ANZwIW/MljFFkQTwcN37+Kj7Tu1kZlXtrqq5qppbxeppxZB0DsZVFD8ELh1a3tiNSVqGxlUUXwc2J9mU5AJgG7B3TMeSNGZjOUdRVc8m+UvgQWAF8Mmqemwcx5I0fuM6mUlVfQ743LheX9LkeGWmpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpaeSiSHJpki8mOZTksSS3duPrkuxLcrR7XLt0cSVNQ58ZxbPAe6vqcuAq4JYklwM7gf1VtRnY3y1LWsZGLoqqOlFV/949/ylwGLgE2Ars6TbbA9zQN6Sk6Vq5FC+S5DLgSuARYH1VnehWnQTWL7LPDmAHwBouXIoYksak98nMJC8CPgu8u6p+Mryuqgqohfarqt1VNVdVc6tY3TeGpDHqVRRJVjEoiTur6r5u+KkkG7r1G4BT/SJKmrY+P/UIcAdwuKo+PLRqL7C9e74duH/0eJJmQZ9zFG8G/gT4dpKD3djfALcD9yS5GXgceFe/iJKmbeSiqKp/A7LI6i2jvq6k2eOVmZKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTb2LIsmKJN9M8kC3vC7JviRHu8e1/WNKmqalmFHcChweWt4J7K+qzcD+blnSMtarKJJsBP4Q+MTQ8FZgT/d8D3BDn2NImr6+M4qPAO8DfjE0tr6qTnTPTwLrex5D0pSNXBRJrgdOVdU3FtumqgqoRfbfkeRAkgNnOD1qDEkTsLLHvm8G3pnkHcAa4MVJPgM8lWRDVZ1IsgE4tdDOVbUb2A3w4qxbsEwkzYaRZxRVtauqNlbVZcA24AtVdROwF9jebbYduL93SklTNY7rKG4HrklyFHhbtyxpGevz1eOXqupLwJe65/8FbFmK15U0G7wyU1KTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1NSrKJK8NMm9Sb6T5HCSq5OsS7IvydHuce1ShZU0HX1nFB8FPl9VrwJeCxwGdgL7q2ozsL9blrSMjVwUSV4C/B5wB0BV/V9V/Q+wFdjTbbYHuKFvSEnT1WdGsQl4GvhUkm8m+USSi4D1VXWi2+YksL5vSEnT1acoVgKvAz5eVVcCP2Pe14yqKqAW2jnJjiQHkhw4w+keMSSNW5+iOA4cr6pHuuV7GRTHU0k2AHSPpxbauap2V9VcVc2tYnWPGJLGbeSiqKqTwBNJXtkNbQEOAXuB7d3YduD+XgklTd3Knvv/FXBnkguA7wF/xqB87klyM/A48K6ex5A0Zb2KoqoOAnMLrNrS53UlzRavzJTUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsijG6MEnD/LgkwenHUPqre8v19VZXHvxFQC/LIvnlqXlxhmFpCaLYoL8GqLlyqKQ1GRRTMC1F1/h+QktaxaFpCaLYoKuvfgKf2SqZcmikNTUqyiS7EpyKMmjSe5KsibJuiT7khztHtcuVdjziTMLLScjF0WSy4AdwOur6jXACmAbsBPYX1Wbgf3dsjqe2NRy1GdG8RPgDPCbSVYCFwJPAluBPd02e4AbeiWUNHUjF0VVPQN8CPgBcAL4cVU9BKyvqhPdZieB9b1Tnsf8CqLloM9Xj1cA7wE2ARcDFyW5aXibqiqgFtl/R5IDSQ6c4fSoMSRNQJ+vHnPAV6rq6ao6A9wHvAl4KskGgO7x1EI7V9XuqpqrqrlVrO4RY3maf67CmYVmWZ+iOAJcleTCJAG2AIeBvcD2bpvtwP39Ikqatj7nKA4C/wAcAL7dvdZu4HbgmiRHgbd1y1rEQjMLadb0+n0UVfVB4IPzhk8zmF1IOk/4i2tmxEKzCq+30KywKGbQ/N+MNX9cmjTv9ZDU5Ixihp1tBnE+fz158MmD5+XfazlzRiGpyRnFMrXYeYz562fZcs7+68YZhaQmZxTL3GIzi4U+rWfhk/psF5TNQj4tzBmFpCZnFMvcuXxCP7fNuVwe3udT/YVefu4MYvmwKJapF/Lj0daJz4Ved1wsh+XJrx6SmpxRLFOjfDL3/TR/IbMNZw7nF2cUkpqcUeicOUv49eWMQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqahZFkk8mOZXk0aGxdUn2JTnaPa4dWrcrybEkR5JcO67gkibnXGYUnwaumze2E9hfVZuB/d0ySS4HtgGv7vb5WJIVS5ZW0lQ0i6Kqvgw8M294K7Cne74HuGFo/O6qOl1V3weOAW9YoqySpmTUcxTrq+pE9/wksL57fgnwxNB2x7sxSctY75OZVVVAvdD9kuxIciDJgTOc7htD0hiNWhRPJdkA0D2e6sZ/CFw6tN3Gbux5qmp3Vc1V1dwqVo8YQ9IkjFoUe4Ht3fPtwP1D49uSrE6yCdgMfK1fREnT1vydmUnuAt4CvCzJceADwO3APUluBh4H3gVQVY8luQc4BDwL3FJVPx9TdkkT0iyKqrpxkVVbFtn+NuC2PqEkzRavzJTUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDU1iyLJJ5OcSvLo0NjfJvlOkm8l+eckLx1atyvJsSRHklw7ruCSJudcZhSfBq6bN7YPeE1V/Q7wXWAXQJLLgW3Aq7t9PpZkxZKllTQVzaKoqi8Dz8wbe6iqnu0Wvwps7J5vBe6uqtNV9X3gGPCGJcwraQqW4hzFnwP/2j2/BHhiaN3xbkzSMrayz85J3g88C9w5wr47gB0Aa7iwTwxJYzZyUST5U+B6YEtVVTf8Q+DSoc02dmPPU1W7gd3daz39cN37M+BHo+YZg5dhnrMxz9nNYp7fHnXnkYoiyXXA+4Dfr6r/HVq1F/inJB8GLgY2A19rvV5VvTzJgaqaGyXPOJjn7MxzdjOa57JR928WRZK7gLcAL0tyHPgAg59yrAb2JQH4alX9RVU9luQe4BCDryS3VNXPRw0naTY0i6Kqblxg+I6zbH8bcFufUJJmyyxdmbl72gHmMc/Zmefszqs8+dV5SEla2CzNKCTNqJkoiiTXdfeGHEuycwrHvzTJF5McSvJYklu78XVJ9iU52j2unWCmFUm+meSBGcjy0iT3dvf3HE5y9ZTz7Or+rx5NcleSNZPMs8j9T4sef9z3P03ifqypF0V3L8jfAW8HLgdu7O4ZmaRngfdW1eXAVcAtXYadwP6q2gzs75Yn5Vbg8NDyNLN8FPh8Vb0KeG2Xayp5klzG4EK911fVa4AVDO4vmmSeT/P8+58WPP6E7n9aKM/S3o9VVVP9A1wNPDi0vAvYNeVM9wPXAEeADd3YBuDIhI6/kcGb7a3AA93YtLK8BPg+3fmsofFp5VnXvfHXMfip3QPAH0w6D3AZ8Gjr32P++xl4ELh63Hnmrfsj4M4+eaY+o2DG7g/pPrGuBB4B1lfViW7VSWD9hGJ8hMEFbb8YGptWlk3A08Cnuq9Cn0hy0bTyVNUzwIeAHwAngB9X1UPTyjNksePPwvu79/1Ys1AUMyPJi4DPAu+uqp8Mr6tB/Y79R0RJrgdOVdU3FttmUlk6K4HXAR+vqiuBnzFvWj/JPEleAbyHQYFdDFyU5KZp5VnItI8/rM/9WMNmoSjO+f6QcUqyikFJ3FlV93XDTyXZ0K3fAJyaQJQ3A+9M8p/A3cBbk3xmSllg8IlzvKoe6ZbvZVAc08ozB3ylqp6uqjPAfcCbppjnOYsdf2rv76H7sf64K6+R88xCUXwd2JxkU5ILGJxo2TvJABlch34HcLiqPjy0ai+wvXu+ncG5i7Gqql1VtbEG1+VvA75QVTdNI0uX5yTwRJJXdkNbGFyiP5U8DM4FXJXkwu7/bQuDk6vTyvOcxY6/F9iWZHWSTZzj/U99Dd2P9c56/v1YLzzPJE5AncOJmHcwOEH1H8D7p3D832UwVfwWcLD78w7gtxicVDwKPAysm3Cut/Crk5lTywJcARzo/n3+BVg75Tx/zaCsHgX+kcF9RxPLA9zF4PzIGQYzrpvPdnzg/d17+wjw9gnlOcbgXMRz7+e/75PHKzMlNc3CVw9JM86ikNRkUUhqsigkNVkUkposCklNFoWkJotCUtP/A/rJ8KfdF8SQAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ed00f98>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADudJREFUeJzt3X/sVXd9x/Hna9DCWqPCNISWbm0M0aCZrSPa6rIZmWt1Rrp/Gpp1YVsXsqRbqjFRmH/4V5OaGaN/TBdiVTK7NqR2K2mclKLGLMYqrsS1IMJ0tVgodd2mcYZRfe+Pe6pX+v3ygXu+98cXno+E3HM+55x73ly+vO7nfu75nG+qCkk6k1+ZdgGSZp9BIanJoJDUZFBIajIoJDUZFJKaDApJTWMLiiQ3JDmU5EiSreM6j6TxyzguuEqyBPg28FbgKPB14OaqOrDgJ5M0dkvH9LyvB45U1XcAktwLbATmDIqLs6yWc+mYSpEE8CP+6wdV9fJRjh1XUFwOPDm0fhR4w/AOSbYAWwCWcwlvyIYxlSIJ4OG674lRj53aYGZVba+q9VW1/iKWTasMSWdhXEHxfeCKofU1XZukRWhcQfF1YG2Sq5JcDGwCdo3pXJLGbCxjFFX1XJK/BHYDS4BPVtXj4ziXpPEb12AmVfU54HPjen5Jk+OVmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKaRgyLJFUm+mORAkseT3N61r0yyJ8nh7nHFwpUraRr69CieA95TVeuAa4HbkqwDtgJ7q2otsLdbl7SIjRwUVXWsqv61W/4RcBC4HNgI7Oh22wHc2LdISdO1dCGeJMmVwDXAI8CqqjrWbToOrJrnmC3AFoDlXLIQZUgak96DmUleBHwWeFdV/XB4W1UVUHMdV1Xbq2p9Va2/iGV9y5A0Rr2CIslFDELi7qq6v2t+Osnqbvtq4ES/EiVNW59vPQLcBRysqg8PbdoFbO6WNwMPjF6epFnQZ4ziTcAfA/+WZH/X9tfAncDOJLcCTwA39StR0rSNHBRV9S9A5tm8YdTnlTR7vDJTUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIampd1AkWZLk0SQPdusrk+xJcrh7XNG/TEnTtBA9ituBg0PrW4G9VbUW2NutS1rEegVFkjXAHwCfGGreCOzolncAN/Y5h6Tp69uj+AjwXuBnQ22rqupYt3wcWNXzHJKmbOSgSPIO4ERVfWO+faqqgJrn+C1J9iXZd4qTo5YhaQKW9jj2TcA7k7wdWA68OMlngKeTrK6qY0lWAyfmOriqtgPbAV6clXOGiaTZMHKPoqq2VdWaqroS2AR8oapuAXYBm7vdNgMP9K5S0lSN4zqKO4G3JjkM/F63LmkR6/PR4+eq6kvAl7rl/wQ2LMTzSpoNXpkpqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQsyzfxCtvup/T9fvv6yq6dYiTQ+9igkNdmj6MlehC4E9igkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoztLup/b/0uXa0oXEKzPPkldg6kLWq0eR5KVJ7kvyrSQHk1yXZGWSPUkOd48rFqpYSdPR96PHR4HPV9WrgNcCB4GtwN6qWgvs7dYlLWIjB0WSlwC/A9wFUFX/V1X/DWwEdnS77QBu7FukpOnq06O4CngG+FSSR5N8IsmlwKqqOtbtcxxY1bdISdPVJyiWAq8DPl5V1wA/5rSPGVVVQM11cJItSfYl2XeKkz3KkDRufYLiKHC0qh7p1u9jEBxPJ1kN0D2emOvgqtpeVeurav1FLOtRhqRxGzkoquo48GSSV3ZNG4ADwC5gc9e2GXigV4WSpq7vdRR/Bdyd5GLgO8CfMgifnUluBZ4Abup5DklT1isoqmo/sH6OTRv6PK+k2eIl3JKaDApJTQaFpCaDQlKTQSGpyaDQouS9QSbLoJDU5I1rtChdf9nVL+hVeHOh8bFHIanJHsUCev4dzne2yfL1Hj+DYgwMjMnw9Z0cP3pIarJHMUYXYs9ilAHG01+n3U/tv6Bes8XAHoWkpgzuVjddL87KekPOn5npfm2nWfRw3feNqprrthBN9igkNTlGMQEX8ljFuYxRPG/U1+lCfJ0nxR6FpCbHKMZorolLF/q73Zkmc13or8249Rmj8KOHJsowWJz86CGpyaAYo+svu/oF76C7n9p/Qd9L4UL+uy9mBoWkJoNCE+UYxeJkUEhqMigmwLEKLXYGhaSmXkGRZFuSA0keS3JPkuVJVibZk+Rw97hioYpd7Ob6fG7PQovByBdcJbkS2AKsq6qfJNkJbALWAXur6s4kW4GtwPsWoFbNqLO5AtV5GItbnx7FD4FTwK8mWQpcAjwFbAR2dPvsAG7sVaGkqRu5R1FVzyb5EPA94CfAQ1X1UJJVVXWs2+04sGoB6jxvDN/Fadhifsed7yOVzh8j9yiSvAJ4N3AVcBlwaZJbhvepwYyzOWedJdmSZF+Sfac4OWoZkiagz6Sw9cBXquoZgCT3A28Enk6yuqqOJVkNnJjr4KraDmyHwezRHnUsSq2exfA+i8WZ7nW52P4u+mV9xigOAdcmuSRJgA3AQWAXsLnbZzPwQL8SJU1br/tRJHkfgzD4GfAo8OfAi4CdwK8DTwA3VdWzZ3qe8/V+FOfifL1Pw7n8vRbzOM1iMLX7UVTVB4EPntZ8kkHvQtJ5wjtczaCz+cZgsb3r2luYvj49CoNiho3yFaP/ETUfb9cvaay8Z+YMm2+w70wW89erml32KCQ12aNYRM71Uun5ttnT0LmyRyGpyR7FItd3HGOh2Vs5P9mjkNRkj0ILaqF+4bBmi0Fxnhn+jzkL94Twiszzgx89JDXZoziPTepdfBZ6LhovexSSmuxRqDfvmXn+s0chqckehcbCbznOL/YoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmppBkeSTSU4keWyobWWSPUkOd48rhrZtS3IkyaEk14+rcEmTczY9ik8DN5zWthXYW1Vrgb3dOknWAZuAV3fHfCzJkgWrVtJUNIOiqr4MPHta80ZgR7e8A7hxqP3eqjpZVd8FjgCvX6BaJU3JqGMUq6rqWLd8HFjVLV8OPDm039GuTdIi1nswswa/Dv2cfyV6ki1J9iXZd4qTfcuQNEajBsXTSVYDdI8nuvbvA1cM7bema3uBqtpeVeurav1FLBuxDEmTMGpQ7AI2d8ubgQeG2jclWZbkKmAt8LV+JUqatuYdrpLcA7wZeFmSo8AHgDuBnUluBZ4AbgKoqseT7AQOAM8Bt1XVT8dUu6QJaQZFVd08z6YN8+x/B3BHn6IkzRavzJTUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDU1gyLJJ5OcSPLYUNvfJPlWkm8m+cckLx3ati3JkSSHklw/rsIlTc7Z9Cg+DdxwWtse4DVV9ZvAt4FtAEnWAZuAV3fHfCzJkgWrVtJUNIOiqr4MPHta20NV9Vy3+lVgTbe8Ebi3qk5W1XeBI8DrF7BeSVOwEGMUfwb8c7d8OfDk0LajXZukRWxpn4OTvB94Drh7hGO3AFsAlnNJnzIkjdnIQZHkT4B3ABuqqrrm7wNXDO22pmt7garaDmzvnuuZh+u+HwM/GLWeMXgZ1nMm1nNms1jPb4x68EhBkeQG4L3A71bV/w5t2gX8Q5IPA5cBa4GvtZ6vql6eZF9VrR+lnnGwnjOznjOb0XquHPX4ZlAkuQd4M/CyJEeBDzD4lmMZsCcJwFer6i+q6vEkO4EDDD6S3FZVPx21OEmzoRkUVXXzHM13nWH/O4A7+hQlabbM0pWZ26ddwGms58ys58zOq3ryi3FISZrbLPUoJM2omQiKJDd0c0OOJNk6hfNfkeSLSQ4keTzJ7V37yiR7khzuHldMsKYlSR5N8uAM1PLSJPd183sOJrluyvVs6/6tHktyT5Llk6xnnvlP855/3POfJjEfa+pB0c0F+VvgbcA64OZuzsgkPQe8p6rWAdcCt3U1bAX2VtVaYG+3Pim3AweH1qdZy0eBz1fVq4DXdnVNpZ4kVzK4UO+3quo1wBIG84smWc+neeH8pznPP6H5T3PVs7Dzsapqqn+A64DdQ+vbgG1TrukB4K3AIWB117YaODSh869h8MP2FuDBrm1atbwE+C7deNZQ+7TqWdn94K9k8K3dg8DvT7oe4ErgsdbrcfrPM7AbuG7c9Zy27Q+Bu/vUM/UeBTM2P6R7x7oGeARYVVXHuk3HgVUTKuMjDC5o+9lQ27RquQp4BvhU91HoE0kunVY9VfUs8CHge8Ax4H+q6qFp1TNkvvPPws937/lYsxAUMyPJi4DPAu+qqh8Ob6tB/I79K6Ik7wBOVNU35ttnUrV0lgKvAz5eVdcAP+a0bv0k60nyCuDdDALsMuDSJLdMq565TPv8w/rMxxo2C0Fx1vNDxinJRQxC4u6qur9rfjrJ6m77auDEBEp5E/DOJP8B3Au8JclnplQLDN5xjlbVI936fQyCY1r1rAe+UlXPVNUp4H7gjVOs53nznX9qP99D87H+qAuvkeuZhaD4OrA2yVVJLmYw0LJrkgVkcB36XcDBqvrw0KZdwOZueTODsYuxqqptVbWmBtflbwK+UFW3TKOWrp7jwJNJXtk1bWBwif5U6mEwFnBtkku6f7cNDAZXp1XP8+Y7/y5gU5JlSa7iLOc/9TU0H+ud9cL5WOdezyQGoM5iIObtDAao/h14/xTO/9sMuorfBPZ3f94O/BqDQcXDwMPAygnX9WZ+MZg5tVqAq4F93evzT8CKKdfzPgZh9Rjw9wzmHU2sHuAeBuMjpxj0uG490/mB93c/24eAt02oniMMxiKe/3n+uz71eGWmpKZZ+OghacYZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGr6f/cvYGUaCNWcAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ec06320>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADjNJREFUeJzt3XHIXXd9x/H3Z0mbrBVnMiWkTVmDBKXKtBq01bGJmWt1Yrp/Sso6sq0QBt2oIrhk/uFfBWUi+sd0BKtms2sptVtDccYYFRliNa7BtYkxma42Nmnquqk4yFL97o97Oi/p8+RX73nuPfdJ3y8I957fOeeeD8nlk3N/95znSVUhSefzK0MHkDT/LApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqaWlEkuT7J0STHk+yc1nEkTV+mccFVkhXAd4C3ACeAbwA3VdXhJT+YpKlbOaXXfR1wvKq+C5DkbmArsGBRXJxVtZpLpxRFEsBP+K8fVtVLJtl3WkVxOfDY2PIJ4PXjGyTZAewAWM0lvD5bphRFEsAX6t5HJ913sMnMqtpdVZuravNFrBoqhqTnYFpF8QPgirHlDd2YpGVoWkXxDWBTko1JLga2AXundCxJUzaVOYqqejrJnwP7gBXAJ6rqkWkcS9L0TWsyk6r6LPDZab2+pNnxykxJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlLTxEWR5IokX0pyOMkjSW7rxtcm2Z/kWPe4ZuniShpCnzOKp4F3V9VVwDXArUmuAnYCB6pqE3CgW5a0jE1cFFV1sqr+tXv+E+AIcDmwFdjTbbYHuKFvSEnDWrkUL5LkSuBq4EFgXVWd7FadAtYtss8OYAfAai5ZihiSpqT3ZGaSFwCfAd5ZVT8eX1dVBdRC+1XV7qraXFWbL2JV3xiSpqhXUSS5iFFJ3FlV93XDTyRZ361fD5zuF1HS0Pp86xHgDuBIVX1obNVeYHv3fDtw/+TxJM2DPnMUbwT+CPi3JIe6sb8C3g/ck+QW4FHgxn4RJQ1t4qKoqn8BssjqLZO+rqT545WZkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNvYsiyYokDyV5oFtem2R/kmPd45r+MSUNaSnOKG4Djowt7wQOVNUm4EC3LGkZ61UUSTYAvw98fGx4K7Cne74HuKHPMSQNr+8ZxYeB9wA/HxtbV1Unu+engHU9jyFpYBMXRZK3A6er6puLbVNVBdQi++9IcjDJwbOcmTSGpBlY2WPfNwLvSPI2YDXwwiSfBp5Isr6qTiZZD5xeaOeq2g3sBnhh1i5YJpLmw8RnFFW1q6o2VNWVwDbgi1V1M7AX2N5tth24v3dKSYOaxnUU7wfekuQY8LvdsqRlrM9Hj/9XVV8Gvtw9/09gy1K8rqT54JWZkposip72PX6IfY8fGjqGNFUWhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU1L8isFn8+uu+zVQ0eQpq7XGUWSFyW5N8m3kxxJcm2StUn2JznWPa5ZqrCShtH3o8dHgM9V1cuBVwFHgJ3AgaraBBzoliUtYxMXRZJfA34buAOgqv63qv4b2Ars6TbbA9zQN6SkYfU5o9gIPAl8MslDST6e5FJgXVWd7LY5BazrG1LSsPoUxUrgNcDHqupq4Kec8zGjqgqohXZOsiPJwSQHz3KmRwxJ09anKE4AJ6rqwW75XkbF8USS9QDd4+mFdq6q3VW1uao2X8SqHjGGte/xQ+x7/NDQMaSpmrgoquoU8FiSl3VDW4DDwF5geze2Hbi/V0JJg+t7HcVfAHcmuRj4LvAnjMrnniS3AI8CN/Y8hqSB9SqKqjoEbF5g1ZY+rytpvngJ9xQ4b6ELjUWxRBYqBgtDFwqLQlKTRdHTdZe92hvDdMGzKCQ1eZv5ElpsPuKZcc88tFx5RiGpyaJYIuNnC85b6EJjUUhqsigkNVkUU3TuRxAvvtJyZVFIarIopuB8l257WbeWI4tCUpMXXC2hxb4SfWbcMwktV55RSGqyKAbiXIWWE4tCUpNFMUNe1q3lyqIYmB9BtBxYFJKaLIoZ885SLUcWhaQmi2JOOFeheWZRSGqyKAay2FyFZxWaRxaFpKZeRZFkV5LDSR5OcleS1UnWJtmf5Fj3uGapwl6I/BZEy8HERZHkSmAH8NqqeiWwAtgG7AQOVNUm4EC3rIbxwnBiU/OmzxnFj4GzwK8mWQlcAjwObAX2dNvsAW7olVDS4CYuiqp6Cvgg8H3gJPCjqvo8sK6qTnabnQLW9U75PHLuz9j0zELzoM9Hj5cC7wI2ApcBlya5eXybqiqgFtl/R5KDSQ6e5cykMSTNQJ+fcLUZ+GpVPQmQ5D7gDcATSdZX1ckk64HTC+1cVbuB3QAvzNoFy+T56tyfiLXQWYUToJqlPnMUR4FrklySJMAW4AiwF9jebbMduL9fRElDm/iMoqoOJfk74CDwc+AhRmcILwDuSXIL8Chw41IEfT4696xh/MzCX3ysWer1w3Wr6gPAB84ZPsPo7ELSBcKfwr2MLPRbxzyz0CxYFMuUxaBZ8l4PSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU3NokjyiSSnkzw8NrY2yf4kx7rHNWPrdiU5nuRokuumFVzS7DyXM4pPAdefM7YTOFBVm4AD3TJJrgK2Aa/o9vlokhVLllbSIJpFUVVfAZ46Z3grsKd7vge4YWz87qo6U1XfA44Dr1uirJIGMukcxbqqOtk9PwWs655fDjw2tt2JbkzSMtZ7MrOqCqhfdr8kO5IcTHLwLGf6xpA0RZMWxRNJ1gN0j6e78R8AV4xtt6Ebe5aq2l1Vm6tq80WsmjCGpFmYtCj2Atu759uB+8fGtyVZlWQjsAn4er+Ikoa2srVBkruANwEvTnICeB/wfuCeJLcAjwI3AlTVI0nuAQ4DTwO3VtXPppRd0ow0i6Kqblpk1ZZFtr8duL1PKEnzxSszJTVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTc2iSPKJJKeTPDw29tdJvp3kW0n+McmLxtbtSnI8ydEk100ruKTZeS5nFJ8Crj9nbD/wyqr6TeA7wC6AJFcB24BXdPt8NMmKJUsraRDNoqiqrwBPnTP2+ap6ulv8GrChe74VuLuqzlTV94DjwOuWMK+kASzFHMWfAv/cPb8ceGxs3YluTNIytrLPzkneCzwN3DnBvjuAHQCruaRPDElTNnFRJPlj4O3AlqqqbvgHwBVjm23oxp6lqnYDu7vXevILde9PgR9OmmcKXox5zsc85zePeX5j0p0nKook1wPvAX6nqv5nbNVe4B+SfAi4DNgEfL31elX1kiQHq2rzJHmmwTznZ57zm9M8V066f7MoktwFvAl4cZITwPsYfcuxCtifBOBrVfVnVfVIknuAw4w+ktxaVT+bNJyk+dAsiqq6aYHhO86z/e3A7X1CSZov83Rl5u6hA5zDPOdnnvO7oPLkF/OQkrSweTqjkDSn5qIoklzf3RtyPMnOAY5/RZIvJTmc5JEkt3Xja5PsT3Kse1wzw0wrkjyU5IE5yPKiJPd29/ccSXLtwHl2df9WDye5K8nqWeZZ5P6nRY8/7fufZnE/1uBF0d0L8jfAW4GrgJu6e0Zm6Wng3VV1FXANcGuXYSdwoKo2AQe65Vm5DTgytjxklo8An6uqlwOv6nINkifJlYwu1HttVb0SWMHo/qJZ5vkUz77/acHjz+j+p4XyLO39WFU16B/gWmDf2PIuYNfAme4H3gIcBdZ3Y+uBozM6/gZGb7Y3Aw90Y0Nl+TXge3TzWWPjQ+VZ273x1zL61u4B4PdmnQe4Eni49fdx7vsZ2AdcO+0856z7A+DOPnkGP6Ngzu4P6f7Huhp4EFhXVSe7VaeAdTOK8WFGF7T9fGxsqCwbgSeBT3YfhT6e5NKh8lTVU8AHge8DJ4EfVdXnh8ozZrHjz8P7u/f9WPNQFHMjyQuAzwDvrKofj6+rUf1O/SuiJG8HTlfVNxfbZlZZOiuB1wAfq6qrgZ9yzmn9LPMkeSnwLkYFdhlwaZKbh8qzkKGPP67P/Vjj5qEonvP9IdOU5CJGJXFnVd3XDT+RZH23fj1wegZR3gi8I8l/AHcDb07y6YGywOh/nBNV9WC3fC+j4hgqz2bgq1X1ZFWdBe4D3jBgnmcsdvzB3t9j92P9YVdeE+eZh6L4BrApycYkFzOaaNk7ywAZXYd+B3Ckqj40tmovsL17vp3R3MVUVdWuqtpQo+vytwFfrKqbh8jS5TkFPJbkZd3QFkaX6A+Sh9FcwDVJLun+3bYwmlwdKs8zFjv+XmBbklVJNvIc73/qa+x+rHfUs+/H+uXzzGIC6jlMxLyN0QTVvwPvHeD4v8XoVPFbwKHuz9uAX2c0qXgM+AKwdsa53sQvJjMHywK8GjjY/f38E7Bm4Dx/yaisHgb+ntF9RzPLA9zFaH7kLKMzrlvOd3zgvd17+yjw1hnlOc5oLuKZ9/Pf9snjlZmSmubho4ekOWdRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0Uhqen/APTo8wlACq/KAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ea82a90>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADu9JREFUeJzt3X+sX3V9x/Hnay20A4O20zSFkkFMo0EzRRsFXTZj50BnLPuHlIyl20iaJWxBY+La+Yd/kWhmjP4xXRpRu8kgpDJpiBNL1ZjFiNbROGit7XRIpaU4NjUu6UDf++N70O8u9/ZTv+d+f9x7n4+kud/zOed8z/vefvu67+/nnPNtqgpJOpdfm3YBkmafQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU1jC4ok1yc5luREkl3jOo6k8cs4LrhKsgr4DvAW4CTwDeCmqjqy6AeTNHarx/S8rwNOVNV3AZLcDWwD5g2KC7Om1nLxmEqRBPAT/uuHVfWSUfYdV1BcBjw+tHwSeP3wBkl2AjsB1nIRr8/WMZUiCeDB2vfYqPtObTKzqvZU1Zaq2nIBa6ZVhqTzMK6g+AFw+dDypm5M0hI0rqD4BrA5yZVJLgS2A/vHdCxJYzaWOYqqejbJXwAPAKuAT1TVo+M4lqTxG9dkJlX1OeBz43p+SZPjlZmSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaSmkYMiyeVJvpTkSJJHk9zWja9PciDJ8e7rusUrV9I09OkongXeXVVXAdcAtya5CtgFHKyqzcDBblnSEjZyUFTVqar61+7xT4CjwGXANmBvt9le4Ia+RUqartWL8SRJrgCuBh4CNlTVqW7VaWDDAvvsBHYCrOWixShD0pj0nsxM8gLgM8A7q+rHw+uqqoCab7+q2lNVW6pqywWs6VuGpDHqFRRJLmAQEndW1b3d8JNJNnbrNwJn+pUoadr6nPUIcAdwtKo+NLRqP7Cje7wDuG/08iTNgj5zFG8E/hj4tySHu7G/Bt4P3JPkFuAx4MZ+JUqatpGDoqr+BcgCq7eO+rySZo9XZkpqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNfUOiiSrkjyc5P5ueX2SA0mOd1/X9S9T0jQtRkdxG3B0aHkXcLCqNgMHu2VJS1ivoEiyCfgD4ONDw9uAvd3jvcANfY4hafr6dhQfBt4D/HxobENVneoenwY29DyGpCkbOSiSvB04U1XfXGibqiqgFth/Z5JDSQ49w9lRy5A0Aat77PtG4B1J3gasBS5J8mngySQbq+pUko3Amfl2rqo9wB6AS7J+3jBZCh544vAvHl936aunWIk0PiN3FFW1u6o2VdUVwHbgi1V1M7Af2NFttgO4r3eVkqZqHNdRvB94S5LjwO91y8vWdZe+2k5Cy16ftx6/UFVfBr7cPf5PYOtiPO9SMPzW47nHBoeWG6/MlNS0KB2FBuwktFzZUUhqMigkNRkUkpqco+jJeQmtBHYUkpoMCklNBsV5euCJw//v4ippJTEoJDUZFGNg96HlxqCQ1OTp0fN0PqdB7SK0XNlRSGoyKBaJ3YSWM4NCUpNzFD3ZSWglMChGZEBoJfGth6Qmg2JEfqiuVhKDQlKTcxQjco5CK4kdhaQmg0JSk0Ehqck5ijHwbIiWGzsKSU29giLJi5LsS/LtJEeTXJtkfZIDSY53X9ctVrGSpqNvR/ER4PNV9XLgVcBRYBdwsKo2Awe7ZUlL2MhBkeSFwO8AdwBU1f9W1X8D24C93WZ7gRv6Filpuvp0FFcCTwGfTPJwko8nuRjYUFWnum1OAxv6FrnU+JmZWm76BMVq4DXAx6rqauCnzHmbUVUF1Hw7J9mZ5FCSQ89wtkcZksatz+nRk8DJqnqoW97HICieTLKxqk4l2QicmW/nqtoD7AG4JOvnDZNZZKeglWjkjqKqTgOPJ3lZN7QVOALsB3Z0YzuA+3pVKGnq+l5w9ZfAnUkuBL4L/CmD8LknyS3AY8CNPY8xU567mMrOQitJr6CoqsPAlnlWbe3zvJJmi1dmjuh8PrjGsx9aLgyKCTAwtNQZFJKaDApJTQaFpCaDoic/jbs/53Bmn0EhqclPuFpEXox1fp77+Tz387Ijm312FJKaDIpFcj6/Fe00tFT51mMMfAvyfMNvN3yrsfTYUUhqsqOYsLkTecvBcOe00Pe1nL7flciOQlKTQTFGy+X9+PleELUcvlfNz6CQ1OQcxQQs9bMgC9XvBVMrhx2FpCY7iilZimc/llKtWlx2FBPkPzQtVQaFpCaDYsLmnjL1sxi0FBgUkpoMihmx3DqL5fb9rHQGhaQmT49OyUIXMT3wxOElfXZkKZ72VZsdhaSmXkGRZHeSI0keSXJXkrVJ1ic5kOR493XdYhW7HC2XG8fmco5ieRk5KJJcAewEXltVrwRWAduBXcDBqtoMHOyW1TAcGP4j06zp01H8GHgG+PUkq4GLgCeAbcDebpu9wA29KpQ0dSMHRVU9DXwQ+D5wCvhRVX0B2FBVp7rNTgMbele5Qi3FzmK5vpVa6fq89Xgp8C7gSuBS4OIkNw9vU1UF1AL770xyKMmhZzg7ahmSJqDP6dEtwFer6imAJPcCbwCeTLKxqk4l2QicmW/nqtoD7AG4JOvnDZOVau6p0/m6Cn9ra5L6zFEcA65JclGSAFuBo8B+YEe3zQ7gvn4lSpq2kTuKqjqc5O+BQ8DPgYcZdAgvAO5JcgvwGHDjYhS6Ugx3CnO7hknMV/S5YGr4YjE7nuWl15WZVfUB4ANzhs8y6C4kLRMZzDdO1yVZX6+P2TLrFupo7B6Whgdr3zerasso+3qvxzIzzo/VNxBWLu/1kNRkR7FM+B/0aJzsKCQ12VEsE+f6T4bsJNSXHYWkJjuKZcbuQeNgRyGpyaCQ1GRQSGoyKCQ1OZm5Ag2fQnXyU+fDjkJSkx3FCmQXoV+VHYWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1NQMiiSfSHImySNDY+uTHEhyvPu6bmjd7iQnkhxLct24Cpc0OefTUXwKuH7O2C7gYFVtBg52yyS5CtgOvKLb56NJVi1atZKmohkUVfUV4Ok5w9uAvd3jvcANQ+N3V9XZqvoecAJ43SLVKmlKRp2j2FBVp7rHp4EN3ePLgMeHtjvZjUlawnpPZlZVAfWr7pdkZ5JDSQ49w9m+ZUgao1GD4skkGwG6r2e68R8Alw9tt6kbe56q2lNVW6pqywWsGbEMSZMwalDsB3Z0j3cA9w2Nb0+yJsmVwGbg6/1KlDRtzc/MTHIX8CbgxUlOAu8D3g/ck+QW4DHgRoCqejTJPcAR4Fng1qr62ZhqlzQhzaCoqpsWWLV1ge1vB27vU5Sk2eKVmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKZmUCT5RJIzSR4ZGvubJN9O8q0k/5TkRUPrdic5keRYkuvGVbikyTmfjuJTwPVzxg4Ar6yq3wK+A+wGSHIVsB14RbfPR5OsWrRqJU1FMyiq6ivA03PGvlBVz3aLXwM2dY+3AXdX1dmq+h5wAnjdItYraQoWY47iz4B/7h5fBjw+tO5kNyZpCVvdZ+ck7wWeBe4cYd+dwE6AtVzUpwxJYzZyUCT5E+DtwNaqqm74B8DlQ5tt6saep6r2AHu653rqwdr3U+CHo9YzBi/Ges7Fes5tFuv5zVF3HikoklwPvAf43ar6n6FV+4F/TPIh4FJgM/D11vNV1UuSHKqqLaPUMw7Wc27Wc24zWs8Vo+7fDIokdwFvAl6c5CTwPgZnOdYAB5IAfK2q/ryqHk1yD3CEwVuSW6vqZ6MWJ2k2NIOiqm6aZ/iOc2x/O3B7n6IkzZZZujJzz7QLmMN6zs16zm1Z1ZNfzkNK0vxmqaOQNKNmIiiSXN/dG3Iiya4pHP/yJF9KciTJo0lu68bXJzmQ5Hj3dd0Ea1qV5OEk989ALS9Ksq+7v+dokmunXM/u7u/qkSR3JVk7yXoWuP9pweOP+/6nSdyPNfWg6O4F+VvgrcBVwE3dPSOT9Czw7qq6CrgGuLWrYRdwsKo2Awe75Um5DTg6tDzNWj4CfL6qXg68qqtrKvUkuYLBhXqvrapXAqsY3F80yXo+xfPvf5r3+BO6/2m+ehb3fqyqmuof4FrggaHl3cDuKdd0H/AW4BiwsRvbCByb0PE3MXixvRm4vxubVi0vBL5HN581ND6tetZ3L/z1DM7a3Q/8/qTrAa4AHmn9POa+noEHgGvHXc+cdX8I3Nmnnql3FMzY/SHdb6yrgYeADVV1qlt1GtgwoTI+zOCCtp8PjU2rliuBp4BPdm+FPp7k4mnVU1VPAx8Evg+cAn5UVV+YVj1DFjr+LLy+e9+PNQtBMTOSvAD4DPDOqvrx8LoaxO/YTxEleTtwpqq+udA2k6qlsxp4DfCxqroa+Clz2vpJ1pPkpcC7GATYpcDFSW6eVj3zmfbxh/W5H2vYLATFed8fMk5JLmAQEndW1b3d8JNJNnbrNwJnJlDKG4F3JPkP4G7gzUk+PaVaYPAb52RVPdQt72MQHNOqZwvw1ap6qqqeAe4F3jDFep6z0PGn9voeuh/rj7rwGrmeWQiKbwCbk1yZ5EIGEy37J1lABteh3wEcraoPDa3aD+zoHu9gMHcxVlW1u6o21eC6/O3AF6vq5mnU0tVzGng8ycu6oa0MLtGfSj0M5gKuSXJR9/e2lcHk6rTqec5Cx98PbE+yJsmVnOf9T30N3Y/1jnr+/Vi/ej2TmIA6j4mYtzGYoPp34L1TOP5vM2gVvwUc7v68DfgNBpOKx4EHgfUTrutN/HIyc2q1AK8GDnU/n88C66Zcz18xCKtHgH9gcN/RxOoB7mIwP/IMg47rlnMdH3hv99o+Brx1QvWcYDAX8dzr+e/61OOVmZKaZuGth6QZZ1BIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGp6f8AXw9NwU17kRoAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e7d7518>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADflJREFUeJzt3XHIXXd9x/H3Z0marBU1mRLSpqxBglJltvqgrY5NzFyrE9P9U1LWkW2FMOhGFcEl8w//KigT0T+mI1g1m11LqZ0NxVljVGSI1bgW1ybGZLraaNLUdVNxkKX63R/3dF7S58mv3vPce+5T3y8I95zfOeeeD8nlk989zzlJqgpJOp9fGzqApPlnUUhqsigkNVkUkposCklNFoWkJotCUtPUiiLJtUmOJjmeZPe0ziNp+jKNG66SrAK+DbwJOAF8Hbihqg4v+8kkTd3qKb3va4DjVfUdgCR3AtuBRYvigqytdVw0pSiSAH7Cf/2wql48ybHTKopLgMfG1k8Arx3fIckuYBfAOi7ktdk2pSiSAD5fdz866bGDXcysqr1VtVBVC2tYO1QMSc/CtIri+8ClY+ubuzFJK9C0iuLrwNYkW5JcAOwA9k/pXJKmbCrXKKrqqSR/AdwPrAI+VlWPTONckqZvWhczqarPAJ+Z1vtLmh3vzJTUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVNXBRJLk3yxSSHkzyS5JZufEOSA0mOda/rly+upCH0mVE8Bbyzqi4HrgJuTnI5sBs4WFVbgYPduqQVbOKiqKqTVfWv3fJPgCPAJcB2YF+32z7gur4hJQ1r9XK8SZLLgCuBB4CNVXWy23QK2LjEMbuAXQDruHA5Ykiakt4XM5M8D/gU8Paq+vH4tqoqoBY7rqr2VtVCVS2sYW3fGJKmqFdRJFnDqCRur6p7uuHHk2zqtm8CTveLKGlofX7qEeA24EhVfWBs035gZ7e8E7h38niS5kGfaxSvB/4Y+LckD3Vjfw28F7gryU3Ao8D1/SJKGtrERVFV/wJkic3bJn1fSfPHOzMlNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKGbo/h881N5JmkMWhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkpt5FkWRVkgeT3Netb0hyIMmx7nV9/5iShrQcM4pbgCNj67uBg1W1FTjYrf9Ku/8HD3n7tla0XkWRZDPwB8BHx4a3A/u65X3AdX3OIWl4fWcUHwTeBfx8bGxjVZ3slk8BG3ue4znjmouvGDqCNJGJiyLJW4HTVfWNpfapqgJqieN3JTmU5NBZzkwaQ9IMrO5x7OuBtyV5C7AOeH6STwKPJ9lUVSeTbAJOL3ZwVe0F9gI8PxsWLRNJ82HiGUVV7amqzVV1GbAD+EJV3QjsB3Z2u+0E7u2dUtKgpnEfxXuBNyU5Bvxety5pBevz1eP/VdWXgC91y/8JbFuO95U0H7wzU1KTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsihmyH83UyuVRSGpyaKQ1GRRSGqyKCQ1WRQzNP7P9fufAmklsSgkNVkUkposCklNFoWkJotCUpNFIanJopDUtCz/U5jOb/z+ifONSfPKGcXAvPFKK0GvokjywiR3J/lWkiNJrk6yIcmBJMe61/XLFVbSMPrOKD4EfLaqXga8EjgC7AYOVtVW4GC3riVcc/EVXHPxFc4sNNcmLookLwB+B7gNoKr+t6r+G9gO7Ot22wdc1zekpGH1mVFsAZ4APp7kwSQfTXIRsLGqTnb7nAI29g0paVh9imI18CrgI1V1JfBTzvmaUVUF1GIHJ9mV5FCSQ2c50yOGpGnrUxQngBNV9UC3fjej4ng8ySaA7vX0YgdX1d6qWqiqhTWs7RHjuWH8WoU0byYuiqo6BTyW5KXd0DbgMLAf2NmN7QTu7ZVQ0uD63nD1l8DtSS4AvgP8KaPyuSvJTcCjwPU9z/ErZXxW4U1Zmhe9iqKqHgIWFtm0rc/7Spov3pkpqclnPebQ0185/AqieeGMQlKTRbECeHu3hmZRSGqyKObY0zdhPc2ZhYZiUUhqsihWgMVmFtIsWRSSmryPYgVZbFbhPRaaBWcUK5wXODULFoWkJr96rFB+5dAsOaOQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkpl5FkWRPksNJHk5yR5J1STYkOZDkWPe6frnCShrGxEWR5DJgF/DqqnoFsArYAewGDlbVVuBgty5pBeszo/gxcBb49SSrgQuBHwDbgX3dPvuA63ollDS4iYuiqp4E3g98DzgJ/KiqPgdsrKqT3W6ngI29U0oaVJ+vHi8B3gFsAS4GLkpy4/g+VVVALXH8riSHkhw6y5lJY0iagT5fPRaAr1TVE1V1FrgHeB3weJJNAN3r6cUOrqq9VbVQVQtrWNsjhqRp61MUR4GrklyYJMA24AiwH9jZ7bMTuLdfRElDm/hf4a6qh5L8PXAI+DnwILAXeB5wV5KbgEeB65cjqKTh9Prn+qvqfcD7zhk+w2h2Iek5wjszJTVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTc2iSPKxJKeTPDw2tiHJgSTHutf1Y9v2JDme5GiSa6YVXNLsPJsZxSeAa88Z2w0crKqtwMFunSSXAzuAl3fHfDjJqmVLK2kQzaKoqi8DT54zvB3Y1y3vA64bG7+zqs5U1XeB48BrlimrpIFMeo1iY1Wd7JZPARu75UuAx8b2O9GNSVrBel/MrKoC6pc9LsmuJIeSHDrLmb4xJE3RpEXxeJJNAN3r6W78+8ClY/tt7saeoar2VtVCVS2sYe2EMSTNwqRFsR/Y2S3vBO4dG9+RZG2SLcBW4Gv9Ikoa2urWDknuAN4AvCjJCeA9wHuBu5LcBDwKXA9QVY8kuQs4DDwF3FxVP5tSdkkz0iyKqrphiU3bltj/VuDWPqEkzRfvzJTUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDU1iyLJx5KcTvLw2NjfJPlWkm8m+ackLxzbtifJ8SRHk1wzreCSZufZzCg+AVx7ztgB4BVV9VvAt4E9AEkuB3YAL++O+XCSVcuWVtIgmkVRVV8Gnjxn7HNV9VS3+lVgc7e8Hbizqs5U1XeB48BrljGvpAEsxzWKPwP+uVu+BHhsbNuJbkzSCra6z8FJ3g08Bdw+wbG7gF0A67iwTwxJUzZxUST5E+CtwLaqqm74+8ClY7tt7saeoar2Anu793ri83X3T4EfTppnCl6Eec7HPOc3j3l+c9KDJyqKJNcC7wJ+t6r+Z2zTfuAfk3wAuBjYCnyt9X5V9eIkh6pqYZI802Ce8zPP+c1pnssmPb5ZFEnuAN4AvCjJCeA9jH7KsRY4kATgq1X151X1SJK7gMOMvpLcXFU/mzScpPnQLIqqumGR4dvOs/+twK19QkmaL/N0Z+beoQOcwzznZ57ze07lyS+uQ0rS4uZpRiFpTs1FUSS5tns25HiS3QOc/9IkX0xyOMkjSW7pxjckOZDkWPe6foaZViV5MMl9c5DlhUnu7p7vOZLk6oHz7On+rB5OckeSdbPMs8TzT0uef9rPP83ieazBi6J7FuRvgTcDlwM3dM+MzNJTwDur6nLgKuDmLsNu4GBVbQUOduuzcgtwZGx9yCwfAj5bVS8DXtnlGiRPkssY3aj36qp6BbCK0fNFs8zzCZ75/NOi55/R80+L5Vne57GqatBfwNXA/WPre4A9A2e6F3gTcBTY1I1tAo7O6PybGX3Y3gjc140NleUFwHfprmeNjQ+VZ0P3wd/A6Kd29wG/P+s8wGXAw63fj3M/z8D9wNXTznPOtj8Ebu+TZ/AZBXP2fEj3N9aVwAPAxqo62W06BWycUYwPMrqh7edjY0Nl2QI8AXy8+yr00SQXDZWnqp4E3g98DzgJ/KiqPjdUnjFLnX8ePt+9n8eah6KYG0meB3wKeHtV/Xh8W43qd+o/IkryVuB0VX1jqX1mlaWzGngV8JGquhL4KedM62eZJ8lLgHcwKrCLgYuS3DhUnsUMff5xfZ7HGjcPRfGsnw+ZpiRrGJXE7VV1Tzf8eJJN3fZNwOkZRHk98LYk/wHcCbwxyScHygKjv3FOVNUD3frdjIpjqDwLwFeq6omqOgvcA7xuwDxPW+r8g32+x57H+qOuvCbOMw9F8XVga5ItSS5gdKFl/ywDZHQf+m3Akar6wNim/cDObnkno2sXU1VVe6pqc43uy98BfKGqbhwiS5fnFPBYkpd2Q9sY3aI/SB5G1wKuSnJh9+e2jdHF1aHyPG2p8+8HdiRZm2QLz/L5p77Gnsd6Wz3zeaxfPs8sLkA9iwsxb2F0gerfgXcPcP7fZjRV/CbwUPfrLcBvMLqoeAz4PLBhxrnewC8uZg6WBbgCONT9/nwaWD9wnr9iVFYPA//A6LmjmeUB7mB0feQsoxnXTec7P/Du7rN9FHjzjPIcZ3Qt4unP89/1yeOdmZKa5uGrh6Q5Z1FIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGp6f8AJ+XTDlRqNFcAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e9ca668>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADldJREFUeJzt3XHMXXV9x/H3Zy20A6O20zSFkkFMo0EzQRsFXTZj50BnLPuHlIyl20iaJWxBY+La+Yd/kWhmjP4xXRpRu8kgBNloiBNr1ZjFiNbROGit7XRIpaU4NjUu6Yp+98c9zLvyPP3Ve557z33K+5U095zfOeeeb9qHz/M7v/v7XVJVSNLZ/MrQBUiafwaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1TS0oklyf5HCSo0l2TOs+kqYv05hwlWQF8B3gLcAx4BvATVV1cMlvJmnqVk7pfV8HHK2q7wIkuRvYAiwYFBdmVa3m4imVIgngJ/znD6vqpZNcO62guBR4fGz/GPD68ROSbAe2A6zmIl6fzVMqRRLAF+rexya9drDBzKraVVWbqmrTBawaqgxJ52BaQfED4LKx/Q1dm6RlaFpB8Q1gY5IrklwIbAX2TOlekqZsKmMUVfVMkj8DHgRWAJ+oqkencS9J0zetwUyq6rPAZ6f1/pJmx5mZkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkpomDIsllSb6U5GCSR5Pc1rWvTbI3yZHudc3SlStpCH16FM8A766qK4FrgFuTXAnsAPZV1UZgX7cvaRmbOCiq6nhV/Uu3/RPgEHApsAXY3Z22G7ihb5GShrVyKd4kyeXA1cBDwLqqOt4dOgGsW+Sa7cB2gNVctBRlSJqS3oOZSV4AfAZ4Z1X9ePxYVRVQC11XVbuqalNVbbqAVX3LkDRFvYIiyQWMQuLOqrqva34yyfru+HrgZL8SJQ2tz6ceAe4ADlXVh8YO7QG2ddvbgPsnL0/SPOgzRvFG4A+Bf01yoGv7S+D9wD1JbgEeA27sV6KkoU0cFFX1z0AWObx50veVNH+cmSmpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUtCT/Xw+d3YNPHPi/7esuuWrASqTJ2KOQ1GRQzNiDTxz4fz0MaTkwKCQ1GRSSmgwKSU0GhaQmPx6dIgctdb7o3aNIsiLJw0ke6PbXJtmb5Ej3uqZ/mZKGtBSPHrcBh8b2dwD7qmojsK/bl7SM9QqKJBuA3wM+Pta8Bdjdbe8GbuhzD0nD69uj+DDwHuDnY23rqup4t30CWNfzHpIGNnFQJHk7cLKqvrnYOVVVQC1y/fYk+5PsP82pScuQNAN9PvV4I/COJG8DVgMvTPJp4Mkk66vqeJL1wMmFLq6qXcAugBdm7YJhImk+TNyjqKqdVbWhqi4HtgJfrKqbgT3Atu60bcD9vauUNKhpTLh6P/CWJEeA3+n2JS1jSzLhqqq+DHy52/4PYPNSvO/5yO+j0HLkFG5JTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgyKGfPr+rUcGRSSmvzOzBlzCreWI3sUkpoMCklNBoWkJoNixvzUQ8uRQSGpyaCYousuucpPOXReMCgG4iOIlhODQlKTE66myB6Dzhf2KCQ1GRRT5GCmzhcGhaQmxygGYk9Dy4k9CklN9ihmwN6Dljt7FJKaegVFkhcnuTfJt5McSnJtkrVJ9iY50r2uWapiJQ2jb4/iI8DnquoVwKuBQ8AOYF9VbQT2dfuSlrGJgyLJi4DfAu4AqKr/qar/ArYAu7vTdgM39C1S0rD69CiuAJ4CPpnk4SQfT3IxsK6qjnfnnADW9S1S0rD6BMVK4DXAx6rqauCnnPGYUVUF1EIXJ9meZH+S/ac51aMMSdPW5+PRY8Cxqnqo27+XUVA8mWR9VR1Psh44udDFVbUL2AXwwqxdMEyejx584sDcf5x65mK3ea9X/U3co6iqE8DjSV7eNW0GDgJ7gG1d2zbg/l4VShpc3wlXfw7cmeRC4LvAHzMKn3uS3AI8BtzY8x7PO8/+xp6339T2JJ6/egVFVR0ANi1waHOf95U0X5zCPWeuu+Squf3CG3sQz19O4Z5jfq+m5oVBIanJoFgG7FloaAaFpCaDYg4t9l2b9iw0FINCUpNBMcf8Fm/NC4NCUpNBsQw5TqFZc2bmMnDm48dCg5o+omia7FFIarJHsQyN9x76PIYsdK09Ey3EHoWkJnsUy9yzPYCzjVmcrddhD0Lnwh6FpCZ7FOcpxx+0lOxRSGqyR3GeWGiuxTz1IOb1e0B1bgyK89S8/Qc5b/Xol+Ojh6Qmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpp6BUWSnUkOJnkkyV1JVidZm2RvkiPd65qlKlbSMCYOiiSXA9uB11bVq4AVwFZgB7CvqjYC+7p9SctYnx7Fj4HTwK8mWQlcBDwBbAF2d+fsBm7oVaGkwU0cFFX1NPBB4PvAceBHVfV5YF1VHe9OOwGs612lpEH1efR4GfAu4ArgEuDiJDePn1NVBdQi129Psj/J/tOcmrQMSTPQ59FjE/DVqnqqqk4D9wFvAJ5Msh6gez250MVVtauqNlXVpgtY1aMMSdPWJygOA9ckuShJgM3AIWAPsK07Zxtwf78SJQ1t4mXmVXUgyd8C+4GfAw8Du4AXAPckuQV4DLhxKQqVNJxe30dRVR8APnBG8ylGvQtJ5wlnZkpqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpqaQZHkE0lOJnlkrG1tkr1JjnSva8aO7UxyNMnhJNdNq3BJs3MuPYpPAdef0bYD2FdVG4F93T5JrgS2Aq/srvlokhVLVq2kQTSDoqq+Ajx9RvMWYHe3vRu4Yaz97qo6VVXfA44Cr1uiWiUNZNIxinVVdbzbPgGs67YvBR4fO+9Y1yZpGes9mFlVBdQve12S7Un2J9l/mlN9y5A0RZMGxZNJ1gN0rye79h8Al42dt6Fre46q2lVVm6pq0wWsmrAMSbMwaVDsAbZ129uA+8fatyZZleQKYCPw9X4lShraytYJSe4C3gS8JMkx4H3A+4F7ktwCPAbcCFBVjya5BzgIPAPcWlU/m1LtkmakGRRVddMihzYvcv7twO19ipI0X5yZKanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIamoGRZJPJDmZ5JGxtr9K8u0k30ryD0lePHZsZ5KjSQ4nuW5ahUuanXPpUXwKuP6Mtr3Aq6rqN4DvADsBklwJbAVe2V3z0SQrlqxaSYNoBkVVfQV4+oy2z1fVM93u14AN3fYW4O6qOlVV3wOOAq9bwnolDWApxij+BPinbvtS4PGxY8e6NknL2Mo+Fyd5L/AMcOcE124HtgOs5qI+ZUiasomDIskfAW8HNldVdc0/AC4bO21D1/YcVbUL2NW911NfqHt/Cvxw0nqm4CVYz9lYz9nNYz2/PunFEwVFkuuB9wC/XVX/PXZoD/D3ST4EXAJsBL7eer+qemmS/VW1aZJ6psF6zs56zm5O67l80uubQZHkLuBNwEuSHAPex+hTjlXA3iQAX6uqP62qR5PcAxxk9Ehya1X9bNLiJM2HZlBU1U0LNN9xlvNvB27vU5Sk+TJPMzN3DV3AGazn7Kzn7M6revKLcUhJWtg89Sgkzam5CIok13drQ44m2THA/S9L8qUkB5M8muS2rn1tkr1JjnSva2ZY04okDyd5YA5qeXGSe7v1PYeSXDtwPTu7f6tHktyVZPUs61lk/dOi95/2+qdZrMcaPCi6tSB/DbwVuBK4qVszMkvPAO+uqiuBa4Bbuxp2APuqaiOwr9uflduAQ2P7Q9byEeBzVfUK4NVdXYPUk+RyRhP1XltVrwJWMFpfNMt6PsVz1z8teP8ZrX9aqJ6lXY9VVYP+Aa4FHhzb3wnsHLim+4G3AIeB9V3beuDwjO6/gdEP25uBB7q2oWp5EfA9uvGssfah6lnb/eCvZfSp3QPA7866HuBy4JHW38eZP8/Ag8C1067njGO/D9zZp57BexTM2fqQ7jfW1cBDwLqqOt4dOgGsm1EZH2Y0oe3nY21D1XIF8BTwye5R6ONJLh6qnqp6Gvgg8H3gOPCjqvr8UPWMWez+8/Dz3Xs91jwExdxI8gLgM8A7q+rH48dqFL9T/4goyduBk1X1zcXOmVUtnZXAa4CPVdXVwE85o1s/y3qSvAx4F6MAuwS4OMnNQ9WzkKHvP67Peqxx8xAU57w+ZJqSXMAoJO6sqvu65ieTrO+OrwdOzqCUNwLvSPLvwN3Am5N8eqBaYPQb51hVPdTt38soOIaqZxPw1ap6qqpOA/cBbxiwnmctdv/Bfr7H1mP9QRdeE9czD0HxDWBjkiuSXMhooGXPLAvIaB76HcChqvrQ2KE9wLZuexujsYupqqqdVbWhRvPytwJfrKqbh6ilq+cE8HiSl3dNmxlN0R+kHkZjAdckuaj7d9vMaHB1qHqetdj99wBbk6xKcgXnuP6pr7H1WO+o567H+uXrmcUA1DkMxLyN0QDVvwHvHeD+v8moq/gt4ED3523ArzEaVDwCfAFYO+O63sQvBjMHqwW4Ctjf/f38I7Bm4Hr+glFYPQL8HaN1RzOrB7iL0fjIaUY9rlvOdn/gvd3P9mHgrTOq5yijsYhnf57/pk89zsyU1DQPjx6S5pxBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKb/BeKq9LpVa2A4AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ec06710>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADldJREFUeJzt3XHMXXV9x/H3Z7SUgVHpNE2hZG2WRlPNBPdEQZfN2DnQGcv+ISXDdBtJs4QtaEy0nX/4Fwlmxugf06URtZsM1iAbDXFirRqzGNE6iAIV6VSk2lIcTo1bWNHv/riHefPQp796z3PvuU95v5LmnvM759zzze3t5/7O75xfmqpCkk7n14YuQNL8MygkNRkUkpoMCklNBoWkJoNCUpNBIalpakGR5KokDyc5kmTXtM4jafoyjQeukpwDfAt4A3AU+CpwbVU9tOwnkzR1q6b0vq8CjlTVtwGS3A5sA04ZFOdmTZ3HBVMqRRLAT/nRD6vqxZMcO62guBh4bGz9KPDq8R2S7AR2ApzH+bw6W6dUiiSAz9Ydj0567GCDmVW1p6oWqmphNWuGKkPSGZhWUHwfuGRsfUPXJmkFmlZQfBXYnGRTknOB7cD+KZ1L0pRNZYyiqp5O8pfAPcA5wEer6sFpnEvS9E1rMJOq+hTwqWm9v6TZ8clMSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JS08RBkeSSJJ9P8lCSB5Pc2LWvTXIgySPd64XLV66kIfTpUTwNvKOqtgCXAzck2QLsAg5W1WbgYLcuaQWbOCiq6lhV/Xu3/FPgMHAxsA3Y2+22F7i6b5GShrVqOd4kyUbgMuBeYF1VHes2HQfWLXHMTmAnwHmcvxxlSJqS3oOZSZ4HfBJ4W1X9ZHxbVRVQpzquqvZU1UJVLaxmTd8yJE1Rr6BIsppRSNxaVXd2zY8nWd9tXw+c6FeipKH1uesR4BbgcFW9f2zTfmBHt7wDuGvy8iTNgz5jFK8F3gp8I8n9XdtfAzcD+5JcDzwKXNOvRElDmzgoqurfgCyxeeuk7ytp/vhkpqQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSU++gSHJOkvuS3N2tr01yIMkj3euF/cuUNKTl6FHcCBweW98FHKyqzcDBbl3SCtYrKJJsAP4I+MhY8zZgb7e8F7i6zzkkDa9vj+IDwDuBX4y1rauqY93ycWBdz3NIGtjEQZHkzcCJqvraUvtUVQG1xPE7kxxKcugkT01ahqQZWNXj2NcCb0nyJuA84PlJPgE8nmR9VR1Lsh44caqDq2oPsAfg+Vl7yjCRNB8m7lFU1e6q2lBVG4HtwOeq6jpgP7Cj220HcFfvKiUNahrPUdwMvCHJI8AfdOuSVrA+lx7/r6q+AHyhW/5PYOtyvK+k+eCTmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKZeQZHkhUnuSPLNJIeTXJFkbZIDSR7pXi9crmIlDaNvj+KDwKer6qXAK4DDwC7gYFVtBg526wLu+cH9Q5cgTWTioEjyAuD3gFsAqup/q+q/gG3A3m63vcDVfYuUNKw+PYpNwBPAx5Lcl+QjSS4A1lXVsW6f48C6vkWeLa686NKhS5Am0icoVgGvBD5cVZcBP2PRZUZVFVCnOjjJziSHkhw6yVM9ypA0bX2C4ihwtKru7dbvYBQcjydZD9C9njjVwVW1p6oWqmphNWt6lLGy3POD+x2r0IozcVBU1XHgsSQv6Zq2Ag8B+4EdXdsO4K5eFUoa3Kqex/8VcGuSc4FvA3/GKHz2JbkeeBS4puc5JA2sV1BU1f3Awik2be3zvpLmi09mDsSxCq0kBsWMXXnRpd4m1YpjUEhq6juYqQk906t45vLDXobmmT0KSU0GxZxwcPNX52c2OwaFpCaDYmDeBdFKYFBIavKux5wYvwtiD6PNz2m2DIo55C3TpTl4OQwvPSQ1GRRzZrwX4e2/X1r8Wdjbmi2DQlKTYxRzaPGv5XN5zGJxj+q5+BnMA3sUkprsUawAiyeQjbedrexJzBd7FJKa7FGsIIvviCy1baV6LvWYVhqDYoVaasBzqe3zbCXX/lzhpYekJnsUZ4nT/QrP2y/2vNWjNnsUkprsUZylzuTR76EeD7cHsfLYo5DUZI/iLHUmv9pXXnTpGY0XTNLzsNdwdrFHIampV48iyW7grcAvgG8w+k+Kzwf+CdgIfBe4pqp+1KtKTU3rl3/ScYzn8kS2s9HEQZFkI7AT2FJV/5NkH7Ad2AIcrKqbk+wCdgHvWoZaNQD/oQv6XXr8BDgJ/HqSVYx6Ej8AtgF7u332Alf3qlDS4CYOiqp6Engf8D3gGPDjqvoMsK6qjnW7HQfW9a5S0qAmDookvwW8HdgEXARckOS68X2qqoBa4vidSQ4lOXSSpyYtQ9IM9Ln0WAC+VFVPVNVJ4E7gNcDjSdYDdK8nTnVwVe2pqoWqWljNmh5lSJq2PkHxMHB5kvOTBNgKHAb2Azu6fXYAd/UrUdLQJr7rUVX3J/l74BCj26P3AXuA5wH7klwPPApcsxyFShpOr+coquq9wHsXNT/FqHch6Szhk5mSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaSmZlAk+WiSE0keGGtbm+RAkke61wvHtu1OciTJw0munFbhkmbnTHoUHweuWtS2CzhYVZuBg906SbYA24GXdcd8KMk5y1atpEE0g6Kqvgg8uah5G7C3W94LXD3WfntVPVVV3wGOAK9aplolDWTSMYp1VXWsWz4OrOuWLwYeG9vvaNcmaQXrPZhZVQXUr3pckp1JDiU5dJKn+pYhaYomDYrHk6wH6F5PdO3fBy4Z229D1/YsVbWnqhaqamE1ayYsQ9IsTBoU+4Ed3fIO4K6x9u1J1iTZBGwGvtKvRElDW9XaIcltwOuAFyU5CrwHuBnYl+R64FHgGoCqejDJPuAh4Gnghqr6+ZRqlzQjzaCoqmuX2LR1if1vAm7qU5Sk+eKTmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKZmUCT5aJITSR4Ya/ubJN9M8vUk/5zkhWPbdic5kuThJFdOq3BJs3MmPYqPA1ctajsAvLyqfhv4FrAbIMkWYDvwsu6YDyU5Z9mqlTSIZlBU1ReBJxe1faaqnu5Wvwxs6Ja3AbdX1VNV9R3gCPCqZaxX0gCWY4ziz4F/7ZYvBh4b23a0a5O0gq3qc3CSdwNPA7dOcOxOYCfAeZzfpwxJUzZxUCT5U+DNwNaqqq75+8AlY7tt6Nqepar2AHu693ris3XHz4AfTlrPFLwI6zkd6zm9eaznNyc9eKKgSHIV8E7g96vqv8c27Qf+Mcn7gYuAzcBXWu9XVS9OcqiqFiapZxqs5/Ss5/TmtJ6Nkx7fDIoktwGvA16U5CjwHkZ3OdYAB5IAfLmq/qKqHkyyD3iI0SXJDVX180mLkzQfmkFRVdeeovmW0+x/E3BTn6IkzZd5ejJzz9AFLGI9p2c9p3dW1ZNfjkNK0qnNU49C0pyai6BIclU3N+RIkl0DnP+SJJ9P8lCSB5Pc2LWvTXIgySPd64UzrOmcJPcluXsOanlhkju6+T2Hk1wxcD27u7+rB5LcluS8WdazxPynJc8/7flPs5iPNXhQdHNB/hZ4I7AFuLabMzJLTwPvqKotwOXADV0Nu4CDVbUZONitz8qNwOGx9SFr+SDw6ap6KfCKrq5B6kmykdGDer9TVS8HzmE0v2iW9XycZ89/OuX5ZzT/6VT1LO98rKoa9A9wBXDP2PpuYPfANd0FvAF4GFjfta0HHp7R+Tcw+rK9Hri7axuqlhcA36EbzxprH6qetd0Xfy2ju3Z3A38463qAjcADrc9j8fcZuAe4Ytr1LNr2x8CtfeoZvEfBnM0P6X6xLgPuBdZV1bFu03Fg3YzK+ACjB9p+MdY2VC2bgCeAj3WXQh9JcsFQ9VTVk8D7gO8Bx4AfV9VnhqpnzFLnn4fvd+/5WPMQFHMjyfOATwJvq6qfjG+rUfxO/RZRkjcDJ6rqa0vtM6taOquAVwIfrqrLgJ+xqFs/y3qS/BbwdkYBdhFwQZLrhqrnVIY+/7g+87HGzUNQnPH8kGlKsppRSNxaVXd2zY8nWd9tXw+cmEEprwXekuS7wO3A65N8YqBaYPSLc7Sq7u3W72AUHEPVswB8qaqeqKqTwJ3Aawas5xlLnX+w7/fYfKw/6cJr4nrmISi+CmxOsinJuYwGWvbPsoCMnkO/BThcVe8f27Qf2NEt72A0djFVVbW7qjbU6Ln87cDnquq6IWrp6jkOPJbkJV3TVkaP6A9SD6OxgMuTnN/9vW1lNLg6VD3PWOr8+4HtSdYk2cQZzn/qa2w+1lvq2fOxfvV6ZjEAdQYDMW9iNED1H8C7Bzj/7zLqKn4duL/78ybgNxgNKj4CfBZYO+O6XscvBzMHqwW4FDjUfT7/Alw4cD3vYhRWDwD/wGje0czqAW5jND5yklGP6/rTnR94d/fdfhh444zqOcJoLOKZ7/Pf9anHJzMlNc3DpYekOWdQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0Ehqen/APTiAcO4PkQcAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e91fcf8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADr1JREFUeJzt3X+sX3V9x/Hnay2UgUPpNE2hZG1Mo6lmimsUdNmMnQOdsewfUjJMt5E0S9iCxkTb+Yd/kWBmjP4xXRpRu8lgTWWjIU4oVWMWI1pHo0Ct7VSk0lIcbhpnuqLv/fE9xO8u9/Zz+Z77/XHx+Uia7/d8zjnf887t977u+3y+59ybqkKSzuXXpl2ApNlnUEhqMigkNRkUkpoMCklNBoWkJoNCUtPYgiLJNUmOJjmeZOe4jiNp/DKOC66SrAC+DbwZOAF8Dbi+qh5Z8oNJGruVY3rd1wLHq+o7AEnuBLYC8wbF+VlVF3DRmEqRBPATfvTDqnrJKPuOKyguAx4bWj4BvG54gyQ7gB0AF3Ahr8uWMZUiCeD+2vfoqPtObTKzqnZX1eaq2nweq6ZVhqRFGFdQ/AC4fGh5XTcmaRkaV1B8DdiYZEOS84FtwP4xHUvSmI1ljqKqnk7yl8C9wArgE1X18DiOJWn8xjWZSVV9FvjsuF5f0uR4ZaakJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIalp5KBIcnmSLyR5JMnDSW7uxlcnOZDkWPd4ydKVK2ka+nQUTwPvrqpNwJXATUk2ATuBg1W1ETjYLUtaxkYOiqo6WVX/3j3/CXAEuAzYCuzpNtsDXNu3SEnTtXIpXiTJeuAK4AFgTVWd7FadAtYssM8OYAfABVy4FGVIGpPek5lJXgB8BnhnVf14eF1VFVDz7VdVu6tqc1VtPo9VfcuQNEa9giLJeQxC4vaquqsbfiLJ2m79WuB0vxIlTVufTz0C3AYcqaoPDa3aD2zvnm8H7h69PEmzoM8cxRuAdwDfTHK4G/tr4FZgb5IbgUeB6/qVKGnaRg6Kqvo3IAus3jLq60qaPV6ZKanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDU1DsokqxI8mCSe7rl1UkOJDnWPV7Sv0xJ09TnjxQ/42bgCHBxt7wTOFhVtybZ2S2/dwmOM1Puffzw/1u++tJXT6kSafx6dRRJ1gF/BHx8aHgrsKd7vge4ts8xJE1f347iw8B7gN8YGltTVSe756eANT2PMVPmdhLSr4KRO4okbwNOV9XXF9qmqgqoBfbfkeRQkkNnOTNqGZImoE9H8Qbg7UneClwAXJzk08ATSdZW1ckka4HT8+1cVbuB3QAXZ/W8YSJpNozcUVTVrqpaV1XrgW3A56vqBmA/sL3bbDtwd+8qJU3VOK6juBV4c5JjwB90y5KWsaX4eJSq+iLwxe75fwJbluJ1Jc0Gr8yU1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0ExYfc+ftgby7TsGBSSmgwKSU1Lcgm3Fu+Z34T1zOmHvxlLy4EdhaQmO4rnaG5H8Fw5kanlyI5CUpMdxYQ5J7F0nOeZHDsKSU0GxYiuvvTV/iSbEV7ENn6eevRkWExP34llLZ4dhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpq8jkLLnteyjJ8dhaSmXkGR5EVJ9iX5VpIjSa5KsjrJgSTHusdLlqpYSdPRt6P4CPC5qno58CrgCLATOFhVG4GD3bKkZWzkoEjyQuD3gNsAqup/q+q/gK3Anm6zPcC1fYuUNF19OooNwJPAJ5M8mOTjSS4C1lTVyW6bU8CavkVK5+Ldo+PXJyhWAq8BPlZVVwA/Zc5pRlUVUPPtnGRHkkNJDp3lTI8yJI1bn6A4AZyoqge65X0MguOJJGsBusfT8+1cVburanNVbT6PVT3KkDRuIwdFVZ0CHkvysm5oC/AIsB/Y3o1tB+7uVaGkqet7wdVfAbcnOR/4DvBnDMJnb5IbgUeB63oe43ljvvNoLxbSctArKKrqMLB5nlVb+ryupNniJdwT4Iy8ljuDYsr8lfP9+bUbP+/1kNRkUEyAv9pfy51BIanJoJigc3UVXoasWWZQSGryU48Jm/vXrVpdRmubWXLv44eXTa16buwoJDUZFMvAcpm/sJt4/vLUY0oW803lN55mhR2FpCY7ihk09zTDzkLTZkchqcmOYgbN/QjV32OhabOjkNRkRzGDFvNRqPMYmiQ7CklNdhQzaKHu4Fydhh2GxsmgWEaGv/lbpyfD6w0N9eWph6QmO4plam6X8FxOSxbzeovZ107lV4cdhaSmDP486HRdnNX1uvinQJbCrNxlarcxe+6vfV+vqvn+Dk+THYWkJuconmcW8xuzJmGhY9lpLE92FJKaenUUSXYB7wB+AXyTwR8pvhD4J2A98D3guqr6Ua8qtSTm+2k+Spcx96a1UY+t5WPkoEiyHtgBbKqqnyXZC2wDNgEHq+rWJDuBncB7l6BWjcG4voENhueXPqcePwbOAr+eZCWDTuJxYCuwp9tmD3BtrwolTd3IHUVVPZXkg8D3gZ8B91XVfUnWVNXJbrNTwJolqFNTtNB9JHYNvzpG7iiSvBR4F7ABuBS4KMkNw9vU4CKNeS/USLIjyaEkh85yZtQyJE1An8nMzcCXq+pJgCR3Aa8HnkiytqpOJlkLnJ5v56raDeyGwQVXPerQmNk5qM8cxVHgyiQXJgmwBTgC7Ae2d9tsB+7uV6KkaeszR3E4yd8Dhxh8PPoggw7hBcDeJDcCjwLXLUWhkqan13UUVfUB4ANzhs8w6C4kPU94ZaakJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIampGRRJPpHkdJKHhsZWJzmQ5Fj3eMnQul1Jjic5muTqcRUuaXIW01F8CrhmzthO4GBVbQQOdssk2QRsA17R7fPRJCuWrFpJU9EMiqr6EvDUnOGtwJ7u+R7g2qHxO6vqTFV9FzgOvHaJapU0JaPOUaypqpPd81PAmu75ZcBjQ9ud6MYkLWO9JzOrqoB6rvsl2ZHkUJJDZznTtwxJYzRqUDyRZC1A93i6G/8BcPnQduu6sWepqt1VtbmqNp/HqhHLkDQJowbFfmB793w7cPfQ+LYkq5JsADYCX+1XoqRpW9naIMkdwBuBFyc5AbwfuBXYm+RG4FHgOoCqejjJXuAR4Gngpqr6+ZhqlzQhzaCoqusXWLVlge1vAW7pU5Sk2eKVmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKZmUCT5RJLTSR4aGvubJN9K8o0k/5zkRUPrdiU5nuRokqvHVbikyVlMR/Ep4Jo5YweAV1bVbwPfBnYBJNkEbANe0e3z0SQrlqxaSVPRDIqq+hLw1Jyx+6rq6W7xK8C67vlW4M6qOlNV3wWOA69dwnolTcFSzFH8OfCv3fPLgMeG1p3oxiQtYyv77JzkfcDTwO0j7LsD2AFwARf2KUPSmI0cFEn+FHgbsKWqqhv+AXD50GbrurFnqardwO7utZ68v/b9FPjhqPWMwYuxnnOxnnObxXp+a9SdRwqKJNcA7wF+v6r+Z2jVfuAfk3wIuBTYCHy19XpV9ZIkh6pq8yj1jIP1nJv1nNuM1rN+1P2bQZHkDuCNwIuTnADez+BTjlXAgSQAX6mqv6iqh5PsBR5hcEpyU1X9fNTiJM2GZlBU1fXzDN92ju1vAW7pU5Sk2TJLV2bunnYBc1jPuVnPuT2v6skv5yElaX6z1FFImlEzERRJrunuDTmeZOcUjn95ki8keSTJw0lu7sZXJzmQ5Fj3eMkEa1qR5MEk98xALS9Ksq+7v+dIkqumXM+u7v/qoSR3JLlgkvUscP/Tgscf9/1Pk7gfa+pB0d0L8rfAW4BNwPXdPSOT9DTw7qraBFwJ3NTVsBM4WFUbgYPd8qTcDBwZWp5mLR8BPldVLwde1dU1lXqSrGdwod7vVNUrgRUM7i+aZD2f4tn3P817/And/zRfPUt7P1ZVTfUfcBVw79DyLmDXlGu6G3gzcBRY242tBY5O6PjrGLzZ3gTc041Nq5YXAt+lm88aGp9WPau7N/5qBp/a3QP84aTrAdYDD7W+HnPfz8C9wFXjrmfOuj8Gbu9Tz9Q7Cmbs/pDuJ9YVwAPAmqo62a06BayZUBkfZnBB2y+GxqZVywbgSeCT3anQx5NcNK16quop4IPA94GTwH9X1X3TqmfIQsefhfd37/uxZiEoZkaSFwCfAd5ZVT8eXleD+B37R0RJ3gacrqqvL7TNpGrprAReA3ysqq4Afsqctn6S9SR5KfAuBgF2KXBRkhumVc98pn38YX3uxxo2C0Gx6PtDxinJeQxC4vaquqsbfiLJ2m79WuD0BEp5A/D2JN8D7gTelOTTU6oFBj9xTlTVA93yPgbBMa16NgNfrqonq+oscBfw+inW84yFjj+19/fQ/Vh/0oXXyPXMQlB8DdiYZEOS8xlMtOyfZAEZXId+G3Ckqj40tGo/sL17vp3B3MVYVdWuqlpXg+vytwGfr6obplFLV88p4LEkL+uGtjC4RH8q9TCYC7gyyYXd/9sWBpOr06rnGQsdfz+wLcmqJBtY5P1PfQ3dj/X2evb9WM+9nklMQC1iIuatDCao/gN43xSO/7sMWsVvAIe7f28FfpPBpOIx4H5g9YTreiO/nMycWi3Aq4FD3dfnX4BLplzPexmE1UPAPzC472hi9QB3MJgfOcug47rxXMcH3te9t48Cb5lQPccZzEU8837+uz71eGWmpKZZOPWQNOMMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDX9H9RPHlVehImCAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ec9c5f8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADhRJREFUeJzt3XHoXWd9x/H3Z0marBU1mRLSpqxBglJlWv2hrY5NzFyrE9P9U1LWkW2FMOhGFcEl8w//KigT0T+mI1g1m11LqZ0NxVljVGSI1bgW1ybGZLraaNLUdVNxkKX63R/3FC+/5pen3vO799xf9n5BuOc855x7vqSXT57z3Oe5TVUhSefza0MXIGn+GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNQ0taBIcl2So0mOJ9k9rftImr5MY8JVklXAd4A3AyeAbwA3VtXhZb+ZpKlbPaX3fS1wvKq+C5DkLmA7cM6guChrax2XTKkUSQA/5b9+VFUvnuTaaQXFZcDjY/sngNeNn5BkF7ALYB0X87psm1IpkgC+UPc8Num1gw1mVtXeqlqoqoU1rB2qDEnPwbSC4gfA5WP7m7s2SSvQtILiG8DWJFuSXATsAPZP6V6SpmwqYxRV9XSSvwAeAFYBH6+qR6dxL0nTN63BTKrqs8Bnp/X+kmbHmZmSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaSmiYMiyeVJvpTkcJJHk9zatW9IciDJse51/fKVK2kIfXoUTwPvqqorgauBW5JcCewGDlbVVuBgty9pBZs4KKrqZFX9a7f9U+AIcBmwHdjXnbYPuL5vkZKGtXo53iTJFcBVwIPAxqo62R06BWxc4ppdwC6AdVy8HGVImpLeg5lJngd8GnhHVf1k/FhVFVDnuq6q9lbVQlUtrGFt3zIkTVGvoEiyhlFI3FFV93bNTyTZ1B3fBJzuV6KkofX51iPA7cCRqvrg2KH9wM5ueydw3+TlSZoHfcYo3gD8MfBvSR7u2v4aeB9wd5KbgceAG/qVKGloEwdFVf0LkCUOb5v0fSXNH2dmSmoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNihh744cPtk6Q5ZFBIajIoJDUZFJKaDApJTcvy//XQ+TmIqZXOHoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaegdFklVJHkpyf7e/IcmBJMe61/X9y5Q0pOXoUdwKHBnb3w0crKqtwMFuX9IK1isokmwG/gD42FjzdmBft70PuL7PPSQNr2+P4kPAu4FfjLVtrKqT3fYpYGPPe1wwrr30VUOXIE1k4qBI8jbgdFV9c6lzqqqAWuL6XUkOJTl0ljOTliFpBvosCnsD8PYkbwXWAc9P8ingiSSbqupkkk3A6XNdXFV7gb0Az8+Gc4aJpPkwcY+iqvZU1eaqugLYAXyxqm4C9gM7u9N2Avf1rlLSoKYxj+J9wJuTHAN+r9uXtIIty+9RVNWXgS932/8JbFuO95U0H5yZKanJoJDUZFBIavI3M2fAiVZa6exRSGoyKGbggR8+7C9xa0UzKCQ1GRSSmgyKGfLxQyuVQSGpyaCQ1GRQSGoyKGbg2ktf5aQrrWgGhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFAMzN/T1EpgUMyQK0i1UvUKiiQvTHJPkm8nOZLkmiQbkhxIcqx7Xb9cxUoaRt8exYeBz1XVy4BXAkeA3cDBqtoKHOz2tYRnfqvCRxDNs4mDIskLgN8Bbgeoqv+tqv8GtgP7utP2Adf3LVLSsPr0KLYATwKfSPJQko8luQTYWFUnu3NOARv7Fvn/ib0KzaM+QbEaeDXw0aq6CvgZix4zqqqAOtfFSXYlOZTk0FnO9ChD0rT1CYoTwImqerDbv4dRcDyRZBNA93r6XBdX1d6qWqiqhTWs7VHGhcHf1dQ8mzgoquoU8HiSl3ZN24DDwH5gZ9e2E7ivV4WSBre65/V/CdyR5CLgu8CfMgqfu5PcDDwG3NDzHpIG1isoquphYOEch7b1eV9J88WZmXPGORWaR30fPTQFzwxqPhMWDnJqaPYoJDXZo5hj9iQ0L+xRSGoyKFYABzc1NINCUpNjFCvA4m9BxtukWbBHIanJoFhBxheOOW6hWTIoVqDxxw4DQ7NgUEhqcjBzhVo8mOl0b02TPQpJTfYoLhAuJNM02aOQ1GSP4gKz+BuRxW3SJOxRSGqyR3EBsyeh5WKPQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaSmXkGRZE+Sw0keSXJnknVJNiQ5kORY97p+uYqVNIyJgyLJFcAu4DVV9QpgFbAD2A0crKqtwMFuX9IK1qdH8RPgLPDrSVYDFwM/BLYD+7pz9gHX96pQ0uAmDoqqegr4APB94CTw46r6PLCxqk52p50CNvauUtKg+jx6vAR4J7AFuBS4JMlN4+dUVQG1xPW7khxKcugsZyYtQ9IM9Hn0WAC+WlVPVtVZ4F7g9cATSTYBdK+nz3VxVe2tqoWqWljD2h5lSJq2PkFxFLg6ycVJAmwDjgD7gZ3dOTuB+/qVKGloE/8eRVU9nOTvgUPAL4CHgL3A84C7k9wMPAbcsByFShpOrx+uqar3A+9f1HyGUe9C0gXCmZmSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaSmZlAk+XiS00keGWvbkORAkmPd6/qxY3uSHE9yNMm10ypc0uw8lx7FJ4HrFrXtBg5W1VbgYLdPkiuBHcDLu2s+kmTVslUraRDNoKiqrwBPLWreDuzrtvcB14+131VVZ6rqe8Bx4LXLVKukgUw6RrGxqk5226eAjd32ZcDjY+ed6NokrWC9BzOrqoD6Va9LsivJoSSHznKmbxmSpmjSoHgiySaA7vV01/4D4PKx8zZ3bc9SVXuraqGqFtawdsIyJM3CpEGxH9jZbe8E7htr35FkbZItwFbg6/1KlDS01a0TktwJvBF4UZITwHuB9wF3J7kZeAy4AaCqHk1yN3AYeBq4pap+PqXaJc1IMyiq6sYlDm1b4vzbgNv6FCVpvjgzU1KTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1NQMiiQfT3I6ySNjbX+T5NtJvpXkn5K8cOzYniTHkxxNcu20Cpc0O8+lR/FJ4LpFbQeAV1TVbwHfAfYAJLkS2AG8vLvmI0lWLVu1kgbRDIqq+grw1KK2z1fV093u14DN3fZ24K6qOlNV3wOOA69dxnolDWA5xij+DPjnbvsy4PGxYye6Nkkr2Oo+Fyd5D/A0cMcE1+4CdgGs4+I+ZUiasomDIsmfAG8DtlVVdc0/AC4fO21z1/YsVbUX2Nu915NfqHt+Bvxo0nqm4EVYz/lYz/nNYz2/OenFEwVFkuuAdwO/W1X/M3ZoP/CPST4IXApsBb7eer+qenGSQ1W1MEk902A952c95zen9Vwx6fXNoEhyJ/BG4EVJTgDvZfQtx1rgQBKAr1XVn1fVo0nuBg4zeiS5pap+PmlxkuZDMyiq6sZzNN9+nvNvA27rU5Sk+TJPMzP3Dl3AItZzftZzfhdUPfnlOKQknds89Sgkzam5CIok13VrQ44n2T3A/S9P8qUkh5M8muTWrn1DkgNJjnWv62dY06okDyW5fw5qeWGSe7r1PUeSXDNwPXu6/1aPJLkzybpZ1rPE+qcl7z/t9U+zWI81eFB0a0H+FngLcCVwY7dmZJaeBt5VVVcCVwO3dDXsBg5W1VbgYLc/K7cCR8b2h6zlw8DnquplwCu7ugapJ8kVjCbqvaaqXgGsYrS+aJb1fJJnr3865/1ntP7pXPUs73qsqhr0D3AN8MDY/h5gz8A13Qe8GTgKbOraNgFHZ3T/zYw+bG8C7u/ahqrlBcD36MazxtqHqmdD98HfwOhbu/uB3591PcAVwCOtv4/Fn2fgAeCaadez6NgfAnf0qWfwHgVztj6k+xfrKuBBYGNVnewOnQI2zqiMDzGa0PaLsbahatkCPAl8onsU+liSS4aqp6qeAj4AfB84Cfy4qj4/VD1jlrr/PHy+e6/HmoegmBtJngd8GnhHVf1k/FiN4nfqXxEleRtwuqq+udQ5s6qlsxp4NfDRqroK+BmLuvWzrCfJS4B3MgqwS4FLktw0VD3nMvT9x/VZjzVuHoLiOa8PmaYkaxiFxB1VdW/X/ESSTd3xTcDpGZTyBuDtSf4DuAt4U5JPDVQLjP7FOVFVD3b79zAKjqHqWQC+WlVPVtVZ4F7g9QPW84yl7j/Y53tsPdYfdeE1cT3zEBTfALYm2ZLkIkYDLftnWUBG89BvB45U1QfHDu0HdnbbOxmNXUxVVe2pqs01mpe/A/hiVd00RC1dPaeAx5O8tGvaxmiK/iD1MBoLuDrJxd1/t22MBleHqucZS91/P7AjydokW3iO65/6GluP9fZ69nqsX72eWQxAPYeBmLcyGqD6d+A9A9z/txl1Fb8FPNz9eSvwG4wGFY8BXwA2zLiuN/LLwczBagFeBRzq/n4+A6wfuJ6/YhRWjwD/wGjd0czqAe5kND5yllGP6+bz3R94T/fZPgq8ZUb1HGc0FvHM5/nv+tTjzExJTfPw6CFpzhkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIavo/C4fbXKGoTU0AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ebb4f98>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADnlJREFUeJzt3XHIXXd9x/H3Z0marBU1mRLSpqxBglJlWn2orY5NDK7Vien+KSnryLZCGHSjiuCS+Yd/FZSJ6B/TEayaza4l1G4NRa0xKjLEalyDaxNjMl1t2qSp62algyzV7/64p3h5+jz5pfc+9577xPcLwj3nd86550ty87m/c87vx01VIUnn8ht9FyBp9hkUkpoMCklNBoWkJoNCUpNBIanJoJDUNLGgSHJ9kqNJjifZOanzSJq8TGLAVZIVwA+BdwAngO8CN1XV4SU/maSJWzmh970aOF5VPwJIcjewFVgwKC7K6lrDJRMqRRLAz/nvn1bVK0c5dlJBcRnw2ND6CeDNwzsk2QHsAFjDxbw5WyZUiiSAr9Y9j456bG83M6tqd1XNVdXcKlb3VYak8zCpoHgcuHxofWPXJmkZmlRQfBfYnGRTkouAbcC+CZ1L0oRN5B5FVT2X5C+BB4AVwGeq6pFJnEvS5E3qZiZV9UXgi5N6f0nT48hMSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JS08hBkeTyJF9PcjjJI0lu69rXJdmf5Fj3unbpypXUh3F6FM8B76+qK4FrgFuTXAnsBA5U1WbgQLcuaRkbOSiq6mRV/Vu3/HPgCHAZsBXY0+22B7hh3CIl9WvlUrxJkiuAq4AHgfVVdbLbdApYv8gxO4AdAGu4eCnKkDQhY9/MTPIS4AvAe6vqmeFtVVVALXRcVe2uqrmqmlvF6nHLkDRBYwVFklUMQuLOqrq3a34yyYZu+wbg9HglSurbOE89AtwBHKmqjw1t2gds75a3A/eNXp6kWTDOPYq3An8C/HuSQ13b3wAfBvYmuQV4FLhxvBIl9W3koKiqfwWyyOYto76vpNnjyExJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNiCh544hAPPHGovaM0owwKSU0GhaQmg0JS05L89qjOz/B9iusufUOPlUgvjj0KSU0GhaQmLz2mzEsOLUdj9yiSrEjyUJL7u/V1SfYnOda9rh2/TEl9WopLj9uAI0PrO4EDVbUZONCtq+PgKy1HYwVFko3AHwKfHmreCuzplvcAN4xzDkn9G7dH8XHgA8Avh9rWV9XJbvkUsH7Mc0jq2chBkeTdwOmq+t5i+1RVAbXI8TuSHExy8CxnRi1D0hSM89TjrcB7krwLWAO8NMnngSeTbKiqk0k2AKcXOriqdgO7AV6adQuGiaTZMHKPoqp2VdXGqroC2AZ8rapuBvYB27vdtgP3jV2lpF5NYhzFh4G9SW4BHgVunMA5loWFnm44jkLL0ZIERVV9A/hGt/xfwJaleF9Js8Eh3JKaDApJTQaFpCaDQlKTQSGpyaCYoOsufcMLHoc6KUzLkUEhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDIqeOItUy4lBIanJoJDUZFBIajIoJDUZFJKaJvGTgprnXD8j+PyTD39qULPMHsWM8HGpZtlYQZHk5UnuSfKDJEeSXJtkXZL9SY51r2uXqlhJ/Ri3R/EJ4MtV9Rrg9cARYCdwoKo2Awe6dUnL2MhBkeRlwO8BdwBU1f9V1f8AW4E93W57gBvGLVJSv8bpUWwCngI+m+ShJJ9OcgmwvqpOdvucAtaPW+SFbP6PBHmfQrNonKBYCbwR+FRVXQU8y7zLjKoqoBY6OMmOJAeTHDzLmTHKkDRp4wTFCeBEVT3Yrd/DIDieTLIBoHs9vdDBVbW7quaqam4Vq8co48LiY1LNopGDoqpOAY8leXXXtAU4DOwDtndt24H7xqpQUu/GHXD1V8CdSS4CfgT8GYPw2ZvkFuBR4MYxz/Fr5YEnDtmr0MwZKyiq6hAwt8CmLeO8r6TZ4hDuGbHQk49Z71kslzo1Podwz7DlMqx7udSp0RkUkpq89NDIZvWSw0uipWePQlKTPYplYP71f9/flLP+jT2rdS1n9igkNdmjmEHzvxHn9ygclKVps0chqckexTIwa72HWatHk2ePQlKTQSGpyUuPX3Oz9uhVs8kehaQmexQXiIUmZbV6BwsdM8pgquFjZn0wlkZjj0JSkz2KC8Tz3+DDvYRpTf1eqPdgz+LCYo9CUpM9igvMuX4jZFLf7sPnsQdxYTIoLmBL/Z92seAxHC58XnpIarJHoRfNHsSvH3sUkprsUei89dmT8HFrv+xRSGqyR6FlwZ5Ev+xRSGoaKyiS7EpyOMnDSe5KsibJuiT7kxzrXtcuVbGS+jFyUCS5AtgBvKmqXgesALYBO4EDVbUZONCtS1rGxulRPAOcBX4zyUrgYuAJYCuwp9tnD3DDWBVK6t3IQVFVTwMfBX4CnAR+VlVfAdZX1clut1PA+rGrlNSrcS49XgW8D9gEXApckuTm4X2qqoBa5PgdSQ4mOXiWM6OWIWkKxrn0mAO+VVVPVdVZ4F7gLcCTSTYAdK+nFzq4qnZX1VxVza1i9RhlSJq0cYLiKHBNkouTBNgCHAH2Adu7fbYD941XoqS+jTzgqqoOJfkH4CDwS+AhYDfwEmBvkluAR4Ebl6JQSf0Za2RmVX0E+Mi85jMMeheSLhCOzJTUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDU1gyLJZ5KcTvLwUNu6JPuTHOte1w5t25XkeJKjSa6bVOGSpud8ehSfA66f17YTOFBVm4ED3TpJrgS2Aa/tjvlkkhVLVq2kXjSDoqq+CTw9r3krsKdb3gPcMNR+d1WdqaofA8eBq5eoVkk9GfUexfqqOtktnwLWd8uXAY8N7Xeia5O0jI19M7OqCqgXe1ySHUkOJjl4ljPjliFpgkYNiieTbADoXk937Y8Dlw/tt7Fre4Gq2l1Vc1U1t4rVI5YhaRpGDYp9wPZueTtw31D7tiSrk2wCNgPfGa9ESX1b2dohyV3A24BXJDkBfAj4MLA3yS3Ao8CNAFX1SJK9wGHgOeDWqvrFhGqXNCXNoKiqmxbZtGWR/W8Hbh+nKEmzxZGZkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkpmZQJPlMktNJHh5q+9skP0jy/ST/nOTlQ9t2JTme5GiS6yZVuKTpOZ8exeeA6+e17QdeV1W/A/wQ2AWQ5EpgG/Da7phPJlmxZNVK6kUzKKrqm8DT89q+UlXPdavfBjZ2y1uBu6vqTFX9GDgOXL2E9UrqwVLco/hz4Evd8mXAY0PbTnRtkpaxleMcnOSDwHPAnSMcuwPYAbCGi8cpQ9KEjRwUSf4UeDewpaqqa34cuHxot41d2wtU1W5gd/deT3217nkW+Omo9UzAK7Cec7Gec5vFen571INHCook1wMfAH6/qv53aNM+4J+SfAy4FNgMfKf1flX1yiQHq2pulHomwXrOzXrObUbruWLU45tBkeQu4G3AK5KcAD7E4CnHamB/EoBvV9VfVNUjSfYChxlcktxaVb8YtThJs6EZFFV10wLNd5xj/9uB28cpStJsmaWRmbv7LmAe6zk36zm3C6qe/Oo+pCQtbJZ6FJJm1EwERZLru7khx5Ps7OH8lyf5epLDSR5JclvXvi7J/iTHute1U6xpRZKHktw/A7W8PMk93fyeI0mu7bmeXd2/1cNJ7kqyZpr1LDL/adHzT3r+0zTmY/UeFN1ckL8D3glcCdzUzRmZpueA91fVlcA1wK1dDTuBA1W1GTjQrU/LbcCRofU+a/kE8OWqeg3w+q6uXupJcgWDgXpvqqrXASsYzC+aZj2f44XznxY8/5TmPy1Uz9LOx6qqXv8A1wIPDK3vAnb1XNN9wDuAo8CGrm0DcHRK59/I4MP2duD+rq2vWl4G/JjuftZQe1/1rOs++OsYPLW7H/iDadcDXAE83Pr7mP95Bh4Arp10PfO2/RFw5zj19N6jYMbmh3TfWFcBDwLrq+pkt+kUsH5KZXycwYC2Xw619VXLJuAp4LPdpdCnk1zSVz1V9TTwUeAnwEngZ1X1lb7qGbLY+Wfh8z32fKxZCIqZkeQlwBeA91bVM8PbahC/E39ElOTdwOmq+t5i+0yrls5K4I3Ap6rqKuBZ5nXrp1lPklcB72MQYJcClyS5ua96FtL3+YeNMx9r2CwExXnPD5mkJKsYhMSdVXVv1/xkkg3d9g3A6SmU8lbgPUn+E7gbeHuSz/dUCwy+cU5U1YPd+j0MgqOveuaAb1XVU1V1FrgXeEuP9TxvsfP39vkemo/1x114jVzPLATFd4HNSTYluYjBjZZ90ywgg3HodwBHqupjQ5v2Adu75e0M7l1MVFXtqqqNNRiXvw34WlXd3EctXT2ngMeSvLpr2sJgiH4v9TC4F3BNkou7f7ctDG6u9lXP8xY7/z5gW5LVSTZxnvOfxjU0H+s99cL5WC++nmncgDqPGzHvYnCD6j+AD/Zw/t9l0FX8PnCo+/Mu4LcY3FQ8BnwVWDflut7Gr25m9lYL8AbgYPf38y/A2p7r+WsGYfUw8I8M5h1NrR7gLgb3R84y6HHdcq7zAx/sPttHgXdOqZ7jDO5FPP95/vtx6nFkpqSmWbj0kDTjDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1/T+FRwvTUNtPZAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ed2a828>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADh1JREFUeJzt3XHIXXd9x/H3Z0marHVqMiWkTVmDBKXKbPVBWx2bmLlWJ6b7p6SsI9sKYdCNKoJL5h/+VVAmon9MR7BqNruWUusairPGqMgQq3Etrk2MyXS10aSp66biIEv1uz/uKV6ePk9+8Z7nPuc+8f2CcM/5nXPu+ZJcPs/v/O7v9yRVhSSdy68NXYCk2WdQSGoyKCQ1GRSSmgwKSU0GhaQmg0JS09SCIsn1SY4mOZ5k97TuI2n6Mo0JV0lWAd8G3gScAL4O3FRVh5f8ZpKmbvWU3vc1wPGq+g5AkruB7cCCQXFR1tY6LplSKZIAfsJ//7CqXjzJtdMKisuAJ8b2TwCvHT8hyS5gF8A6Lua12TalUiQBfL7ufXzSawcbzKyqvVU1V1Vza1g7VBmSzsO0guL7wOVj+5u7Nkkr0LSC4uvA1iRbklwE7AD2T+lekqZsKmMUVfVMkr8EHgRWAR+rqsemcS9J0zetwUyq6jPAZ6b1/pKWjzMzJTUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTRMHRZLLk3wxyeEkjyW5rWvfkORAkmPd6/qlK1fSEPr0KJ4B3llVVwLXALcmuRLYDRysqq3AwW5f0go2cVBU1cmq+rdu+yfAEeAyYDuwrzttH3BD3yIlDWv1UrxJkiuAq4GHgI1VdbI7dArYuMg1u4BdAOu4eCnKkDQlvQczkzwP+BTw9qr68fixqiqgFrquqvZW1VxVza1hbd8yJE1Rr6BIsoZRSNxZVfd1zU8m2dQd3wSc7leipKH1+dYjwB3Akar6wNih/cDObnsncP/k5UmaBX3GKF4P/Anw70ke6dr+BngvcE+SW4DHgRv7lShpaBMHRVX9K5BFDm+b9H0lzR5nZkpqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQTNGDP3iEB3/wSPtEacYZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmnoHRZJVSR5O8kC3vyHJgSTHutf1/cuUNKSl6FHcBhwZ298NHKyqrcDBbl/SCtYrKJJsBv4Q+OhY83ZgX7e9D7ihzz0kDW/i/82880HgXcBvjLVtrKqT3fYpYGPPe6xY11161dAlSEti4h5FkrcCp6vqG4udU1UF1CLX70pyKMmhs5yZtAxJy6BPj+L1wNuSvAVYBzw/ySeBJ5NsqqqTSTYBpxe6uKr2AnsBnp8NC4aJpNkwcY+iqvZU1eaqugLYAXyhqm4G9gM7u9N2Avf3rlLSoKYxj+K9wJuSHAN+v9v/leIvrNGFpu9gJgBV9SXgS932fwHbluJ9Jc0GZ2ZKajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1LckUbo24vkMXKnsUkpoMiiV03aVX+VutdEEyKCQ1GRSSmgwKSU0GxRT5m650oTAoJDUZFJKaDIqB+FiilcSgkNRkUEhqMigkNRkUU+BUbl1oDApJTS4znyJ7FbpQ2KOQ1NQrKJK8MMm9Sb6V5EiSa5NsSHIgybHudf1SFStpGH17FB8CPltVLwNeCRwBdgMHq2orcLDb1yKceKWVYOKgSPIC4HeBOwCq6v+q6n+A7cC+7rR9wA19i5Q0rD49ii3AU8DHkzyc5KNJLgE2VtXJ7pxTwMa+RUoaVp+gWA28CvhIVV0N/JR5jxlVVUAtdHGSXUkOJTl0ljM9ypA0bX2C4gRwoqoe6vbvZRQcTybZBNC9nl7o4qraW1VzVTW3hrU9yliZnJSllWTioKiqU8ATSV7aNW0DDgP7gZ1d207g/l4VShpc3wlXfwXcmeQi4DvAnzEKn3uS3AI8DtzY8x6/Ep795sNehmZRr6CoqkeAuQUObevzvpJmizMzBzZ/rMI5FZpFBsWMcHBTs8ygkNRkUMyY6y69ymndmjkGhaQmg0JSk0EhqcnfcDWDnv32w0lYmhX2KCQ12aOYYfN7FvPbpeVij2IFcPamhmZQSGry0WMFOVevwscRTZM9CklNBsUKtdC4hWMXmhaDQlKTYxQr3PyxifFeheMWWir2KCQ12aO4wPwy8y3sceh8GRQXMINAS8VHD0lNBoWkJoNCUpNBIanJoJDUZFBIajIoJDX1Cooke5IcTvJokruSrEuyIcmBJMe61/VLVaykYUwcFEmuAHYBr66qVwCrgB3AbuBgVW0FDnb7klawPj2KHwNngV9Pshq4GPgBsB3Y152zD7ihV4WSBjdxUFTV08D7ge8BJ4EfVdXngI1VdbI77RSwsXeVkgbV59HjJcA7gC3ApcAlSW4eP6eqCqhFrt+V5FCSQ2c5M2kZkpZBn0ePOeArVfVUVZ0F7gNeBzyZZBNA93p6oYuram9VzVXV3BrW9ihD0rT1CYqjwDVJLk4SYBtwBNgP7OzO2Qnc369ESUObeJl5VT2S5B+AQ8DPgYeBvcDzgHuS3AI8Dty4FIVKGk6v30dRVe8D3jev+Qyj3oWkC4QzMyU1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU3NoEjysSSnkzw61rYhyYEkx7rX9WPH9iQ5nuRokuumVbik5XM+PYpPANfPa9sNHKyqrcDBbp8kVwI7gJd313w4yaolq1bSIJpBUVVfBp6e17wd2Ndt7wNuGGu/u6rOVNV3gePAa5aoVkkDmXSMYmNVney2TwEbu+3LgCfGzjvRtUlawXoPZlZVAfXLXpdkV5JDSQ6d5UzfMiRN0aRB8WSSTQDd6+mu/fvA5WPnbe7anqOq9lbVXFXNrWHthGVIWg6TBsV+YGe3vRO4f6x9R5K1SbYAW4Gv9StR0tBWt05IchfwBuBFSU4A7wHeC9yT5BbgceBGgKp6LMk9wGHgGeDWqvrZlGqXtEyaQVFVNy1yaNsi598O3N6nKEmzxZmZkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkpmZQJPlYktNJHh1r+9sk30ryzSSfTvLCsWN7khxPcjTJddMqXNLyOZ8exSeA6+e1HQBeUVW/DXwb2AOQ5EpgB/Dy7poPJ1m1ZNVKGkQzKKrqy8DT89o+V1XPdLtfBTZ329uBu6vqTFV9FzgOvGYJ65U0gKUYo/hz4F+67cuAJ8aOnejaJK1gq/tcnOTdwDPAnRNcuwvYBbCOi/uUIWnKJg6KJH8KvBXYVlXVNX8fuHzstM1d23NU1V5gb/deT32+7v0p8MNJ65mCF2E952I95zaL9fzWpBdPFBRJrgfeBfxeVf3v2KH9wD8l+QBwKbAV+Frr/arqxUkOVdXcJPVMg/Wcm/Wc24zWc8Wk1zeDIsldwBuAFyU5AbyH0bcca4EDSQC+WlV/UVWPJbkHOMzokeTWqvrZpMVJmg3NoKiqmxZovuMc598O3N6nKEmzZZZmZu4duoB5rOfcrOfcLqh68otxSEla2Cz1KCTNqJkIiiTXd2tDjifZPcD9L0/yxSSHkzyW5LaufUOSA0mOda/rl7GmVUkeTvLADNTywiT3dut7jiS5duB69nT/Vo8muSvJuuWsZ5H1T4vef9rrn5ZjPdbgQdGtBfk74M3AlcBN3ZqR5fQM8M6quhK4Bri1q2E3cLCqtgIHu/3lchtwZGx/yFo+BHy2ql4GvLKra5B6klzBaKLeq6vqFcAqRuuLlrOeT/Dc9U8L3n+Z1j8tVM/SrseqqkH/ANcCD47t7wH2DFzT/cCbgKPApq5tE3B0me6/mdGH7Y3AA13bULW8APgu3XjWWPtQ9WzoPvgbGH1r9wDwB8tdD3AF8Gjr72P+5xl4ELh22vXMO/ZHwJ196hm8R8GMrQ/pfmJdDTwEbKyqk92hU8DGZSrjg4wmtP18rG2oWrYATwEf7x6FPprkkqHqqaqngfcD3wNOAj+qqs8NVc+Yxe4/C5/v3uuxZiEoZkaS5wGfAt5eVT8eP1aj+J36V0RJ3gqcrqpvLHbOctXSWQ28CvhIVV0N/JR53frlrCfJS4B3MAqwS4FLktw8VD0LGfr+4/qsxxo3C0Fx3utDpinJGkYhcWdV3dc1P5lkU3d8E3B6GUp5PfC2JP8J3A28McknB6oFRj9xTlTVQ93+vYyCY6h65oCvVNVTVXUWuA943YD1PGux+w/2+R5bj/XHXXhNXM8sBMXXga1JtiS5iNFAy/7lLCCjeeh3AEeq6gNjh/YDO7vtnYzGLqaqqvZU1eYazcvfAXyhqm4eopaunlPAE0le2jVtYzRFf5B6GI0FXJPk4u7fbRujwdWh6nnWYvffD+xIsjbJFs5z/VNfY+ux3lbPXY/1y9ezHANQ5zEQ8xZGA1T/Abx7gPv/DqOu4jeBR7o/bwF+k9Gg4jHg88CGZa7rDfxiMHOwWoCrgEPd388/A+sHruevGYXVo8A/Mlp3tGz1AHcxGh85y6jHdcu57g+8u/tsHwXevEz1HGc0FvHs5/nv+9TjzExJTbPw6CFpxhkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIavp/BDbcr9/DW9QAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54eb31438>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADoFJREFUeJzt3XHIXXd9x/H3Z2marBU1mRLSpqxFglJlWg3a6tjEzLU6Md0/JWUd2VYIg25UEVwy//CvgjIR/WM6glWz2bWU2tlQnDGNigyxGtfg2sSYTFcbmzR13VQcZKl+98c9xevTJ/m19zz3nvtk7xeEe8/vnHPPl+Tm83zv755znlQVknQuvzZ0AZLmn0EhqcmgkNRkUEhqMigkNRkUkpoMCklNUwuKJNclOZLkWJId0zqOpOnLNE64SrIC+C7wVuA48E3gxqo6tOQHkzR1F0zpdV8PHKuq7wEkuQvYAiwaFBdmVa3m4imVIgngp/zXj6rqpZPsO62guBR4bGz5OPCG8Q2SbAe2A6zmIt6QzVMqRRLAA3XPo5PuO9hkZlXtqqpNVbVpJauGKkPSczCtoPghcNnY8oZuTNIyNK2g+CawMckVSS4EtgJ7pnQsSVM2lTmKqno6yV8Ae4EVwCer6pFpHEvS9E1rMpOq+jzw+Wm9vqTZ8cxMSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JS08RBkeSyJF9OcijJI0lu7cbXJtmX5Gj3uGbpypU0hD4dxdPAe6rqSuBq4JYkVwI7gP1VtRHY3y1LWsYmDoqqOlFV/9o9/ylwGLgU2ALs7jbbDVzft0hJw7pgKV4kyeXAVcCDwLqqOtGtOgmsO8s+24HtAKu5aCnKkDQlvSczk7wA+Czwrqr6yfi6qiqgFtuvqnZV1aaq2rSSVX3LkDRFvYIiyUpGIXFHVd3bDT+RZH23fj1wql+JkobW51uPALcDh6vqw2Or9gDbuufbgPsmL0/SPOgzR/Em4I+Bf0tysBv7a+ADwN1JbgYeBW7oV6KkoU0cFFX1L0DOsnrzpK8raf54ZqakJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNS3J7x7Vr9r7+MFfWb72ktcMVIm0NOwoJDXZUSyhhZ2EdL6wo5DU1DsokqxI8lCS+7vltUn2JTnaPa7pX6akIS1FR3ErcHhseQewv6o2Avu7ZUnLWK+gSLIB+APgE2PDW4Dd3fPdwPV9jiFpeH07io8A7wV+MTa2rqpOdM9PAut6HkPSwCYOiiTvAE5V1bfOtk1VFVBn2X97kgNJDpzh9KRlSJqBPl+Pvgl4Z5K3A6uBFyb5DPBEkvVVdSLJeuDUYjtX1S5gF8ALs3bRMJE0HybuKKpqZ1VtqKrLga3Al6rqJmAPsK3bbBtwX+8qJQ1qGudRfAB4a5KjwO91y5KWsSU5M7OqvgJ8pXv+n8DmpXhdSfPBMzMlNRkUkpoMCklNBoWkJoNCUpP3o5gi72yl84UdhaQmg0JSk0EhqcmgkNRkUEzR3scPPuuGu4uNSfPOoJDU5NejM+ZXplqO7CgkNRkUM+C8hJY7g0JSk0GxhK695DXOQei8ZFDMmB9DtBwZFJKa/Hp0hvY+ftCPJlqW7CgkNdlRTMEzXcMzcxF2EVru7CgkNdlRTJGdhM4XdhSSmgwKSU0GhaSmXkGR5MVJ7knynSSHk1yTZG2SfUmOdo9rlqpYScPo21F8FPhCVb0CeDVwGNgB7K+qjcD+blnSMjZxUCR5EfA7wO0AVfW/VfXfwBZgd7fZbuD6vkVKGlafjuIK4EngU0keSvKJJBcD66rqRLfNSWBd3yIlDatPUFwAvBb4eFVdBfyMBR8zqqqAWmznJNuTHEhy4Ayne5Qhadr6BMVx4HhVPdgt38MoOJ5Ish6gezy12M5VtauqNlXVppWs6lGGpGmbOCiq6iTwWJKXd0ObgUPAHmBbN7YNuK9XhZIG1/cU7r8E7khyIfA94E8Zhc/dSW4GHgVu6HkMSQPrFRRVdRDYtMiqzX1eV9J88czMOeNt8jSPDIo55H01NW8MCklN3o9iYOfqHLxDluaFHYWkJjuKgS3sFpyb0Dyyo5DUZFDMmeU4H+G3NOc/g0JSU0YXeA7rhVlbb4gncy50tp/S89J1PJ8uYl5q/v/sgbrnW1W12JnUTU5mzrGFv0joGUP9asJWMBgG5y8/ekhqsqNYBhb7FYULf7rP4qf52TocO4nznx2FpCYnM5e5eZ/w1PzoM5lpRyGpyTmK89S5vqGw29DzZUchqcmOYpmb5KKy53u6tR2IDIrzzPh/aq+/0FLxo4ekJjuK81ifjwzeXUvj7CgkNdlRaFF2EhpnRyGpyaCQ1GRQSGrqFRRJdiY5lOThJHcmWZ1kbZJ9SY52j2uWqlhJw5g4KJJcDmwHXldVrwJWAFuBHcD+qtoI7O+WJS1jfTqKnwBngF9PcgFwEfA4sAXY3W2zG7i+V4WSBjdxUFTVU8CHgB8AJ4AfV9UXgXVVdaLb7CSwrneVkgbV56PHy4B3A1cAlwAXJ7lpfJsa3RVn0TvjJNme5ECSA2c4PWkZkmagz0ePTcDXqurJqjoD3Au8EXgiyXqA7vHUYjtX1a6q2lRVm1ayqkcZkqatT1AcAa5OclGSAJuBw8AeYFu3zTbgvn4lShraxKdwV9XBJH8PHAB+ATwE7AJeANyd5GbgUeCGpShU0nB6XetRVR8EPrhg+DSj7kLSecIzMyU1GRSSmgwKSU0GhaQmg0JSk0Ghwex9/KB3Cl8mDApJTd4zU4PxvpzLhx2FpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIampGRRJPpnkVJKHx8bWJtmX5Gj3uGZs3c4kx5IcSXLttAqXNDvPpaP4NHDdgrEdwP6q2gjs75ZJciWwFXhlt8/HkqxYsmolDaIZFFX1VeCpBcNbgN3d893A9WPjd1XV6ar6PnAMeP0S1SppIJPOUayrqhPd85PAuu75pcBjY9sd78YkLWO9JzOrqoB6vvsl2Z7kQJIDZzjdtwxJUzRpUDyRZD1A93iqG/8hcNnYdhu6sWepql1VtamqNq1k1YRlSJqFSYNiD7Cte74NuG9sfGuSVUmuADYC3+hXoqShNX+lYJI7gTcDL0lyHHg/8AHg7iQ3A48CNwBU1SNJ7gYOAU8Dt1TVz6dUu6QZaQZFVd14llWbz7L9bcBtfYqSNF88M1NSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNTUDIokn0xyKsnDY2N/k+Q7Sb6d5J+SvHhs3c4kx5IcSXLttAqXNDvPpaP4NHDdgrF9wKuq6reA7wI7AZJcCWwFXtnt87EkK5asWkmDaAZFVX0VeGrB2Ber6ulu8evAhu75FuCuqjpdVd8HjgGvX8J6JQ1gKeYo/gz45+75pcBjY+uOd2OSlrEL+uyc5H3A08AdE+y7HdgOsJqL+pQhacomDookfwK8A9hcVdUN/xC4bGyzDd3Ys1TVLmBX91pPPlD3/Az40aT1TMFLsJ5zsZ5zm8d6fnPSnScKiiTXAe8Ffreq/mds1R7gH5N8GLgE2Ah8o/V6VfXSJAeqatMk9UyD9Zyb9ZzbnNZz+aT7N4MiyZ3Am4GXJDkOvJ/RtxyrgH1JAL5eVX9eVY8kuRs4xOgjyS1V9fNJi5M0H5pBUVU3LjJ8+zm2vw24rU9RkubLPJ2ZuWvoAhawnnOznnM7r+rJL+chJWlx89RRSJpTcxEUSa7rrg05lmTHAMe/LMmXkxxK8kiSW7vxtUn2JTnaPa6ZYU0rkjyU5P45qOXFSe7pru85nOSagevZ2f1bPZzkziSrZ1nPWa5/Ouvxp3390yyuxxo8KLprQf4WeBtwJXBjd83ILD0NvKeqrgSuBm7patgB7K+qjcD+bnlWbgUOjy0PWctHgS9U1SuAV3d1DVJPkssZnaj3uqp6FbCC0fVFs6zn0zz7+qdFjz+j658Wq2dpr8eqqkH/ANcAe8eWdwI7B67pPuCtwBFgfTe2Hjgyo+NvYPRmewtwfzc2VC0vAr5PN581Nj5UPWu7N/5aRt/a3Q/8/qzrAS4HHm79fSx8PwN7gWumXc+CdX8I3NGnnsE7Cubs+pDuJ9ZVwIPAuqo60a06CaybURkfYXRC2y/Gxoaq5QrgSeBT3UehTyS5eKh6quop4EPAD4ATwI+r6otD1TPmbMefh/d37+ux5iEo5kaSFwCfBd5VVT8ZX1ej+J36V0RJ3gGcqqpvnW2bWdXSuQB4LfDxqroK+BkL2vpZ1pPkZcC7GQXYJcDFSW4aqp7FDH38cX2uxxo3D0HxnK8PmaYkKxmFxB1VdW83/ESS9d369cCpGZTyJuCdSf4DuAt4S5LPDFQLjH7iHK+qB7vlexgFx1D1bAK+VlVPVtUZ4F7gjQPW84yzHX+w9/fY9Vh/1IXXxPXMQ1B8E9iY5IokFzKaaNkzywIyOg/9duBwVX14bNUeYFv3fBujuYupqqqdVbWhRuflbwW+VFU3DVFLV89J4LEkL++GNjM6RX+QehjNBVyd5KLu320zo8nVoep5xtmOvwfYmmRVkit4jtc/9TV2PdY769nXYz3/emYxAfUcJmLezmiC6t+B9w1w/N9m1Cp+GzjY/Xk78BuMJhWPAg8Aa2dc15v55WTmYLUArwEOdH8/nwPWDFzPXzEKq4eBf2B03dHM6gHuZDQ/coZRx3XzuY4PvK97bx8B3jajeo4xmot45v38d33q8cxMSU3z8NFD0pwzKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNT0fz4TFHxiMA+GAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54eb26588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADf1JREFUeJzt3XHMXXV9x/H3Z21pB0Ztp2kKJaMxjQbJBH2ioMtm7BzoiGX/kJKxdBtJs4QtaExcO//wLxLNjNE/pksjajcZhCAbDXFirRqzGJE6GgettZ0OqbQUx6bGJV3R7/64B70rT/vDe557z233fiXNved3zrnnk/Lk03N+95yHVBWSdDa/MnQASfPPopDUZFFIarIoJDVZFJKaLApJTRaFpKapFUWS65IcSnIkyfZpHUfS9GUaN1wlWQZ8G3grcBR4GLipqg4s+cEkTd3yKX3u64EjVfUdgCR3A5uBRYvigqysVVw0pSiSAH7Mf/6gql4+yb7TKopLgCfGlo8CbxjfIMk2YBvAKi7kDdk0pSiSAL5Q9z4+6b6DTWZW1c6qWqiqhRWsHCqGpBdgWkXxfeDSseX13Zikc9C0iuJhYGOSDUkuALYAu6d0LElTNpU5iqp6NsmfAQ8Cy4BPVNVj0ziWpOmb1mQmVfVZ4LPT+nxJs+OdmZKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpKaJiyLJpUm+lORAkseS3NaNr0myJ8nh7nX10sWVNIQ+ZxTPAu+uqsuBq4Fbk1wObAf2VtVGYG+3LOkcNnFRVNWxqvqX7v2PgYPAJcBmYFe32S7ghr4hJQ1r+VJ8SJLLgKuAh4C1VXWsW3UcWHuGfbYB2wBWceFSxJA0Jb0nM5O8CPgM8M6q+tH4uqoqoBbbr6p2VtVCVS2sYGXfGJKmqFdRJFnBqCTurKr7uuGnkqzr1q8DTvSLKGlofb71CHAHcLCqPjS2ajewtXu/Fbh/8niS5kGfOYo3AX8I/GuS/d3YXwLvB+5JcgvwOHBjv4iShjZxUVTVPwM5w+pNk36upPnjnZmSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU29iyLJsiSPJHmgW16TZE+Sw93r6v4xJQ1pKc4obgMOji1vB/ZW1UZgb7cs6RzWqyiSrAd+D/j42PBmYFf3fhdwQ59jSBpe3zOKDwPvAX42Nra2qo51748Da3seQ9LAJi6KJNcDJ6rqG2fapqoKqDPsvy3JviT7TnFy0hiSZmB5j33fBLwjyduBVcCLk3waeCrJuqo6lmQdcGKxnatqJ7AT4MVZs2iZSJoPE59RVNWOqlpfVZcBW4AvVtXNwG5ga7fZVuD+3iklDWoa91G8H3hrksPA73TLks5hfS49fq6qvgx8uXv/H8CmpfhcSfPBOzMlNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLIopePDJ/Tz45P6hY0hLxqKQ1GRRSGqyKCQ1WRRT5FyFzhcWhaQmi0JSk0UxBddefCXXXnzl0DGkJWNRSGqyKCQ1WRSSmiwKSU0WhaSmJfn/emhxz33z8dxNV34TonOVZxSSmiwKSU0WhaSmXkWR5KVJ7k3yrSQHk1yTZE2SPUkOd6+rlyqspGH0PaP4CPC5qnoV8BrgILAd2FtVG4G93bKkc9jERZHkJcBvAXcAVNX/VNV/AZuBXd1mu4Ab+oaUNKw+ZxQbgKeBTyZ5JMnHk1wErK2qY902x4G1fUNKGlafolgOvBb4WFVdBfyE0y4zqqqAWmznJNuS7Euy7xQne8SQNG19iuIocLSqHuqW72VUHE8lWQfQvZ5YbOeq2llVC1W1sIKVPWJImraJi6KqjgNPJHllN7QJOADsBrZ2Y1uB+3sllDS4vrdw/zlwZ5ILgO8Af8yofO5JcgvwOHBjz2NIGlivoqiq/cDCIqs29flcSfPFOzMlNVkUkposCklNFoWkJotCUpO/4WqK/M1WOl94RiGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU1+PToFfi2q841nFJKaLApJTRaFpCbnKKbAuQmdbzyjkNRkUSyhB5/c//NvPKTziZceS8hLDp2vPKOQ1GRRLBEvOXQ+sygkNVkUS8T5CZ3PLApJTRaFpCaLQlJTr6JIsiPJgSSPJrkryaoka5LsSXK4e129VGElDWPiokhyGbANeF1VXQEsA7YA24G9VbUR2NstSzqH9Tmj+BFwCvjVJMuBC4Engc3Arm6bXcANvRJKGtzERVFVzwAfBL4HHAN+WFWfB9ZW1bFus+PA2t4pJQ2qz6XHK4B3ARuAi4GLktw8vk1VFVBn2H9bkn1J9p3i5KQxJM1An0uPBeCrVfV0VZ0C7gPeCDyVZB1A93pisZ2ramdVLVTVwgpW9ohx/vEpVM2bPkVxCLg6yYVJAmwCDgK7ga3dNluB+/tFlDS0iR8zr6r9Sf4W2Af8DHgE2Am8CLgnyS3A48CNSxH0/yN/m7fmRa/fR1FVHwA+cNrwSUZnF5LOE96ZOYeuvfjK/3MW4ZyFhuZvuJpjp19yeCmioXhGIanJojiHPHdJ4mWIZs2ikNRkUZyDnKPQrFkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqalZFEk+keREkkfHxtYk2ZPkcPe6emzdjiRHkhxKcu20gkuanRdyRvEp4LrTxrYDe6tqI7C3WybJ5cAW4NXdPh9NsmzJ0koaRLMoquorwDOnDW8GdnXvdwE3jI3fXVUnq+q7wBHg9UuUVdJAJp2jWFtVx7r3x4G13ftLgCfGtjvajUk6h/WezKyqAuqX3S/JtiT7kuw7xcm+MSRN0aRF8VSSdQDd64lu/PvApWPbre/GnqeqdlbVQlUtrGDlhDEkzcKkRbEb2Nq93wrcPza+JcnKJBuAjcDX+0WUNLTlrQ2S3AW8GXhZkqPA+4D3A/ckuQV4HLgRoKoeS3IPcAB4Fri1qn46peySZqRZFFV10xlWbTrD9rcDt/cJJWm+eGempCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpqVkUST6R5ESSR8fG/irJt5J8M8k/JHnp2LodSY4kOZTk2mkFlzQ7L+SM4lPAdaeN7QGuqKrfAL4N7ABIcjmwBXh1t89HkyxbsrSSBtEsiqr6CvDMaWOfr6pnu8WvAeu795uBu6vqZFV9FzgCvH4J80oawFLMUfwJ8E/d+0uAJ8bWHe3GJJ3DlvfZOcl7gWeBOyfYdxuwDWAVF/aJIWnKJi6KJH8EXA9sqqrqhr8PXDq22fpu7Hmqaiews/usp79Q9/4E+MGkeabgZZjnbMxzdvOY59cn3XmiokhyHfAe4Ler6r/HVu0G/j7Jh4CLgY3A11ufV1UvT7KvqhYmyTMN5jk785zdnOa5bNL9m0WR5C7gzcDLkhwF3sfoW46VwJ4kAF+rqj+tqseS3AMcYHRJcmtV/XTScJLmQ7MoquqmRYbvOMv2twO39wklab7M052ZO4cOcBrznJ15zu68ypNfzENK0uLm6YxC0pyai6JIcl33bMiRJNsHOP6lSb6U5ECSx5Lc1o2vSbInyeHudfUMMy1L8kiSB+Ygy0uT3Ns933MwyTUD59nR/bd6NMldSVbNMs8Znn864/Gn/fzTLJ7HGrwoumdB/hp4G3A5cFP3zMgsPQu8u6ouB64Gbu0ybAf2VtVGYG+3PCu3AQfHlofM8hHgc1X1KuA1Xa5B8iS5jNGNeq+rqiuAZYyeL5plnk/x/OefFj3+jJ5/WizP0j6PVVWD/gGuAR4cW94B7Bg40/3AW4FDwLpubB1waEbHX8/oh+0twAPd2FBZXgJ8l24+a2x8qDxruh/8NYy+tXsA+N1Z5wEuAx5t/X2c/vMMPAhcM+08p637feDOPnkGP6Ngzp4P6f7Fugp4CFhbVce6VceBtTOK8WFGN7T9bGxsqCwbgKeBT3aXQh9PctFQearqGeCDwPeAY8APq+rzQ+UZc6bjz8PPd+/nseahKOZGkhcBnwHeWVU/Gl9Xo/qd+ldESa4HTlTVN860zayydJYDrwU+VlVXAT/htNP6WeZJ8grgXYwK7GLgoiQ3D5VnMUMff1yf57HGzUNRvODnQ6YpyQpGJXFnVd3XDT+VZF23fh1wYgZR3gS8I8m/A3cDb0ny6YGywOhfnKNV9VC3fC+j4hgqzwLw1ap6uqpOAfcBbxwwz3POdPzBfr7Hnsf6g668Js4zD0XxMLAxyYYkFzCaaNk9ywAZ3Yd+B3Cwqj40tmo3sLV7v5XR3MVUVdWOqlpfo/vytwBfrKqbh8jS5TkOPJHkld3QJka36A+Sh9FcwNVJLuz+u21iNLk6VJ7nnOn4u4EtSVYm2cALfP6pr7Hnsd5Rz38e65fPM4sJqBcwEfN2RhNU/wa8d4Dj/yajU8VvAvu7P28Hfo3RpOJh4AvAmhnnejO/mMwcLAtwJbCv+/v5R2D1wHn+glFZPQr8HaPnjmaWB7iL0fzIKUZnXLec7fjAe7uf7UPA22aU5wijuYjnfp7/pk8e78yU1DQPlx6S5pxFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpKb/BW3SyDTYdeDcAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ed4bf28>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADupJREFUeJzt3X/sXXV9x/Hnay20A4O20zSFstGYRlPNENco6LIZOwc6Y9k/pGQs3cbSLGELGhNt5x/+RYKZMfrHdGlEbSaDNJWNhjihVI1ZjGgZxEFrbadDqi3FsU3jTFf0vT/uQW++fL/9lHu+98eXPh9Jc+/5nHPueff29nU/53PO5/tNVSFJZ/Mr0y5A0uwzKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqWlsQZHkuiRHkhxLsmNcx5E0fhnHDVdJlgHfBt4GHAe+AdxYVYcW/WCSxm75mF73DcCxqvoOQJK7gS3AvEFxYVbUSi4eUymSAH7Mf/2wql4xyr7jCorLgCeHlo8DbxzeIMl2YDvASi7ijdk8plIkATxYe58Ydd+pDWZW1a6q2lRVmy5gxbTKkHQOxhUU3wcuH1pe17VJWoLGFRTfADYkWZ/kQmArsG9Mx5I0ZmMZo6iqZ5P8JXA/sAz4VFU9Po5jSRq/cQ1mUlWfBz4/rteXNDnemSmpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoaOSiSXJ7kS0kOJXk8ya1d++ok+5Mc7R5XLV65kqahT4/iWeC9VbURuBq4JclGYAdwoKo2AAe6ZUlL2MhBUVUnqupfu+c/Bg4DlwFbgN3dZruB6/sWKWm6li/GiyS5ArgKeAhYU1UnulUngTUL7LMd2A6wkosWowxJY9J7MDPJS4DPAe+uqh8Nr6uqAmq+/apqV1VtqqpNF7CibxmSxqhXUCS5gEFI3FlV93TNTyVZ261fC5zqV6Kkaetz1SPAHcDhqvrI0Kp9wLbu+Tbg3tHLkzQL+oxRvBn4Y+Dfkjzatf01cDuwJ8nNwBPADf1KlDRtIwdFVf0LkAVWbx71dSXNHu/MlNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhq6h0USZYleSTJfd3y6iT7kxztHlf1L1PSNC1Gj+JW4PDQ8g7gQFVtAA50y5KWsF5BkWQd8AfAJ4eatwC7u+e7gev7HEPS9PXtUXwUeB/w86G2NVV1ont+EljT8xiSpmzkoEjyTuBUVT280DZVVUAtsP/2JAeTHDzD6VHLkDQBy3vs+2bgXUneAawELknyWeCpJGur6kSStcCp+Xauql3ALoBLsnreMJE0G0buUVTVzqpaV1VXAFuBL1bVTcA+YFu32Tbg3t5VSpqqcdxHcTvwtiRHgd/rliUtYX1OPX6hqr4MfLl7/p/A5sV4XUmzwTszJTUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQjNH9P3iU+3/w6LTLkHozKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBsUEOOdjOnzPF49BIanJoJDUZFBIajIoJDUZFJKaDApJTQbFGF176eu49tLX/WLZy3WTNfzeq59eQZHkZUn2JvlWksNJrkmyOsn+JEe7x1WLVayk6ejbo/gY8IWqejVwJXAY2AEcqKoNwIFuWdISNnJQJHkp8DvAHQBV9X9V9d/AFmB3t9lu4Pq+RUqaruU99l0PPA18OsmVwMPArcCaqjrRbXMSWNOvRJ2P5o7njGu8Yfg4jmksrM+px3Lg9cAnquoq4CfMOc2oqgJqvp2TbE9yMMnBM5zuUYakcevTozgOHK+qh7rlvQyC4qkka6vqRJK1wKn5dq6qXcAugEuyet4webF47pvKqx4vnN/ys2HkHkVVnQSeTPKqrmkzcAjYB2zr2rYB9/aqUNLU9elRAPwVcGeSC4HvAH/KIHz2JLkZeAK4oecxdB4ad0/CsYkXpldQVNWjwKZ5Vm3u87qSZkvfHoXOwXPfXn5zaakyKCbAgNBS51wPSU32KHRe8RL1aOxRSGoyKHRec/zo3BgUkpoMCklNBoWkJq96jNGkpkovNeO+Ae1cXt9/ixfGoNDUTCIw5s7cNSBG46mHpCZ7FGM099ts+BtO4+NPPl989igkNdmjmAB/wtX8JvFzMMd9rPOFPQpJTfYoJsCexHjNvaJhD27x2aOQ1GSPYgKGv+G8nj9+9iQWn0GhiRrHf+KznWoYyIvDUw9JTfYoJshvt/G8B86pGT97FJKa7FFo4hZrQNdBy8mxRyGpyR6FJmoxJ8Z5Y9Xk2KOQ1NQrKJLsTHIoyWNJ7kqyMsnqJPuTHO0eVy1WsVr6vCKxNI186pHkCmA7sLGqfppkD7AV2AgcqKrbk+wAdgDvX4RatYSN47eHe5fr5PTpUfwIOAP8apLlwEXAD4AtwO5um93A9b0qlDR1I/coquqZJB8Gvgf8FHigqh5IsqaqTnSbnQTWLEKd540Xy0/BmsQA49z3yRuvxmfkHkWSVwLvAdYDlwIXJ7lpeJuqKqAW2H97koNJDp7h9KhlSJqAPpdHNwFfraqnAZLcA7wJeCrJ2qo6kWQtcGq+natqF7AL4JKsnjdMzldL+dy71ZNYzL/TQj+HQouvzxjFEeDqJBclCbAZOAzsA7Z122wD7u1XoqRpy+DsYMSdk/czCIOfA48Afw68BNgD/DrwBHBDVT1ztte5JKvrjdk8ch0vNkv1XPtsvYml8nd4MXuw9j5cVZtG2bfXnZlV9SHgQ3OaTzPoXUh6kfAW7hm00Gj+rHwrL9Tjme/3acxKzeqn16nHYvHU49z4n8/3oI8+px7O9ZDU5KnHEuK3qO/BtNijkNRkj+I8N8kbpLR02aOQ1GSP4jzU98Yorzycf+xRSGqyR3EeWKgHMWqPwJ7E+cegOA/4H1t9eeohqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlJTMyiSfCrJqSSPDbWtTrI/ydHucdXQup1JjiU5kuTacRUuaXLOpUfxGeC6OW07gANVtQE40C2TZCOwFXhNt8/HkyxbtGolTUUzKKrqK8Azc5q3ALu757uB64fa766q01X1XeAY8IZFqlXSlIw6RrGmqk50z08Ca7rnlwFPDm13vGuTtIT1Hsyswa9Df8G/Ej3J9iQHkxw8w+m+ZUgao1GD4qkkawG6x1Nd+/eBy4e2W9e1PU9V7aqqTVW16QJWjFiGpEkYNSj2Adu659uAe4fatyZZkWQ9sAH4er8SJU1b8/d6JLkLeAvw8iTHgQ8CtwN7ktwMPAHcAFBVjyfZAxwCngVuqaqfjal2SRPSDIqqunGBVZsX2P424LY+RUmaLd6ZKanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIamoGRZJPJTmV5LGhtr9J8q0k30zyj0leNrRuZ5JjSY4kuXZchUuanHPpUXwGuG5O237gtVX1m8C3gZ0ASTYCW4HXdPt8PMmyRatW0lQ0g6KqvgI8M6ftgap6tlv8GrCue74FuLuqTlfVd4FjwBsWsV5JU7AYYxR/Bvxz9/wy4Mmhdce7NklL2PI+Oyf5APAscOcI+24HtgOs5KI+ZUgas5GDIsmfAO8ENldVdc3fBy4f2mxd1/Y8VbUL2NW91tMP1t6fAD8ctZ4xeDnWczbWc3azWM9vjLrzSEGR5DrgfcDvVtX/Dq3aB/xDko8AlwIbgK+3Xq+qXpHkYFVtGqWecbCes7Oes5vReq4Ydf9mUCS5C3gL8PIkx4EPMrjKsQLYnwTga1X1F1X1eJI9wCEGpyS3VNXPRi1O0mxoBkVV3ThP8x1n2f424LY+RUmaLbN0Z+auaRcwh/WcnfWc3YuqnvxyHFKS5jdLPQpJM2omgiLJdd3ckGNJdkzh+Jcn+VKSQ0keT3Jr1746yf4kR7vHVROsaVmSR5LcNwO1vCzJ3m5+z+Ek10y5np3dv9VjSe5KsnKS9Sww/2nB4497/tMk5mNNPSi6uSB/C7wd2Ajc2M0ZmaRngfdW1UbgauCWroYdwIGq2gAc6JYn5Vbg8NDyNGv5GPCFqno1cGVX11TqSXIFgxv1fquqXgssYzC/aJL1fIbnz3+a9/gTmv80Xz2LOx+rqqb6B7gGuH9oeSewc8o13Qu8DTgCrO3a1gJHJnT8dQw+bG8F7uvaplXLS4Hv0o1nDbVPq57V3Qd/NYOrdvcBvz/peoArgMda78fczzNwP3DNuOuZs+4PgTv71DP1HgUzNj+k+8a6CngIWFNVJ7pVJ4E1EyrjowxuaPv5UNu0alkPPA18ujsV+mSSi6dVT1U9A3wY+B5wAvifqnpgWvUMWej4s/D57j0faxaCYmYkeQnwOeDdVfWj4XU1iN+xXyJK8k7gVFU9vNA2k6qlsxx4PfCJqroK+AlzuvWTrCfJK4H3MAiwS4GLk9w0rXrmM+3jD+szH2vYLATFOc8PGackFzAIiTur6p6u+akka7v1a4FTEyjlzcC7kvwHcDfw1iSfnVItMPjGOV5VD3XLexkEx7Tq2QR8taqerqozwD3Am6ZYz3MWOv7UPt9D87H+qAuvkeuZhaD4BrAhyfokFzIYaNk3yQIyuA/9DuBwVX1kaNU+YFv3fBuDsYuxqqqdVbWuBvflbwW+WFU3TaOWrp6TwJNJXtU1bWZwi/5U6mEwFnB1kou6f7fNDAZXp1XPcxY6/j5ga5IVSdZzjvOf+hqaj/Wuev58rBdezyQGoM5hIOYdDAao/h34wBSO/9sMuorfBB7t/rwD+DUGg4pHgQeB1ROu6y38cjBzarUArwMOdu/PPwGrplzP+xmE1WPA3zOYdzSxeoC7GIyPnGHQ47r5bMcHPtB9to8Ab59QPccYjEU893n+uz71eGempKZZOPWQNOMMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDX9P+4MULOwvQH/AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ea78588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADeZJREFUeJzt3XHIXXd9x/H3Z0marBU1mRKSpqxBglLLbPVBWx2bmLlWV0z3T0lZR7YVwqAbVQSXzD/8q6BMRP+YjmDVbHYtpXZrKM4YoyJDrI1rcG1iTKarjU2aum4qDrJUv/vjnuo1fZ786j3PvedJeL8g3HN+55x7PqSXT879Pec8TVUhSefya0MHkLT0WRSSmiwKSU0WhaQmi0JSk0UhqcmikNQ0taJIcn2SI0mOJdkxrfNImr5M44arJMuAbwNvBY4DDwM3V9WhRT+ZpKlbPqX3fT1wrKq+A5DkHmALMG9RXJSVtYpLphRFEsCP+e8fVNXLJzl2WkVxKfDE2Ppx4A3jOyTZDmwHWMXFvCGbpxRFEsAX6r7HJz12sMnMqtpVVXNVNbeClUPFkPQCTKsovg9cNra+oRuTdB6aVlE8DGxKsjHJRcBWYM+UziVpyqYyR1FVzyb5C2AvsAz4RFU9No1zSZq+aU1mUlWfBT47rfeXNDvemSmpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqauCiSXJbkS0kOJXksye3d+Jok+5Ic7V5XL15cSUPoc0XxLPDuqroCuAa4LckVwA5gf1VtAvZ365LOYxMXRVWdqKp/65Z/DBwGLgW2ALu73XYDN/YNKWlYyxfjTZJcDlwNPASsraoT3aaTwNoFjtkObAdYxcWLEUPSlPSezEzyIuAzwDur6kfj26qqgJrvuKraVVVzVTW3gpV9Y0iaol5FkWQFo5K4q6ru74afSrKu274OONUvoqSh9fmpR4A7gcNV9aGxTXuAbd3yNuCByeNJWgr6zFG8Cfhj4N+THOzG/hp4P3BvkluBx4Gb+kWUNLSJi6Kq/hXIAps3T/q+kpYe78yU1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGrqXRRJliV5JMmD3fqaJPuSHO1eV/ePKWlIi3FFcTtweGx9B7C/qjYB+7t1SeexXkWRZAPwB8DHx4a3ALu75d3AjX3OIWl4fa8oPgy8B/jZ2NjaqjrRLZ8E1vY8h6SBTVwUSW4ATlXVNxbap6oKqAWO357kQJIDZzg9aQxJM7C8x7FvAt6R5O3AKuDFST4NPJVkXVWdSLIOODXfwVW1C9gF8OKsmbdMJC0NE19RVNXOqtpQVZcDW4EvVtUtwB5gW7fbNuCB3iklDWoa91G8H3hrkqPA73Xrks5jfb56/FxVfRn4crf8X8DmxXhfSUuDd2ZKarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSLaO+TB9n75MGhY0iLzqKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmimAJvvNKFxqKQ1GRRLKLr1l/FdeuvGjqGtOgsCklNFoWkJotCUpNFIalpUf6XgvplTmjqQtPriiLJS5Pcl+RbSQ4nuTbJmiT7khztXlcvVlhJw+j71eMjwOeq6lXAa4DDwA5gf1VtAvZ365LOYxMXRZKXAL8D3AlQVf9XVf8DbAF2d7vtBm7sG1LSsPpcUWwEngY+meSRJB9PcgmwtqpOdPucBNb2DXm+8lZuXSj6FMVy4LXAx6rqauAnnPU1o6oKqPkOTrI9yYEkB85wukcMSdPWpyiOA8er6qFu/T5GxfFUknUA3eup+Q6uql1VNVdVcytY2SOGpGmbuCiq6iTwRJJXdkObgUPAHmBbN7YNeKBXQkmD63sfxV8CdyW5CPgO8KeMyufeJLcCjwM39TyHpIH1KoqqOgjMzbNpc5/3lbS0eAu3pCaLQlKTRSGpyaKQ1GRRSGryMfMp8nFzXSi8opDUZFFIarIoJDVZFJKaLIop8PdQ6EJjUUhq8sejU+CPRXWh8YpCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmnoVRZKdSQ4leTTJ3UlWJVmTZF+So93r6sUKK2kYExdFksuB7cDrqupKYBmwFdgB7K+qTcD+bl3SeazPFcWPgDPArydZDlwMPAlsAXZ3++wGbuyVUNLgJi6KqnoG+CDwPeAE8MOq+jywtqpOdLudBNb2TilpUH2+erwCeBewEVgPXJLklvF9qqqAWuD47UkOJDlwhtOTxpA0A32+eswBX62qp6vqDHA/8EbgqSTrALrXU/MdXFW7qmququZWsLJHDEnT1qcojgDXJLk4SYDNwGFgD7Ct22cb8EC/iJKGNvFv4a6qg0n+HjgA/Ax4BNgFvAi4N8mtwOPATYsRVNJwev26/qr6APCBs4ZPM7q6kHSB8M5MSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJotBU7H3yIHufPDh0DC0Si0JSU6/HzKWFXLf+KoCfX1U8t67zk1cUkposCk3Vdeuv+qWrCectzk8WhaQmi0Iz5VzF+cmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIampWRRJPpHkVJJHx8bWJNmX5Gj3unps284kx5IcSXLdtIJLmp0XckXxKeD6s8Z2APurahOwv1snyRXAVuDV3TEfTbJs0dJKGkSzKKrqK8AzZw1vAXZ3y7uBG8fG76mq01X1XeAY8PpFyippIJPOUaytqhPd8klgbbd8KfDE2H7HuzFJ57Hek5lVVUD9qscl2Z7kQJIDZzjdN4akKZq0KJ5Ksg6gez3VjX8fuGxsvw3d2PNU1a6qmququRWsnDCGpFmYtCj2ANu65W3AA2PjW5OsTLIR2AR8vV9ESUNr/s7MJHcDbwZeluQ48D7g/cC9SW4FHgduAqiqx5LcCxwCngVuq6qfTim7pBlpFkVV3bzAps0L7H8HcEefUJKWFu/MlNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNTWLIsknkpxK8ujY2N8k+VaSbyb5pyQvHdu2M8mxJEeSXDet4JJm54VcUXwKuP6ssX3AlVX1W8C3gZ0ASa4AtgKv7o75aJJli5ZW0iCaRVFVXwGeOWvs81X1bLf6NWBDt7wFuKeqTlfVd4FjwOsXMa+kASzGHMWfAf/SLV8KPDG27Xg3Juk8trzPwUneCzwL3DXBsduB7QCruLhPDElTNnFRJPkT4AZgc1VVN/x94LKx3TZ0Y89TVbuAXd17Pf2Fuu8nwA8mzTMFL8M852Kec1uKeX5z0oMnKook1wPvAX63qv53bNMe4B+TfAhYD2wCvt56v6p6eZIDVTU3SZ5pMM+5mefclmieyyc9vlkUSe4G3gy8LMlx4H2MfsqxEtiXBOBrVfXnVfVYknuBQ4y+ktxWVT+dNJykpaFZFFV18zzDd55j/zuAO/qEkrS0LKU7M3cNHeAs5jk385zbBZUnv5iHlKT5LaUrCklL1JIoiiTXd8+GHEuyY4DzX5bkS0kOJXksye3d+Jok+5Ic7V5XzzDTsiSPJHlwCWR5aZL7uud7Die5duA8O7v/Vo8muTvJqlnmWeD5pwXPP+3nn2bxPNbgRdE9C/K3wNuAK4Cbu2dGZulZ4N1VdQVwDXBbl2EHsL+qNgH7u/VZuR04PLY+ZJaPAJ+rqlcBr+lyDZInyeWMbtR7XVVdCSxj9HzRLPN8iuc//zTv+Wf0/NN8eRb3eayqGvQPcC2wd2x9J7Bz4EwPAG8FjgDrurF1wJEZnX8Dow/bW4AHu7GhsrwE+C7dfNbY+FB51nQf/DWMfmr3IPD7s84DXA482vr7OPvzDOwFrp12nrO2/SFwV588g19RsMSeD+n+xboaeAhYW1Unuk0ngbUzivFhRje0/WxsbKgsG4GngU92X4U+nuSSofJU1TPAB4HvASeAH1bV54fKM2ah8y+Fz3fv57GWQlEsGUleBHwGeGdV/Wh8W43qd+o/IkpyA3Cqqr6x0D6zytJZDrwW+FhVXQ38hLMu62eZJ8krgHcxKrD1wCVJbhkqz3yGPv+4Ps9jjVsKRfGCnw+ZpiQrGJXEXVV1fzf8VJJ13fZ1wKkZRHkT8I4k/wncA7wlyacHygKjf3GOV9VD3fp9jIpjqDxzwFer6umqOgPcD7xxwDzPWej8g32+x57H+qOuvCbOsxSK4mFgU5KNSS5iNNGyZ5YBMroP/U7gcFV9aGzTHmBbt7yN0dzFVFXVzqraUKP78rcCX6yqW4bI0uU5CTyR5JXd0GZGt+gPkofRXMA1SS7u/rttZjS5OlSe5yx0/j3A1iQrk2zkBT7/1NfY81jvqOc/j/Wr55nFBNQLmIh5O6MJqv8A3jvA+X+b0aXiN4GD3Z+3A7/BaFLxKPAFYM2Mc72ZX0xmDpYFuAo40P39/DOweuA8f8WorB4F/oHRc0czywPczWh+5AyjK65bz3V+4L3dZ/sI8LYZ5TnGaC7iuc/z3/XJ452ZkpqWwlcPSUucRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaSm/wd/VbgO82HKVAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e65e630>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADzRJREFUeJzt3W2MHWd5xvH/VSexm1DALsh14rS2qAUyqBBqQQJ9iXBpAkU4/RI5aiq3TWVVSquAkMAuH/gUKagIwYdCZRHAKmkiK6SNFVEcx4BQhXgxjUUTG2MXGmJix6FpC6LIdeDuhzMWh83uPvY5e152/f9J0Z55ZubMrfXm2nuemTmbqkKS5vMLky5A0vQzKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqWlkQZHkxiRHkxxPsmNUx5E0ehnFDVdJlgHfAt4MnAC+BtxSVYcX/GCSRu6SEb3v64DjVfVtgCT3AVuAWYPisiyvFVwxolIkAfyQ//p+Vb10kH1HFRRXAU/2LZ8AXt+/QZLtwHaAFVzO67N5RKVIAnik7n9i0H0nNplZVbuqalNVbbqU5ZMqQ9J5GFVQfA+4um95bTcmaREaVVB8DdiQZH2Sy4CtwN4RHUvSiI1kjqKqnkvyl8A+YBnw8ap6fBTHkjR6o5rMpKo+A3xmVO8vaXy8M1NSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNQ0cFAkuTrJ55McTvJ4kju68VVJ9ic51n1duXDlSpqEYTqK54B3VdVG4Frg9iQbgR3AgaraABzoliUtYgMHRVWdrKp/7V7/EDgCXAVsAXZ3m+0Gbhq2SEmTdclCvEmSdcA1wFeA1VV1slt1Clg9xz7bge0AK7h8IcqQNCJDT2YmeQHwaeAdVfWD/nVVVUDNtl9V7aqqTVW16VKWD1uGpBEaKiiSXEovJO6pqge64aeTrOnWrwFOD1eipEkb5qpHgLuBI1X1wb5Ve4Ft3ettwIODlydpGgwzR/FG4I+Bf0tyqBv7a+AuYE+S24AngJuHK1HSpA0cFFX1L0DmWL150PeVNH28M1NSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgyKAe176hD7njrU3lBaAgwKSU0GhaQmg0JS09BBkWRZkkeTPNQtr0qyP8mx7uvK4cuUNEkL0VHcARzpW94BHKiqDcCBblnSIjZUUCRZC/wB8LG+4S3A7u71buCmYY4hafIG/mvmnQ8B7wZ+qW9sdVWd7F6fAlYPeYypdMOVr5l0CdLYDNxRJHkbcLqqvj7XNlVVQM2x//YkB5McPMuZQcuQNAbDdBRvBN6e5K3ACuCFST4FPJ1kTVWdTLIGOD3bzlW1C9gF8MKsmjVMJE2HgTuKqtpZVWurah2wFfhcVd0K7AW2dZttAx4cukpJEzWK+yjuAt6c5Bjwe92ypEVs2MlMAKrqC8AXutf/CWxeiPddTPY9dcgJTi1Z3pkpqcmgWCB2E1rKDApJTQaFpCaDQlKTQaGLnp9W1mZQSGoyKKSOncXcFuSGK2kp8BL33OwoJDUZFCNgC7s4+e82N4NCUpNBoYveDVe+xvmJBoNCUpNXPRaQ57eLm13F3OwoJDUZFJo6dmbTx6DQ1Ok/BfCS5XQwKCQ1OZmpqWQXMV3sKCQ12VEsoHPn1v42HJ6XKqeLHYWkJoNihJyx11JhUEhqMii0KNidTZZBIalpqKBI8uIk9yf5ZpIjSa5LsirJ/iTHuq8rF6pYSZMxbEfxYeCzVfUK4NXAEWAHcKCqNgAHumVJi9jAQZHkRcDvAHcDVNX/VdV/A1uA3d1mu4Gbhi1S0mQN01GsB54BPpHk0SQfS3IFsLqqTnbbnAJWD1ukpMkaJiguAV4LfLSqrgF+xIzTjKoqoGbbOcn2JAeTHDzLmSHKkDRq6f2/PMCOya8AX66qdd3yb9MLil8Hrq+qk0nWAF+oqpfP914vzKp6fTYPVMc0m3k5z9uSx+Pc993v9897pO7/elVtGmTfgTuKqjoFPJnkXAhsBg4De4Ft3dg24MFBjyFpOgz7UNhfAfckuQz4NvCn9MJnT5LbgCeAm4c8xqLjjUGTZSex8IYKiqo6BMzWyiy98wjpIuadmZpK3rI9Xfw8Ck2luT7bw9OKybCjkNRkUIyRrfT589RjuhgUkpoMijHy/Pr8zfWHgy+k07AjWTgGhaQmr3qMgJ/GPby5vnd2ZZNhRyGpyY5ihPztNxn93YgPiC0Mg0JTaa7Tt9n+x5/vNMXTv4XhqYekJjsKjdW+pw41TwPm6wL6O41zr2d2H/3v7ynHwrCjkNRkUGhRslMYL4NCUpNzFCPkpbmf8erD4mZHIanJjkJjcSFd1VwPg2lyDApNjf4wmBkW5xM0nuKNjqcekprsKEbI33Dn50Imffu3nbmfk8ejY0chqWngPym4kJbqnxTU6JzPreD6eRP5k4KSLh7OUWhR8bMmJsOOQlLTUEGRZGeSw0keS3JvkhVJViXZn+RY93XlQhUrzfXp3BqtgU89kqwDtgMbq+rHSfYAW4GNwIGquivJDmAH8J4FqFWLiH8KcGkZpqP4AXAW+MUklwCXA08BW4Dd3Ta7gZuGqlDSxA3cUVTVs0k+AHwX+DHwcFU9nGR1VZ3sNjsFrF6AOrXIjLqDsEMZr4E7iiQvA94JrAeuBK5Icmv/NtW7SWPWGzWSbE9yMMnBs5wZtAxJYzDM5dFNwJeq6hmAJA8AbwCeTrKmqk4mWQOcnm3nqtoF7ILeDVdD1LGoeEnPP+6zGA0zR3EUuDbJ5UkCbAaOAHuBbd0224AHhytR0qQNdQt3kvfQC4OfAo8Cfw68ANgD/CrwBHBzVT073/t4C/fFbdgrJF5hOT/D3MI91J2ZVfV+4P0zhs/Q6y4kLRHewq2JG7YDsIMYPW/h1ljse+qQH2e3iBkUkpo89dBYeHqwuNlRSGoyKCQ1GRSSmgwKSU0GhaQmr3rogp3P/RBe5VhaDAoNbGYY+BH6S5enHpKa7CiWiPlOBy7kt/wwpxV2E0uXHYWkJjuKJWK2+YLZXi/Ee+viY0chqcmOYonq7wIG6SjsItTPjkJSkx3FRcDuQMOyo5DUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpqRkUST6e5HSSx/rGViXZn+RY93Vl37qdSY4nOZrkhlEVLml8zqej+CRw44yxHcCBqtoAHOiWSbIR2Aq8stvnI0mWLVi1kiaiGRRV9UXg2RnDW4Dd3evdwE194/dV1Zmq+g5wHHjdAtUqaUIGnaNYXVUnu9engNXd66uAJ/u2O9GNSVrEhp7MrKoC6kL3S7I9ycEkB89yZtgyJI3QoEHxdJI1AN3X093494Cr+7Zb2409T1XtqqpNVbXpUpYPWIakcRg0KPYC27rX24AH+8a3JlmeZD2wAfjqcCVKmrTm51EkuRe4HnhJkhPA+4C7gD1JbgOeAG4GqKrHk+wBDgPPAbdX1U9GVLukMWkGRVXdMseqzXNsfydw5zBFSZou3pkpqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqagZFko8nOZ3ksb6xv0nyzSTfSPKPSV7ct25nkuNJjia5YVSFSxqf8+koPgncOGNsP/CqqvoN4FvAToAkG4GtwCu7fT6SZNmCVStpIppBUVVfBJ6dMfZwVT3XLX4ZWNu93gLcV1Vnquo7wHHgdQtYr6QJWIg5ij8D/rl7fRXwZN+6E92YpEXskmF2TvJe4DngngH23Q5sB1jB5cOUIWnEBg6KJH8CvA3YXFXVDX8PuLpvs7Xd2PNU1S5gV/dezzxS9/8I+P6g9YzAS7Ce+VjP/Kaxnl8bdOeBgiLJjcC7gd+tqv/tW7UX+IckHwSuBDYAX229X1W9NMnBqto0SD2jYD3zs575TWk96wbdvxkUSe4FrgdekuQE8D56VzmWA/uTAHy5qv6iqh5Psgc4TO+U5Paq+smgxUmaDs2gqKpbZhm+e57t7wTuHKYoSdNlmu7M3DXpAmawnvlZz/yWVD352TykJM1umjoKSVNqKoIiyY3dsyHHk+yYwPGvTvL5JIeTPJ7kjm58VZL9SY51X1eOsaZlSR5N8tAU1PLiJPd3z/ccSXLdhOvZ2f1bPZbk3iQrxlnPHM8/zXn8UT//NI7nsSYeFN2zIH8LvAXYCNzSPTMyTs8B76qqjcC1wO1dDTuAA1W1ATjQLY/LHcCRvuVJ1vJh4LNV9Qrg1V1dE6knyTp6N+r9ZlW9ClhG7/micdbzSZ7//NOsxx/T80+z1bOwz2NV1UT/A64D9vUt7wR2TrimB4E3A0eBNd3YGuDomI6/lt4P25uAh7qxSdXyIuA7dPNZfeOTqmdV94O/it5Vu4eA3x93PcA64LHW92PmzzOwD7hu1PXMWPeHwD3D1DPxjoIpez6k+411DfAVYHVVnexWnQJWj6mMD9G7oe2nfWOTqmU98Azwie5U6GNJrphUPVX1LPAB4LvASeB/qurhSdXTZ67jT8PP99DPY01DUEyNJC8APg28o6p+0L+uevE78ktESd4GnK6qr8+1zbhq6VwCvBb4aFVdA/yIGW39OOtJ8jLgnfQC7ErgiiS3Tqqe2Uz6+P2GeR6r3zQExXk/HzJKSS6lFxL3VNUD3fDTSdZ069cAp8dQyhuBtyf5D+A+4E1JPjWhWqD3G+dEVX2lW76fXnBMqp5NwJeq6pmqOgs8ALxhgvWcM9fxJ/bz3fc81h914TVwPdMQFF8DNiRZn+QyehMte8dZQHr3od8NHKmqD/at2gts615vozd3MVJVtbOq1lbvvvytwOeq6tZJ1NLVcwp4MsnLu6HN9G7Rn0g99OYCrk1yeffvtpne5Oqk6jlnruPvBbYmWZ5kPef5/NOw+p7Hens9/3msC69nHBNQ5zER81Z6E1T/Drx3Asf/LXqt4jeAQ91/bwV+md6k4jHgEWDVmOu6np9NZk6sFuA1wMHu+/NPwMoJ1/MeemH1GPD39J47Gls9wL305kfO0uu4bpvv+MB7u5/to8BbxlTPcXpzEed+nv9umHq8M1NS0zScekiacgaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmv4f6vB8ppyrUJYAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ea03240>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADgxJREFUeJzt3X/oXXd9x/Hna0marBU1mRKSpqxBglLLbPWLtjo2MXOtTkz3T0lZR7YVwqAbVQSXzD/8q6BMRP+YjmDVbHYtpXZrKM42RkWGWBvX4NrEmExXG5s0dd2muJGl+t4f91Tvvv1+84n3fO+Pb/Z8QLj3fM4597xILq/vuZ97zjepKiTpXH5p2gEkzT6LQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmsZWFEmuT3I0yfEku8Z1HEnjl3FccJVkBfBt4K3ACeAR4KaqOrzkB5M0divH9LqvB45X1XcAktwNbAMWLIqLsrrWcMmYokgC+BH//oOqevko+46rKC4FnhxaPgG8YXiDJDuBnQBruJg3ZOuYokgC+ELd+8So+05tMrOq9lTVXFXNrWL1tGJIOg/jKorvA5cNLW/qxiQtQ+MqikeALUk2J7kI2A7sG9OxJI3ZWOYoquq5JH8CPAisAD5ZVY+P41iSxm9ck5lU1eeAz43r9SVNjldmSmqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmkYuiiSXJflSksNJHk9yWze+Lsn+JMe6x7VLF1fSNPQ5o3gOeE9VXQFcA9ya5ApgF3CgqrYAB7plScvYyEVRVSer6p+65z8CjgCXAtuAvd1me4Eb+oaUNF0rl+JFklwOXA08DKyvqpPdqlPA+kX22QnsBFjDxUsRQ9KY9J7MTPIi4LPAu6rqh8PrqqqAWmi/qtpTVXNVNbeK1X1jSBqjXkWRZBWDkrizqu7rhp9OsqFbvwE43S+ipGnr861HgDuAI1X14aFV+4Ad3fMdwP2jx5M0C/rMUbwJ+H3gn5Mc6sb+HPgAcE+SW4AngBv7RZQ0bSMXRVX9I5BFVm8d9XUlzR6vzJTUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIaupdFElWJHk0yQPd8rok+5Mc6x7X9o8paZqW4oziNuDI0PIu4EBVbQEOdMuSlrFeRZFkE/A7wCeGhrcBe7vne4Eb+hxD0vT1PaP4CPBe4KdDY+ur6mT3/BSwvucxJE3ZyEWR5B3A6ar6xmLbVFUBtcj+O5McTHLwLGdGjSFpAlb22PdNwDuTvB1YA7w4yWeAp5NsqKqTSTYApxfauar2AHsAXpx1C5aJpNkw8hlFVe2uqk1VdTmwHfhiVd0M7AN2dJvtAO7vnVLSVI3jOooPAG9Ncgz4rW5Z0jLW56PHz1TVl4Evd8//Ddi6FK8raTZ4ZaakJotCUpNFIanJopDUZFFIarIoltCDTx3iwacOTTuGtOQsCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLYgy8lFsXGotCUpNFIanJolhC1228ius2XvWzZT+C6EJhUUhqsigkNVkUkposCklNFoWkJotCUpNFIampV1EkeWmSe5N8K8mRJNcmWZdkf5Jj3ePapQoraTr6nlF8FPh8Vb0KeA1wBNgFHKiqLcCBbvn/NS+80nI3clEkeQnwG8AdAFX1P1X1H8A2YG+32V7ghr4hJU1XnzOKzcAzwKeSPJrkE0kuAdZX1clum1PA+r4hJU1Xn6JYCbwW+HhVXQ38mHkfM6qqgFpo5yQ7kxxMcvAsZ3rEkDRufYriBHCiqh7ulu9lUBxPJ9kA0D2eXmjnqtpTVXNVNbeK1T1iSBq3kYuiqk4BTyZ5ZTe0FTgM7AN2dGM7gPt7JZQ0dSt77v+nwJ1JLgK+A/whg/K5J8ktwBPAjT2PIWnKehVFVR0C5hZYtbXP60qaLV6ZKamp70cPnYfh33olLUeeUUhqsigkNVkUkpqco1hC82/8cm5CFwrPKCQ1eUYxBp5J6ELjGYWkJotCUpNFIanJopDUZFEsEX8npi5kFoWkJr8eXUJ+LaoLlWcUkposiiXi2YQuZBaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSU6+iSLI7yeEkjyW5K8maJOuS7E9yrHtcu1RhJU3HyEWR5HJgJ/C6qroSWAFsB3YBB6pqC3CgW9Y8Dz51yN9hoWWjzxnFD4GzwC8nWQlcDDwFbAP2dtvsBW7olVDS1I38+yiq6tkkHwK+B/w38FBVPZRkfVWd7DY7BaxfgpwXnOfvNvU/DdJy0OejxyuAdwObgY3AJUluHt6mqgqoRfbfmeRgkoNnOTNqDEkT0Oejxxzw1ap6pqrOAvcBbwSeTrIBoHs8vdDOVbWnquaqam4Vq3vEWN6u23jV/zmLcN5Cs6hPURwFrklycZIAW4EjwD5gR7fNDuD+fhElTVufOYpDSf4aOAj8FHgU2AO8CLgnyS3AE8CNSxH0QrfYnIU0C3r9ct2q+iDwwXnDZxicXUi6QHhl5oy5buNVXmOhmeOv659B8z+G+JWpps0zCklNnlHMMM8kNCs8o5DUZFEsU054apIsCklNzlEsU85faJI8o5DUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNTWLIsknk5xO8tjQ2Lok+5Mc6x7XDq3bneR4kqNJrhtXcEmTcz5nFJ8Grp83tgs4UFVbgAPdMkmuALYDr+72+ViSFUuWVtJUNIuiqr4CPDtveBuwt3u+F7hhaPzuqjpTVd8FjgOvX6KskqZk1DmK9VV1snt+CljfPb8UeHJouxPdmKRlrPdkZlUVUL/ofkl2JjmY5OBZzvSNIWmMRi2Kp5NsAOgeT3fj3wcuG9puUzf2AlW1p6rmqmpuFatHjCFpEkYtin3Aju75DuD+ofHtSVYn2QxsAb7eL6KkaWv+l4JJ7gLeDLwsyQng/cAHgHuS3AI8AdwIUFWPJ7kHOAw8B9xaVT8ZU3ZJE9Isiqq6aZFVWxfZ/nbg9j6hJM0Wr8yU1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1NYsiySeTnE7y2NDYXyT5VpJvJvm7JC8dWrc7yfEkR5NcN67gkibnfM4oPg1cP29sP3BlVf0a8G1gN0CSK4DtwKu7fT6WZMWSpZU0Fc2iqKqvAM/OG3uoqp7rFr8GbOqebwPurqozVfVd4Djw+iXMK2kKlmKO4o+Af+ieXwo8ObTuRDcmaRlb2WfnJO8DngPuHGHfncBOgDVc3CeGpDEbuSiS/AHwDmBrVVU3/H3gsqHNNnVjL1BVe4A93Ws984W698fAD0bNMwYvwzznYp5zm8U8vzrqziMVRZLrgfcCv1lV/zW0ah/wt0k+DGwEtgBfb71eVb08ycGqmhslzziY59zMc24zmufyUfdvFkWSu4A3Ay9LcgJ4P4NvOVYD+5MAfK2q/riqHk9yD3CYwUeSW6vqJ6OGkzQbmkVRVTctMHzHOba/Hbi9TyhJs2WWrszcM+0A85jn3MxzbhdUnvx8HlKSFjZLZxSSZtRMFEWS67t7Q44n2TWF41+W5EtJDid5PMlt3fi6JPuTHOse104w04okjyZ5YAayvDTJvd39PUeSXDvlPLu7f6vHktyVZM0k8yxy/9Oixx/3/U+TuB9r6kXR3Qvyl8DbgCuAm7p7RibpOeA9VXUFcA1wa5dhF3CgqrYAB7rlSbkNODK0PM0sHwU+X1WvAl7T5ZpKniSXM7hQ73VVdSWwgsH9RZPM82leeP/Tgsef0P1PC+VZ2vuxqmqqf4BrgQeHlncDu6ec6X7grcBRYEM3tgE4OqHjb2LwZnsL8EA3Nq0sLwG+SzefNTQ+rTzrujf+Ogbf2j0A/Pak8wCXA4+1/j7mv5+BB4Frx51n3rrfBe7sk2fqZxTM2P0h3U+sq4GHgfVVdbJbdQpYP6EYH2FwQdtPh8amlWUz8Azwqe6j0CeSXDKtPFX1LPAh4HvASeA/q+qhaeUZstjxZ+H93ft+rFkoipmR5EXAZ4F3VdUPh9fVoH7H/hVRkncAp6vqG4ttM6ksnZXAa4GPV9XVwI+Zd1o/yTxJXgG8m0GBbQQuSXLztPIsZNrHH9bnfqxhs1AU531/yDglWcWgJO6sqvu64aeTbOjWbwBOTyDKm4B3JvlX4G7gLUk+M6UsMPiJc6KqHu6W72VQHNPKMwd8taqeqaqzwH3AG6eY53mLHX9q7++h+7F+ryuvkfPMQlE8AmxJsjnJRQwmWvZNMkAG16HfARypqg8PrdoH7Oie72AwdzFWVbW7qjbV4Lr87cAXq+rmaWTp8pwCnkzyym5oK4NL9KeSh8FcwDVJLu7+3bYymFydVp7nLXb8fcD2JKuTbOY873/qa+h+rHfWC+/H+sXzTGIC6jwmYt7OYILqX4D3TeH4v87gVPGbwKHuz9uBX2EwqXgM+AKwbsK53szPJzOnlgW4CjjY/f38PbB2ynn+jEFZPQb8DYP7jiaWB7iLwfzIWQZnXLec6/jA+7r39lHgbRPKc5zBXMTz7+e/6pPHKzMlNc3CRw9JM86ikNRkUUhqsigkNVkUkposCklNFoWkJotCUtP/Auiwz2Ry2v2/AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e7c4908>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADsxJREFUeJzt3X/sVXd9x/Hna9DCWlOFaQgtzUoM0aCZrSPa6rIZmWt1Rrp/Gpp1YVsTsqRbqjFRmH/4V5OaGaN/TBdiVTa7NgQ7SxpnS1FjFmOVTuJaEGG6WiyUum7TOMOovvfHPZ13337hQ+/53h9feD4Scs/5nHPueXO5vO7nfO75fL+pKiTpbH5l2gVImn0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNY0tKJLckORwkqNJto3rPJLGL+O44SrJEuC7wNuAY8A3gZur6uCCn0zS2C0d0/O+AThaVd8DSHIvsAmYNyguzrJazqVjKkUSwE/4jx9V1StGOXZcQXEF8OTQ+jHgjcM7JNkKbAVYziW8MRvHVIokgIdr9xOjHju1wcyq2lFVG6pqw0Usm1YZks7BuILih8CVQ+trujZJi9C4guKbwLoka5NcDGwG9ozpXJLGbCxjFFX1XJI/Bx4ElgCfqqrHx3EuSeM3rsFMquoLwBfG9fySJsc7MyU1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0jB0WSK5N8OcnBJI8nub1rX5lkb5Ij3eOKhStX0jT06VE8B7y3qtYD1wK3JVkPbAP2VdU6YF+3LmkRGzkoqup4Vf1zt/wT4BBwBbAJ2NntthO4sW+RkqZr6UI8SZKrgGuAR4BVVXW823QCWHWGY7YCWwGWc8lClCFpTHoPZiZ5CfA54N1V9ePhbVVVQM13XFXtqKoNVbXhIpb1LUPSGPUKiiQXMQiJu6vqvq756SSru+2rgZP9SpQ0bX2+9QhwF3Coqj4ytGkPsKVb3gLcP3p5kmZBnzGKNwN/BPxLkgNd218CdwK7ktwKPAHc1K9ESdM2clBU1T8BOcPmjaM+r6TZ452ZkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNvYMiyZIk30ryQLe+MsneJEe6xxX9y5Q0TQvRo7gdODS0vg3YV1XrgH3duqRFrFdQJFkD/D7wyaHmTcDObnkncGOfc0iavr49io8C7wN+MdS2qqqOd8sngFU9zyFpykYOiiTvBE5W1aNn2qeqCqgzHL81yf4k+09zatQyJE3A0h7Hvhl4V5J3AMuBy5J8Fng6yeqqOp5kNXByvoOragewA+CyrJw3TCTNhpF7FFW1varWVNVVwGbgS1V1C7AH2NLttgW4v3eVkqZqHPdR3Am8LckR4He7dUmLWJ9Lj/9TVV8BvtIt/zuwcSGeV9Js8M5MSU0GhaQmg0JSk0EhqcmgkNRkUGimPfjUAR586sC0y7jgGRSSmhbkPgoNPP/Jd/3lV0+5kvOHr+VssEchqcmgkNRkUIyBA3A63xgUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBoUfGr5+kwKCQ1GRRj5KefzhcGhaQmZ49qUXE26XTYo5DUZI9CM23uGI89iumwRyGpyR6FZlKfnoQ/aWzh2aNYQNdffvW8b06/Ju3P13C6egVFkpcl2Z3kO0kOJbkuycoke5Mc6R5XLFSxkqajb4/iY8AXq+rVwOuAQ8A2YF9VrQP2deuSFrGRgyLJS4HfBu4CqKr/qar/BDYBO7vddgI39i1S0nT1GcxcCzwDfDrJ64BHgduBVVV1vNvnBLCqX4nSixuYdBBz4fW59FgKvB74RFVdA/yUOZcZVVVAzXdwkq1J9ifZf5pTPcqQNG59ehTHgGNV9Ui3vptBUDydZHVVHU+yGjg538FVtQPYAXBZVs4bJpK9g9kwco+iqk4ATyZ5Vde0ETgI7AG2dG1bgPt7VShp6vrecPUXwN1JLga+B/wJg/DZleRW4Angpp7nWPT8VHzxfM1mS6+gqKoDwIZ5Nm3s87ySZot3Zkpqcq7HGNl91vnCHoWkJoNCUpNBIanJMYoFNHcatD8XQecLexSSmgwKSU0GhaQmg0JSk4OZC2juoKU/41HnC3sUkprsUYyRX4vqfGGPQlKTQSGpyaCQ1OQYxRj5C3ZfnOHXy9dqttijkNRkUEyQ91WcG3sTs8dLjzF6/g1vQJyds2xnnz0KSU32KDR19iRmnz0KSU0GxQRcf/nV/2+8wjELLTYGhaQmg2KCvBafn72s2WdQSGrqFRRJtic5mOSxJPckWZ5kZZK9SY50jysWqtjzyYX8KXoh/90Xq1TVaAcmVwFfBtZX1c+S7AK+AKwHnq2qO5NsA1ZU1fvP9lyXZWW9MRfW7zV2Hog3Wk3aw7X70aqa75eKN/XpUfwYOA38apKlwCXAU8AmYGe3z07gxh7nkDQDRr7hqqqeTfJh4AfAz4CHquqhJKuq6ni32wlg1QLUed6Ze3v3hfTp6i9KWnxG7lEkeSXwHmAtcDlwaZJbhvepwXXNvNc2SbYm2Z9k/2lOjVqGpAnoc+mxAfhaVT1TVaeB+4A3AU8nWQ3QPZ6c7+Cq2lFVG6pqw0Us61HG4jZ8MxZcmBPI5r4Gmj19guIwcG2SS5IE2AgcAvYAW7p9tgD39ytR0rT1GaM4kORvgf3AL4BvATuAlwC7ktwKPAHctBCFnu/mu8XbT1nNil6zR6vqQ8CH5jSfYtC7kHSecJr5jLmQehEX0t91sTMoNFEPPnXAgFiEnOshqckehcZqvq975w7WOng7++xRSGqyR6GxOpdegz2J2WePQlKTPYoLWN/bxefrCZxp+ry9hsXNHoWkJnsUF6BRexJnmhp/tn11fjAoLiDz/cce5T+0IXDh8dJDUpM9iguIPQGNyh6FpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNTWDIsmnkpxM8thQ28oke5Mc6R5XDG3bnuRoksNJrh9X4ZIm51x6FJ8BbpjTtg3YV1XrgH3dOknWA5uB13THfDzJkgWrVtJUNIOiqr4KPDuneROws1veCdw41H5vVZ2qqu8DR4E3LFCtkqZk1DGKVVV1vFs+Aazqlq8Anhza71jXJmkR6z2YWVUF1Is9LsnWJPuT7D/Nqb5lSBqjUYPi6SSrAbrHk137D4Erh/Zb07W9QFXtqKoNVbXhIpaNWIakSRg1KPYAW7rlLcD9Q+2bkyxLshZYB3yjX4mSpq35U7iT3AO8BXh5kmPAB4E7gV1JbgWeAG4CqKrHk+wCDgLPAbdV1c/HVLukCWkGRVXdfIZNG8+w/x3AHX2KkjRbvDNTUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDU1AyKJJ9KcjLJY0Ntf5XkO0m+neQfkrxsaNv2JEeTHE5y/bgKlzQ559Kj+Axww5y2vcBrq+o3gO8C2wGSrAc2A6/pjvl4kiULVq2kqWgGRVV9FXh2TttDVfVct/p1YE23vAm4t6pOVdX3gaPAGxawXklTsBBjFH8K/GO3fAXw5NC2Y12bpEVsaZ+Dk3wAeA64e4RjtwJbAZZzSZ8yJI3ZyEGR5I+BdwIbq6q65h8CVw7ttqZre4Gq2gHs6J7rmYdr90+BH41azxi8HOs5G+s5u1ms59dHPXikoEhyA/A+4Heq6r+HNu0B/j7JR4DLgXXAN1rPV1WvSLK/qjaMUs84WM/ZWc/ZzWg9V416fDMoktwDvAV4eZJjwAcZfMuxDNibBODrVfVnVfV4kl3AQQaXJLdV1c9HLU7SbGgGRVXdPE/zXWfZ/w7gjj5FSZots3Rn5o5pFzCH9Zyd9ZzdeVVPfjkOKUnzm6UehaQZNRNBkeSGbm7I0STbpnD+K5N8OcnBJI8nub1rX5lkb5Ij3eOKCda0JMm3kjwwA7W8LMnubn7PoSTXTbme7d2/1WNJ7kmyfJL1nGH+0xnPP+75T5OYjzX1oOjmgvw18HZgPXBzN2dkkp4D3ltV64Frgdu6GrYB+6pqHbCvW5+U24FDQ+vTrOVjwBer6tXA67q6plJPkqsY3Kj3m1X1WmAJg/lFk6znM7xw/tO855/Q/Kf56lnY+VhVNdU/wHXAg0Pr24HtU67pfuBtwGFgdde2Gjg8ofOvYfBmeyvwQNc2rVpeCnyfbjxrqH1a9azs3vgrGXxr9wDwe5OuB7gKeKz1esx9PwMPAteNu5452/4AuLtPPVPvUTBj80O6T6xrgEeAVVV1vNt0Alg1oTI+yuCGtl8MtU2rlrXAM8Cnu0uhTya5dFr1VNWzwIeBHwDHgf+qqoemVc+QM51/Ft7fvedjzUJQzIwkLwE+B7y7qn48vK0G8Tv2r4iSvBM4WVWPnmmfSdXSWQq8HvhEVV0D/JQ53fpJ1pPklcB7GATY5cClSW6ZVj3zmfb5h/WZjzVsFoLinOeHjFOSixiExN1VdV/X/HSS1d321cDJCZTyZuBdSf4NuBd4a5LPTqkWGHziHKuqR7r13QyCY1r1bAC+VlXPVNVp4D7gTVOs53lnOv/U3t9D87H+sAuvkeuZhaD4JrAuydokFzMYaNkzyQIyuA/9LuBQVX1kaNMeYEu3vIXB2MVYVdX2qlpTg/vyNwNfqqpbplFLV88J4Mkkr+qaNjK4RX8q9TAYC7g2ySXdv9tGBoOr06rneWc6/x5gc5JlSdZyjvOf+hqaj/WueuF8rBdfzyQGoM5hIOYdDAao/hX4wBTO/1sMuorfBg50f94B/BqDQcUjwMPAygnX9RZ+OZg5tVqAq4H93evzeWDFlOt5P4Owegz4OwbzjiZWD3APg/GR0wx6XLee7fzAB7r39mHg7ROq5yiDsYjn389/06ce78yU1DQLlx6SZpxBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKb/BR5+QWh/kNuqAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e9f0c88>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADeRJREFUeJzt3XHMXXV9x/H3Z21pB0Ztp2kKJaMxjQbNFH2CIMtm7BjIjGX/kJKxdBtJs4QtaExcO//wLxLNjNE/pksjajcZhCAbDXFirRqzGNE6GgettZ0OKbQUxyaGJV2R7/64h3lXnqc/vOe59zyt71fS3HN+55x7PoGbT3/33HPSVBWSdCa/MnQASUufRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU1TK4ok1yY5lORIku3TOo+k6cs0brhKsgz4PnA1cBT4NnBjVR1Y9JNJmrrlU3rfy4EjVfUDgCR3AZuBeYvivKysVVwwpSiSAH7Kf/64ql49ybHTKoqLgMfG1o8Cbx3fIck2YBvAKs7nrdk0pSiSAL5c9zw66bGDXcysqp1VNVdVcytYOVQMSS/BtIriceDisfX13Ziks9C0iuLbwMYkG5KcB2wBdk/pXJKmbCrXKKrquSR/BjwALAM+XVWPTONckqZvWhczqaovAF+Y1vtLmh3vzJTUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVNXBRJLk7y1SQHkjyS5NZufE2SPUkOd6+rFy+upCH0mVE8B7yvqi4FrgBuSXIpsB3YW1Ubgb3duqSz2MRFUVXHqupfuuWfAgeBi4DNwK5ut13A9X1DShrW8sV4kySXAJcBDwJrq+pYt+k4sHaBY7YB2wBWcf5ixJA0Jb0vZiZ5GfB54D1V9cz4tqoqoOY7rqp2VtVcVc2tYGXfGJKmqFdRJFnBqCTuqKp7u+Enk6zrtq8DTvSLKGlofX71CHA7cLCqPjq2aTewtVveCtw3eTxJS0GfaxRXAX8I/GuS/d3YXwIfAu5OcjPwKHBDv4iShjZxUVTVPwNZYPOmSd9X0tLjnZmSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU29iyLJsiQPJbm/W1+TZE+Sw93r6v4xJQ1pMWYUtwIHx9a3A3uraiOwt1uXdBbrVRRJ1gO/B3xqbHgzsKtb3gVc3+cckobXd0bxMeD9wPNjY2ur6li3fBxY2/MckgY2cVEkeRdwoqq+s9A+VVVALXD8tiT7kuw7xclJY0iageU9jr0KeHeS64BVwMuTfA54Msm6qjqWZB1wYr6Dq2onsBPg5Vkzb5lIWhomnlFU1Y6qWl9VlwBbgK9U1U3AbmBrt9tW4L7eKSUNahr3UXwIuDrJYeB3unVJZ7E+Xz3+T1V9Dfhat/wfwKbFeF9JS4N3ZkpqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFM0QNP7OeBJ/YPHUPqzaKQ1LQot3Dr/3thFnHNhW8aOIm0OJxRSGqyKCQ1WRSSmiwKSU0WhaQmi2KKvI9C5wqLYgquufBN/jSqc4pFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLYga88UpnO4tiirzxSueKXkWR5JVJ7knyvSQHk1yZZE2SPUkOd6+rFyuspGH0nVF8HPhiVb0OeCNwENgO7K2qjcDebl3SWWziokjyCuC3gNsBqup/quq/gM3Arm63XcD1fUNKGlafGcUG4CngM0keSvKpJBcAa6vqWLfPcWBt35CShtWnKJYDbwY+WVWXAc9y2teMqiqg5js4ybYk+5LsO8XJHjEkTVufojgKHK2qB7v1exgVx5NJ1gF0ryfmO7iqdlbVXFXNrWBljxiSpm3ioqiq48BjSV7bDW0CDgC7ga3d2Fbgvl4JJQ2u77/r8efAHUnOA34A/DGj8rk7yc3Ao8ANPc9xznjgif3eV6GzUq+iqKr9wNw8mzb1eV9JS4t3ZkpqsigkNVkUkpr8R4qnyCdGda5wRiGpyaKYIX8a1dnKopDU5DWKGXAmobOdMwpJTRaFpCaLQlKTRSGpyaKQ1GRRSGry59EpeOHWbX8W1bnCGYWkJmcUU+BMQucaZxSSmiyKReIj5TqX+dWjJy9c6peBMwpJTc4oenImoV8GzigkNVkUkposCklNFoWkJotCUlOvokiyI8mBJA8nuTPJqiRrkuxJcrh7Xb1YYSUNY+KiSHIJsA14S1W9AVgGbAG2A3uraiOwt1uXdBbrM6N4BjgF/GqS5cD5wBPAZmBXt88u4PpeCSUNbuKiqKqngY8APwKOAT+pqi8Ba6vqWLfbcWBt75SSBtXnq8drgPcCG4ALgQuS3DS+T1UVUAscvy3JviT7TnFy0hiSZqDPV4854BtV9VRVnQLuBd4GPJlkHUD3emK+g6tqZ1XNVdXcClb2iCFp2voUxSHgiiTnJwmwCTgI7Aa2dvtsBe7rF1HS0CZ+KKyq9if5W2Af8DzwELATeBlwd5KbgUeBGxYjqKTh9Hp6tKo+DHz4tOGTjGYXks4R3pkpqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqahZFkk8nOZHk4bGxNUn2JDncva4e27YjyZEkh5JcM63gkmbnpcwoPgtce9rYdmBvVW0E9nbrJLkU2AK8vjvmE0mWLVpaSYNoFkVVfR14+rThzcCubnkXcP3Y+F1VdbKqfggcAS5fpKySBjLpNYq1VXWsWz4OrO2WLwIeG9vvaDcm6SzW+2JmVRVQv+hxSbYl2Zdk3ylO9o0haYomLYonk6wD6F5PdOOPAxeP7be+G3uRqtpZVXNVNbeClRPGkDQLkxbFbmBrt7wVuG9sfEuSlUk2ABuBb/WLKGloy1s7JLkTeDvwqiRHgQ8CHwLuTnIz8ChwA0BVPZLkbuAA8BxwS1X9bErZJc1Isyiq6sYFNm1aYP/bgNv6hJK0tHhnpqQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqalZFEk+neREkofHxv4qyfeSfDfJPyR55di2HUmOJDmU5JppBZc0Oy9lRvFZ4NrTxvYAb6iq3wC+D+wASHIpsAV4fXfMJ5IsW7S0kgbRLIqq+jrw9GljX6qq57rVbwLru+XNwF1VdbKqfggcAS5fxLySBrAY1yj+BPinbvki4LGxbUe7MUlnseV9Dk7yAeA54I4Jjt0GbANYxfl9YkiasomLIskfAe8CNlVVdcOPAxeP7ba+G3uRqtoJ7Oze66kv1z3PAj+eNM8UvArznIl5zmwp5vn1SQ+eqCiSXAu8H/jtqvrvsU27gb9P8lHgQmAj8K3W+1XVq5Psq6q5SfJMg3nOzDxntkTzXDLp8c2iSHIn8HbgVUmOAh9k9CvHSmBPEoBvVtWfVtUjSe4GDjD6SnJLVf1s0nCSloZmUVTVjfMM336G/W8DbusTStLSspTuzNw5dIDTmOfMzHNm51Se/Pw6pCTNbynNKCQtUUuiKJJc2z0bciTJ9gHOf3GSryY5kOSRJLd242uS7ElyuHtdPcNMy5I8lOT+JZDllUnu6Z7vOZjkyoHz7Oj+Xz2c5M4kq2aZZ4HnnxY8/7Sff5rF81iDF0X3LMhfA+8ELgVu7J4ZmaXngPdV1aXAFcAtXYbtwN6q2gjs7dZn5Vbg4Nj6kFk+Dnyxql4HvLHLNUieJJcwulHvLVX1BmAZo+eLZpnns7z4+ad5zz+j55/my7O4z2NV1aB/gCuBB8bWdwA7Bs50H3A1cAhY142tAw7N6PzrGX3Y3gHc340NleUVwA/prmeNjQ+VZ033wV/D6Fe7+4HfnXUe4BLg4dZ/j9M/z8ADwJXTznPatt8H7uiTZ/AZBUvs+ZDub6zLgAeBtVV1rNt0HFg7oxgfY3RD2/NjY0Nl2QA8BXym+yr0qSQXDJWnqp4GPgL8CDgG/KSqvjRUnjELnX8pfL57P4+1FIpiyUjyMuDzwHuq6pnxbTWq36n/RJTkXcCJqvrOQvvMKktnOfBm4JNVdRnwLKdN62eZJ8lrgPcyKrALgQuS3DRUnvkMff5xfZ7HGrcUiuIlPx8yTUlWMCqJO6rq3m74ySTruu3rgBMziHIV8O4k/w7cBbwjyecGygKjv3GOVtWD3fo9jIpjqDxzwDeq6qmqOgXcC7xtwDwvWOj8g32+x57H+oOuvCbOsxSK4tvAxiQbkpzH6ELL7lkGyOg+9NuBg1X10bFNu4Gt3fJWRtcupqqqdlTV+hrdl78F+EpV3TREli7PceCxJK/thjYxukV/kDyMrgVckeT87v/bJkYXV4fK84KFzr8b2JJkZZINvMTnn/oaex7r3fXi57F+8TyzuAD1Ei7EXMfoAtW/AR8Y4Py/yWiq+F1gf/fnOuDXGF1UPAx8GVgz41xv5+cXMwfLArwJ2Nf99/lHYPXAef6CUVk9DPwdo+eOZpYHuJPR9ZFTjGZcN5/p/MAHus/2IeCdM8pzhNG1iBc+z3/TJ493ZkpqWgpfPSQtcRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmv4XhR+5NrH6XbcAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad4e16beba8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAD0hJREFUeJzt3X+sX3V9x/HnaxTKwKDtNE2hZG1Mo6lmgmsUdNmMnQOdsewfUjJMt5E0S9iCxkTb+Yd/kWBmjP4xXRpRu8lgDbLRECc/qsYsRrQOokDFdipSaSkON40zXdH3/vge5neX2/tpv+d+f9zb5yNp7vd8zjnf8763976+7/P5nnNvqgpJWsivTbsASbPPoJDUZFBIajIoJDUZFJKaDApJTQaFpKaxBUWSq5M8nuRwkp3jOo6k8cs4LrhKcg7wHeAtwBHg68B1VfXYoh9M0titGNPzvg44XFXfBUhyB7AVmDcozsvKOp8Lx1SKJICf8uMfVdXLRtl3XEFxCfDk0PIR4PXDGyTZAewAOJ8LeH22jKkUSQAP1J1PjLrv1CYzq2p3VW2uqs3nsnJaZUg6DeMKih8Clw4tr+vGJC1B4wqKrwMbk2xIch6wDdg3pmNJGrOxzFFU1XNJ/gK4FzgH+GRVPTqOY0kav3FNZlJVnwM+N67nlzQ5XpkpqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqGjkoklya5ItJHkvyaJKbuvHVSe5Pcqj7uGrxypU0DX06iueA91TVJuAK4MYkm4CdwP6q2gjs75YlLWEjB0VVHa2qf+se/xQ4CFwCbAX2dJvtAa7pW6Sk6VqxGE+SZD1wOfAgsKaqjnarjgFrTrHPDmAHwPlcsBhlSBqT3pOZSV4EfBZ4V1X9ZHhdVRVQ8+1XVburanNVbT6XlX3LkDRGvYIiybkMQuK2qrqrG346ydpu/VrgeL8SJU1bn3c9AtwKHKyqDw+t2gds7x5vB+4evTxJs6DPHMUbgXcC30rycDf2V8AtwN4kNwBPANf2K1HStI0cFFX1r0BOsXrLqM8rafZ4ZaakJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUlPvoEhyTpKHktzTLa9Ocn+SQ93HVf3LlDRNi9FR3AQcHFreCeyvqo3A/m5Z0hLWKyiSrAP+EPjE0PBWYE/3eA9wTZ9jSJq+vh3FR4D3Ar8cGltTVUe7x8eANT2PIWnKRg6KJG8HjlfVN061TVUVUKfYf0eSA0kOnOTEqGVImoAVPfZ9I/COJG8DzgcuSvIZ4Okka6vqaJK1wPH5dq6q3cBugIuyet4wkTQbRu4oqmpXVa2rqvXANuALVXU9sA/Y3m22Hbi7d5WSpmoc11HcArwlySHg97tlSUtYn1OP/1NVXwK+1D3+D2DLYjyvpNnglZmSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUY3TvUw9z71MPT7sMqTeDQlKTQSGpyaCQ1LQoN4Xp/3NeQsuNHYWkJoNiDK66+DKuuviyaZchLRqDQlKTQSGpyaCQ1GRQSGry7VEtWXPfhnYCeXzsKCQ12VFMwPOvfL7i9Tff19Kv6/jZUUhqMii05Hk7//gZFJKaDIox8lJuLRcGhZak0z3V8LRkcfQKiiQvSXJnkm8nOZjkyiSrk9yf5FD3cdViFStpOvp2FB8FPl9VrwReAxwEdgL7q2ojsL9blkbStyPw9G9xjBwUSV4M/C5wK0BV/U9V/SewFdjTbbYHuKZvkZKmq09HsQF4BvhUkoeSfCLJhcCaqjrabXMMWNO3SJ29TtUR2CVMVp+gWAG8Fvh4VV0O/Iw5pxlVVUDNt3OSHUkOJDlwkhM9ypA0bn0u4T4CHKmqB7vlOxkExdNJ1lbV0SRrgePz7VxVu4HdABdl9bxhstzc+9TDvhKeId+xmA0jdxRVdQx4MskruqEtwGPAPmB7N7YduLtXhZKmru9NYX8J3JbkPOC7wJ8yCJ+9SW4AngCu7XkM6QWGuzO7jvHrFRRV9TCweZ5VW/o8r6TZ4m3mE+T8RH/DX0M7ickxKCbAgFg8/m6P6fBeD0lNdhQT4KvgmVvs0wr/D/qxo5DUZEehJWXUjsBOoh87CklNdhQT4KvZeJzJBVfOUfRjRyGpyY5CS5YXXE2OQaGJmO+H+kxOAxba9nSex1OOfjz1kNRkUGjJ8zdtj59BIanJOQqN1ahzE3Pf+vTtzemyo5DUZEehJeF0Ogm7jvGxo5DUZEehsZo713Cmr/YL7e/vzJwcg0JjMfcHu+/pwHz7GxCT46mHpCaDYoLOhlfAxb74ae7zDS/7B4gnx6CQ1OQcxQRddfFly/ItvHF2SnO/Tr5NOh12FJKa7CimZDm96s33R3nG9XmdDfM8s8iOQlJTr44iyS7gncAvgW8x+CPFFwD/CKwHvg9cW1U/7lXlMuJFQotjoesqFvqzg8uhg5uGVNVoOybrgS8Cm6rq50n2Ap8DNgHPVtUtSXYCq6rqfQs910VZXa/P2fV3jZfTqcd8ThWEi/X5nk7QLtev7ageqDu/UVXz/VHxpj6nHj8BTgK/nmQFg07iKWArsKfbZg9wTY9jSJoBI596VNWzST4E/AD4OXBfVd2XZE1VHe02OwasWYQ6l52+90DMurmfz2Kfag2/1dw6tvobuaNI8nLg3cAG4GLgwiTXD29Tg/Oaec9tkuxIciDJgZOcGLUMSRPQZzJzM/CVqnoGIMldwBuAp5OsraqjSdYCx+fbuap2A7thMEfRo44l7Wx59Vvo8+x7Z6nGr88cxePAFUkuSBJgC3AQ2Ads77bZDtzdr0RJ09ZnjuLhJH8HHGDw9uhDDDqEFwF7k9wAPAFcuxiFavla7vM1y0Gv6yiq6oPAB+cMn2DQXUhaJryEWzPDTmJ2GRQzbDlcVbgcPgd5r4ek02BHMcOW2quv968sX3YUkprsKDSyhTqIpdYNaWF2FJKa7CiWuL4XKbVurDrTeQc7ieXJjkJSkx3FEnc6N1uN6xheI3H2MCiWscX4tXsL/fAbDGcPTz0kNdlRCLA70MLsKCQ12VGcBewW1JcdhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDU1AyKJJ9McjzJI0Njq5Pcn+RQ93HV0LpdSQ4neTzJVeMqXNLknE5H8Wng6jljO4H9VbUR2N8tk2QTsA14VbfPx5Kcs2jVSpqKZlBU1ZeBZ+cMbwX2dI/3ANcMjd9RVSeq6nvAYeB1i1SrpCkZdY5iTVUd7R4fA9Z0jy8Bnhza7kg3JmkJ6z2ZWVUF1Jnul2RHkgNJDpzkRN8yJI3RqEHxdJK1AN3H4934D4FLh7Zb1429QFXtrqrNVbX5XFaOWIakSRg1KPYB27vH24G7h8a3JVmZZAOwEfhavxIlTVvzd2YmuR14E/DSJEeADwC3AHuT3AA8AVwLUFWPJtkLPAY8B9xYVb8YU+2SJqQZFFV13SlWbTnF9jcDN/cpStJs8cpMSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSUzMoknwyyfEkjwyN/XWSbyf5ZpJ/SvKSoXW7khxO8niSq8ZVuKTJOZ2O4tPA1XPG7gdeXVW/BXwH2AWQZBOwDXhVt8/HkpyzaNVKmopmUFTVl4Fn54zdV1XPdYtfBdZ1j7cCd1TViar6HnAYeN0i1itpChZjjuLPgH/pHl8CPDm07kg3JmkJW9Fn5yTvB54Dbhth3x3ADoDzuaBPGZLGbOSgSPInwNuBLVVV3fAPgUuHNlvXjb1AVe0GdnfP9cwDdefPgB+NWs8YvBTrWYj1LGwW6/nNUXceKSiSXA28F/i9qvrvoVX7gH9I8mHgYmAj8LXW81XVy5IcqKrNo9QzDtazMOtZ2IzWs37U/ZtBkeR24E3AS5McAT7A4F2OlcD9SQC+WlV/XlWPJtkLPMbglOTGqvrFqMVJmg3NoKiq6+YZvnWB7W8Gbu5TlKTZMktXZu6edgFzWM/CrGdhy6qe/GoeUpLmN0sdhaQZNRNBkeTq7t6Qw0l2TuH4lyb5YpLHkjya5KZufHWS+5Mc6j6ummBN5yR5KMk9M1DLS5Lc2d3fczDJlVOuZ1f3f/VIktuTnD/Jek5x/9Mpjz/u+58mcT/W1IOiuxfkb4C3ApuA67p7RibpOeA9VbUJuAK4sathJ7C/qjYC+7vlSbkJODi0PM1aPgp8vqpeCbymq2sq9SRZz+BCvd+uqlcD5zC4v2iS9XyaF97/NO/xJ3T/03z1LO79WFU11X/AlcC9Q8u7gF1Trulu4C3A48Dabmwt8PiEjr+OwTfbm4F7urFp1fJi4Ht081lD49OqZ3X3jb+awbt29wB/MOl6gPXAI62vx9zvZ+Be4Mpx1zNn3R8Bt/WpZ+odBTN2f0j3inU58CCwpqqOdquOAWsmVMZHGFzQ9suhsWnVsgF4BvhUdyr0iSQXTqueqnoW+BDwA+Ao8F9Vdd+06hlyquPPwvd37/uxZiEoZkaSFwGfBd5VVT8ZXleD+B37W0RJ3g4cr6pvnGqbSdXSWQG8Fvh4VV0O/Iw5bf0k60nycuDdDALsYuDCJNdPq575TPv4w/rcjzVsFoLitO8PGack5zIIiduq6q5u+Okka7v1a4HjEyjljcA7knwfuAN4c5LPTKkWGLziHKmqB7vlOxkEx7Tq2Qx8paqeqaqTwF3AG6ZYz/NOdfypfX8P3Y/1x114jVzPLATF14GNSTYkOY/BRMu+SRaQwXXotwIHq+rDQ6v2Adu7x9sZzF2MVVXtqqp1Nbgufxvwhaq6fhq1dPUcA55M8opuaAuDS/SnUg+DuYArklzQ/b9tYTC5Oq16nneq4+8DtiVZmWQDp3n/U19D92O9o154P9aZ1zOJCajTmIh5G4MJqn8H3j+F4/8Og1bxm8DD3b+3Ab/BYFLxEPAAsHrCdb2JX01mTq0W4DLgQPf1+Wdg1ZTreR+DsHoE+HsG9x1NrB7gdgbzIycZdFw3LHR84P3d9/bjwFsnVM9hBnMRz38//22ferwyU1LTLJx6SJpxBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKa/hdB5YHdV+mMYwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e9e6908>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADh9JREFUeJzt3XHIXXd9x/H3Z0marBU1mRLSpqxBglJlWn3QVscmZq7Vien+KSnryLZCGHSjiuCS+Yd/FZSJ6B/TEayaza6l1G4NxVljVGSI1bgW1ybGZLraaNLUdVNxkKX63R/3FC/p8+QX73nuPfep7xeEe8/vnHPPh+Thk98995z7pKqQpPP5taEDSJp/FoWkJotCUpNFIanJopDUZFFIarIoJDVNrSiSXJfkaJLjSXZP6ziSpi/TuOAqySrg28CbgRPA14Ebq+rwsh9M0tStntLrvhY4XlXfAUhyF7AdWLQoLsraWsclU4oiCeAn/PcPq+rFk+w7raK4DHh8bPkE8LrxDZLsAnYBrONiXpdtU4oiCeDzdc9jk+472MnMqtpbVQtVtbCGtUPFkHQBplUU3wcuH1ve3I1JWoGmVRRfB7Ym2ZLkImAHsH9Kx5I0ZVM5R1FVTyf5C+ABYBXw8ap6dBrHkjR90zqZSVV9BvjMtF5f0ux4ZaakJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIalp4qJIcnmSLyY5nOTRJLd24xuSHEhyrHtcv3xxJQ2hz4ziaeBdVXUlcDVwS5Irgd3AwaraChzsliWtYBMXRVWdrKp/657/BDgCXAZsB/Z1m+0Dru8bUtKwVi/HiyS5ArgKeBDYWFUnu1WngI1L7LML2AWwjouXI4akKel9MjPJ84BPA++oqh+Pr6uqAmqx/apqb1UtVNXCGtb2jSFpinoVRZI1jErijqq6txt+Ismmbv0m4HS/iJKG1udTjwC3A0eq6oNjq/YDO7vnO4H7Jo8naR70OUfxBuCPgX9P8nA39tfA+4C7k9wMPAbc0C+ipKFNXBRV9a9Alli9bdLXlTR/vDJTUpNFIanJopDUZFFIarIoJDVZFJKaLIoZeOAHD/PADx5ubyjNKYtCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1LQsv9dDi3vm/o5rL33VwEmkfpxRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UxA34Vnla63kWRZFWSh5Lc3y1vSHIgybHucX3/mJKGtBwziluBI2PLu4GDVbUVONgtS1rBehVFks3AHwAfGxveDuzrnu8Dru9zDEnD6zuj+BDwbuDnY2Mbq+pk9/wUsLHnMSQNbOKiSPI24HRVfWOpbaqqgFpi/11JDiU5dJYzk8aQNAN9bgp7A/D2JG8F1gHPT/Ip4Ikkm6rqZJJNwOnFdq6qvcBegOdnw6JlImk+TDyjqKo9VbW5qq4AdgBfqKqbgP3Azm6zncB9vVNKGtQ0rqN4H/DmJMeA3+uWJa1gy/J9FFX1JeBL3fP/ArYtx+tKmg9emSmpyW+4mgG/4UornTMKSU0WxQx5Y5hWKotCUpNFIanJopDUZFFIarIoZsxvu9JKZFFIarIoJDVZFJKaLApJTRaFpCaLYobGbw7z0w+tJBaFpCaLQlKT30cxRRfyPRTPvP3wOys0z5xRSGqyKGbs2ktf5exBK45FIanJopDUZFFIarIoBnLuuQovwNI8sygkNVkUkposioEt9hZEmje9iiLJC5Pck+RbSY4kuSbJhiQHkhzrHtcvV1hJw+g7o/gw8NmqehnwSuAIsBs4WFVbgYPdshrGZxae2NS8mbgokrwA+B3gdoCq+r+q+h9gO7Cv22wfcH3fkJKG1WdGsQV4EvhEkoeSfCzJJcDGqjrZbXMK2Ng35K8SPzLVPOpTFKuBVwMfraqrgJ9yztuMqiqgFts5ya4kh5IcOsuZHjEkTVufojgBnKiqB7vlexgVxxNJNgF0j6cX27mq9lbVQlUtrGFtjxjPPV6MpXkzcVFU1Sng8SQv7Ya2AYeB/cDObmwncF+vhJIG1/eLa/4SuCPJRcB3gD9lVD53J7kZeAy4oecxfmWNfwoiDalXUVTVw8DCIqu29XldSfPFr8JbAc6dWfjFN5o1i2IFWexSb0tDs+C9HpKanFGsUEud6HSGoWlwRiGpyRnFCnfuzGKxj1KdZagvZxSSmpxRPEcsNms43yyjz+vqV48zCklNziiew5wNaLk4o5DUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNTUqyiS7ElyOMkjSe5Msi7JhiQHkhzrHtcvV1hJw5i4KJJcAewCXlNVrwBWATuA3cDBqtoKHOyWJa1gfWYUPwbOAr+eZDVwMfADYDuwr9tmH3B9r4SSBjdxUVTVU8AHgO8BJ4EfVdXngI1VdbLb7BSwsXdKSYPq89bjJcA7gS3ApcAlSW4a36aqCqgl9t+V5FCSQ2c5M2kMSTPQ563HAvCVqnqyqs4C9wKvB55Isgmgezy92M5VtbeqFqpqYQ1re8SQNG19iuIocHWSi5ME2AYcAfYDO7ttdgL39YsoaWgT/wKgqno4yd8Dh4CfAw8Be4HnAXcnuRl4DLhhOYJKGk6v3xRWVe8H3n/O8BlGswtJzxFemSmpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGpqFkWSjyc5neSRsbENSQ4kOdY9rh9btyfJ8SRHk1w7reCSZudCZhSfBK47Z2w3cLCqtgIHu2WSXAnsAF7e7fORJKuWLa2kQTSLoqq+DDx1zvB2YF/3fB9w/dj4XVV1pqq+CxwHXrtMWSUNZNJzFBur6mT3/BSwsXt+GfD42HYnujFJK1jvk5lVVUD9svsl2ZXkUJJDZznTN4akKZq0KJ5IsgmgezzdjX8fuHxsu83d2LNU1d6qWqiqhTWsnTCGpFmYtCj2Azu75zuB+8bGdyRZm2QLsBX4Wr+Ikoa2urVBkjuBNwIvSnICeC/wPuDuJDcDjwE3AFTVo0nuBg4DTwO3VNXPppRd0ow0i6Kqblxi1bYltr8NuK1PKEnzxSszJTVZFJKaLApJTRaFpCaLQlKTRSGpyaKQ1GRRSGqyKCQ1WRSSmiwKSU0WhaQmi0JSk0UhqcmikNRkUUhqsigkNVkUkposCklNFoWkJotCUpNFIanJopDUZFFIarIoJDVZFJKaLApJTc2iSPLxJKeTPDI29jdJvpXkm0n+KckLx9btSXI8ydEk104ruKTZuZAZxSeB684ZOwC8oqp+C/g2sAcgyZXADuDl3T4fSbJq2dJKGkSzKKrqy8BT54x9rqqe7ha/Cmzunm8H7qqqM1X1XeA48NplzCtpAMtxjuLPgH/pnl8GPD627kQ3JmkFW91n5yTvAZ4G7phg313ALoB1XNwnhqQpm7gokvwJ8DZgW1VVN/x94PKxzTZ3Y89SVXuBvd1rPfn5uuenwA8nzTMFL8I852Oe85vHPL856c4TFUWS64B3A79bVf87tmo/8I9JPghcCmwFvtZ6vap6cZJDVbUwSZ5pMM/5mef85jTPFZPu3yyKJHcCbwRelOQE8F5Gn3KsBQ4kAfhqVf15VT2a5G7gMKO3JLdU1c8mDSdpPjSLoqpuXGT49vNsfxtwW59QkubLPF2ZuXfoAOcwz/mZ5/yeU3nyi/OQkrS4eZpRSJpTc1EUSa7r7g05nmT3AMe/PMkXkxxO8miSW7vxDUkOJDnWPa6fYaZVSR5Kcv8cZHlhknu6+3uOJLlm4Dx7un+rR5LcmWTdLPMscf/Tksef9v1Ps7gfa/Ci6O4F+VvgLcCVwI3dPSOz9DTwrqq6ErgauKXLsBs4WFVbgYPd8qzcChwZWx4yy4eBz1bVy4BXdrkGyZPkCkYX6r2mql4BrGJ0f9Es83ySZ9//tOjxZ3T/02J5lvd+rKoa9A9wDfDA2PIeYM/Ame4D3gwcBTZ1Y5uAozM6/mZGP2xvAu7vxobK8gLgu3Tns8bGh8qzofvB38DoU7v7gd+fdR7gCuCR1t/HuT/PwAPANdPOc866PwTu6JNn8BkFc3Z/SPc/1lXAg8DGqjrZrToFbJxRjA8xuqDt52NjQ2XZAjwJfKJ7K/SxJJcMlaeqngI+AHwPOAn8qKo+N1SeMUsdfx5+vnvfjzUPRTE3kjwP+DTwjqr68fi6GtXv1D8iSvI24HRVfWOpbWaVpbMaeDXw0aq6Cvgp50zrZ5knyUuAdzIqsEuBS5LcNFSexQx9/HF97scaNw9FccH3h0xTkjWMSuKOqrq3G34iyaZu/Sbg9AyivAF4e5L/BO4C3pTkUwNlgdH/OCeq6sFu+R5GxTFUngXgK1X1ZFWdBe4FXj9gnmcsdfzBfr7H7sf6o668Js4zD0XxdWBrki1JLmJ0omX/LANkdB367cCRqvrg2Kr9wM7u+U5G5y6mqqr2VNXmGl2XvwP4QlXdNESWLs8p4PEkL+2GtjG6RH+QPIzOBVyd5OLu320bo5OrQ+V5xlLH3w/sSLI2yRYu8P6nvsbux3p7Pft+rF8+zyxOQF3AiZi3MjpB9R/AewY4/m8zmip+E3i4+/NW4DcYnVQ8Bnwe2DDjXG/kFyczB8sCvAo41P39/DOwfuA8f8WorB4B/oHRfUczywPcyej8yFlGM66bz3d84D3dz/ZR4C0zynOc0bmIZ36e/65PHq/MlNQ0D289JM05i0JSk0UhqcmikNRkUUhqsigkNVkUkposCklN/w9DIuk6HmDUAwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54eaf9518>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADolJREFUeJzt3X/IXmd9x/H3Z0mbrBU1mRLSpqxBglJlthq01bGJmWt1Yrp/Sso6sq0QBt2oIrhk/uFfBWUi+sd0BKtms2sptVtDcbYxKjLEalyDaxNrMl1tbNLUdZviRpbqd3/cp3iTPs9zxfs896+n7xeE+z7XOec+X5Kbz3Od61zXk1QVkrSUX5l2AZJmn0EhqcmgkNRkUEhqMigkNRkUkpoMCklNYwuKJNcleSzJ8SS7x3UdSeOXcUy4SrIK+C7wNuAE8E3gxqo6suwXkzR2q8f0uW8AjlfV9wCS3AVsBxYMiguzptZy8ZhKkQTwE/7zR1X18lHOHVdQXAo8MbR9Anjj8AFJdgG7ANZyEW/MtjGVIgngi3XP46OeO7XBzKraW1Vbq2rrBayZVhmSzsO4guKHwGVD25u6NklzaFxB8U1gS5LNSS4EdgD7x3QtSWM2ljGKqno2yZ8BDwCrgE9V1aPjuJak8RvXYCZV9Xng8+P6fEmT48xMSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JS08hBkeSyJF9OciTJo0lu7drXJzmQ5Fj3um75ypU0DX16FM8C762qK4CrgVuSXAHsBg5W1RbgYLctaY6NHBRVdbKq/qV7/xPgKHApsB3Y1x22D7i+b5GSpmv1cnxIksuBq4CHgA1VdbLbdQrYsMg5u4BdAGu5aDnKkDQmvQczk7wI+Bzw7qr68fC+qiqgFjqvqvZW1daq2noBa/qWIWmMegVFkgsYhMQdVXVv1/xUko3d/o3A6X4lSpq2Pk89AtwOHK2qjwzt2g/s7N7vBO4bvTxJs6DPGMWbgT8E/jXJ4a7tL4EPAncnuRl4HLihX4mSpm3koKiqfwayyO5to36upNnjzExJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GxQQ88ORhHnjycPtAaUYZFJKaDApJTQaFpKZl+VV4Wtq1l1w57RKkXuxRSGoyKCQ1GRRj5GNRrRQGhaQmg0JSk0EhqcmgkNRkUEhqMigmwKcfmncGhaQmp3CPgb0HrTQGxQS41kPzrvetR5JVSR5Ocn+3vT7JgSTHutd1/cuUNE3LMUZxK3B0aHs3cLCqtgAHu+0XNAczNe96BUWSTcDvAZ8cat4O7Ove7wOu73MNSdPXt0fxUeB9wM+H2jZU1cnu/SlgQ89rSJqykYMiyTuB01X1rcWOqaoCapHzdyU5lOTQWc6MWoakCejz1OPNwLuSvANYC7w4yWeBp5JsrKqTSTYCpxc6uar2AnsBXpz1C4bJSuFTD827kXsUVbWnqjZV1eXADuBLVXUTsB/Y2R22E7ivd5WSpmocMzM/CLwtyTHgd7rtFzSfemjeLcuEq6r6CvCV7v1/ANuW43MlzQbXekhqcgr3BDiYqXlnj0JSk0EhqcmgkNTkGMUYnDsm8dyjUccqNK/sUUhqskcxBotNrnrgycP2KjSX7FGMwbWXXGkgaEUxKCQ1eesxBkut63BgU/PIHoWkJoNCUpNBIanJoBiD83nq4e+o0DwxKCQ1GRSSmgyKMfIWRCuFQSGpyQlXEzDcq7D3oHlkj0JSk0EhqcmgkNRkUEzYYk9CfPqhWWZQSGoyKGaMvQrNIoNiSpaajOVtiGZNr6BI8tIk9yT5TpKjSa5Jsj7JgSTHutd1y1WspOno26P4GPCFqnoV8FrgKLAbOFhVW4CD3bakOTZyUCR5CfBbwO0AVfV/VfVfwHZgX3fYPuD6vkVKmq4+PYrNwNPAp5M8nOSTSS4GNlTVye6YU8CGvkWuZI5VaB70CYrVwOuAT1TVVcBPOec2o6oKqIVOTrIryaEkh85ypkcZksatT1CcAE5U1UPd9j0MguOpJBsButfTC51cVXuramtVbb2ANT3KWBnsWWiWjRwUVXUKeCLJK7umbcARYD+ws2vbCdzXq0JJU9d3mfmfA3ckuRD4HvDHDMLn7iQ3A48DN/S8xgvKtZdcae9BM6dXUFTVYWDrAru29flcSbPFX1wzg54bqzi3ZzG87f80pkkyKGbYuWEwHBT+14SaJNd6SGoyKObIQo9QfXSqSTAoJDU5RjGHFnqEuly9Csc8tBB7FJKa7FHMqaWme/dx7vn2MAT2KCSdB4NCS/KJisBbjxXnl71VWCwIvOXQMHsUkprsUbzATaPn4PTz+WOPQlKTPQpNnD2J+WOPQlKTQTFGLtjSSmFQSGpyjGKMvBfXSmFQjJHrJrRSeOshqckexRjZg9BKYY9CUpNBIanJoJDUZFBIajIoJDX1Cooke5IcSfJIkjuTrE2yPsmBJMe613XLVey8ciq35t3IQZHkcmAX8Pqqeg2wCtgB7AYOVtUW4GC3LWmO9elR/Bg4C/xqktXARcCTwHZgX3fMPuD6XhVKmrqRJ1xV1TNJPgz8APhf4MGqejDJhqo62R12CtiwDHXONSdeLczfdDU/+tx6vAJ4D7AZuAS4OMlNw8dUVQG1yPm7khxKcugsZ0YtQ9IE9JnCvRX4WlU9DZDkXuBNwFNJNlbVySQbgdMLnVxVe4G9AC/O+gXDRCubPYn50WeM4jHg6iQXJQmwDTgK7Ad2dsfsBO7rV6KkaeszRnE4yd8Ch4CfAw8z6CG8CLg7yc3A48ANy1GopOnptXq0qj4EfOic5jMMeheSVghnZkpqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpqaQZHkU0lOJ3lkqG19kgNJjnWv64b27UlyPMljSa4dV+GSJud8ehSfAa47p203cLCqtgAHu22SXAHsAF7dnfPxJKuWrVpJU9EMiqr6KvDMOc3bgX3d+33A9UPtd1XVmar6PnAceMMy1SppSkYdo9hQVSe796eADd37S4Enho470bVJmmO9BzOrqoD6Zc9LsivJoSSHznKmbxmSxmjUoHgqyUaA7vV01/5D4LKh4zZ1bc9TVXuramtVbb2ANSOWIWkSRg2K/cDO7v1O4L6h9h1J1iTZDGwBvtGvREnTtrp1QJI7gbcAL0tyAvgA8EHg7iQ3A48DNwBU1aNJ7gaOAM8Ct1TVz8ZUu6QJaQZFVd24yK5tixx/G3Bbn6IkzRZnZkpqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpqaQZHkU0lOJ3lkqO2vknwnybeT/EOSlw7t25PkeJLHklw7rsIlTc759Cg+A1x3TtsB4DVV9RvAd4E9AEmuAHYAr+7O+XiSVctWraSpaAZFVX0VeOactger6tlu8+vApu79duCuqjpTVd8HjgNvWMZ6JU3BcoxR/AnwT937S4Enhvad6NokzbHVfU5O8n7gWeCOEc7dBewCWMtFfcqQNGYjB0WSPwLeCWyrquqafwhcNnTYpq7teapqL7C3+6ynv1j3/BT40aj1jMHLsJ6lWM/SZrGeXx/15JGCIsl1wPuA366q/xnatR/4+yQfAS4BtgDfaH1eVb08yaGq2jpKPeNgPUuznqXNaD2Xj3p+MyiS3Am8BXhZkhPABxg85VgDHEgC8PWq+tOqejTJ3cARBrckt1TVz0YtTtJsaAZFVd24QPPtSxx/G3Bbn6IkzZZZmpm5d9oFnMN6lmY9S1tR9eQX45CStLBZ6lFImlEzERRJruvWhhxPsnsK178syZeTHEnyaJJbu/b1SQ4kOda9rptgTauSPJzk/hmo5aVJ7unW9xxNcs2U69nT/Vs9kuTOJGsnWc8i658Wvf641z9NYj3W1IOiWwvy18DbgSuAG7s1I5P0LPDeqroCuBq4pathN3CwqrYAB7vtSbkVODq0Pc1aPgZ8oapeBby2q2sq9SS5nMFEvddX1WuAVQzWF02yns/w/PVPC15/QuufFqpneddjVdVU/wDXAA8Mbe8B9ky5pvuAtwGPARu7to3AYxO6/iYGX7a3Avd3bdOq5SXA9+nGs4bap1XP+u6Lv57BU7v7gd+ddD3A5cAjrb+Pc7/PwAPANeOu55x9vw/c0aeeqfcomLH1Id1PrKuAh4ANVXWy23UK2DChMj7KYELbz4faplXLZuBp4NPdrdAnk1w8rXqq6hngw8APgJPAf1fVg9OqZ8hi15+F73fv9VizEBQzI8mLgM8B766qHw/vq0H8jv0RUZJ3Aqer6luLHTOpWjqrgdcBn6iqq4Cfck63fpL1JHkF8B4GAXYJcHGSm6ZVz0Kmff1hfdZjDZuFoDjv9SHjlOQCBiFxR1Xd2zU/lWRjt38jcHoCpbwZeFeSfwfuAt6a5LNTqgUGP3FOVNVD3fY9DIJjWvVsBb5WVU9X1VngXuBNU6znOYtdf2rf76H1WH/QhdfI9cxCUHwT2JJkc5ILGQy07J9kARnMQ78dOFpVHxnatR/Y2b3fyWDsYqyqak9VbarBvPwdwJeq6qZp1NLVcwp4Iskru6ZtDKboT6UeBmMBVye5qPt328ZgcHVa9TxnsevvB3YkWZNkM+e5/qmvofVY76rnr8f65euZxADUeQzEvIPBANW/Ae+fwvV/k0FX8dvA4e7PO4BfYzCoeAz4IrB+wnW9hV8MZk6tFuBK4FD39/OPwLop1/MXDMLqEeDvGKw7mlg9wJ0MxkfOMuhx3bzU9YH3d9/tx4C3T6ie4wzGIp77Pv9Nn3qcmSmpaRZuPSTNOINCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTf8Pj5wjpGHQqQEAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54eca05f8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADjRJREFUeJzt3XHIXXd9x/H3Z0mbrBU1mRLSpqxBglJlWg3a6tjEzLW6Yrp/Sso6sq0QBt2oIrhk/uFfBWUi+sd0BKtms2spsbOhOGsaFRliNZ3FtYkxma42mjR13VQcZKl+98c9xbunT/Kr9zz3nvuk7xeEe87vnHPPl+Tyye/87u/3PKkqJOlcfm3oAiTNP4NCUpNBIanJoJDUZFBIajIoJDUZFJKaphYUSa5NciTJsSQ7p3UfSdOXaUy4SrIC+A7wVuA48A3gxqo6tOQ3kzR1K6f0vq8HjlXVdwGS3AVsBRYNiguzqlZz8ZRKkQTwU/7rR1X10kmunVZQXAo8PrZ/HHjD+AlJdgA7AFZzEW/IlimVIgnggdr72KTXDjaYWVW7q2pzVW2+gFVDlSHpOZhWUPwAuGxsf0PXJmkZmlZQfAPYlGRjkguBbcC+Kd1L0pRNZYyiqp5O8hfA/cAK4BNV9eg07iVp+qY1mElVfQ743LTeX9LsODNTUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUNHFQJLksyZeSHEryaJJbu/a1SfYnOdq9rlm6ciUNoU+P4mng3VV1BXAVcEuSK4CdwIGq2gQc6PYlLWMTB0VVnaiqf+22fwocBi4FtgJ7utP2ANf3LVLSsFYuxZskuRy4EngQWFdVJ7pDJ4F1Z7lmB7ADYDUXLUUZkqak92BmkhcAnwHeWVU/GT9WVQXUYtdV1e6q2lxVmy9gVd8yJE1Rr6BIcgGjkLijqu7pmp9Isr47vh441a9ESUPr861HgNuBw1X1obFD+4Dt3fZ24N7Jy5M0D/qMUbwJ+GPg35I83LX9NfB+4O4kNwOPATf0K1HS0CYOiqr6FyBnObxl0veVNH+cmSmpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GxRTd/8OHuf+HD7dPlOacQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqWpLf66H/z/UdOt/Yo5DUZFBIajIoJDUZFJKaDApJTQaFpCa/Hp2iay55zdAlSEuid48iyYok30xyX7e/Nsn+JEe71zX9y5Q0pKV49LgVODy2vxM4UFWbgAPdvqRlrFdQJNkA/AHw8bHmrcCebnsPcH2fe0gaXt8exYeB9wC/GGtbV1Unuu2TwLqe91i2/HH9Ol9MHBRJrgNOVdVDZzunqgqos1y/I8nBJAfPcHrSMiTNQJ9vPd4EvCPJ24HVwAuTfBp4Isn6qjqRZD1warGLq2o3sBvghVm7aJhImg8T9yiqaldVbaiqy4FtwBer6iZgH7C9O207cG/vKiUNahoTrt4PvDXJUeD3un1Jy9iSTLiqqi8DX+62/xPYshTvu9w54UrnC6dwS2oyKCQ1GRSSmgyKGXLylZYrg0JSk8vMZ8CehJY7exSSmgwKSU0+ekyBE610vrFHIanJoFhC/vwJna8MCklNBoWkJoNCUpNBMQWOVeh8Y1BIanIexRQsnEfxzL69DC1X9ihmzMcSLUcGhaSmjH71xrBemLX1hjw/fszmwt6E0701Kw/U3oeqavMk19qjkNRkUMzYNZe8xl6Elh2DQlKTX48OZOFXpvYyNM/sUUhqMigkNfnoMTAfQbQc9OpRJHlxkr1Jvp3kcJKrk6xNsj/J0e51zVIVK2kYfR89PgJ8vqpeAbwaOAzsBA5U1SbgQLcvaRmbOCiSvAj4HeB2gKr636r6b2ArsKc7bQ9wfd8iJQ2rzxjFRuBJ4JNJXg08BNwKrKuqE905J4F1/Up8flhshanjFZoXfR49VgKvBT5WVVcCP2PBY0aNFpIsupgkyY4kB5McPMPpHmVImrY+PYrjwPGqerDb38soKJ5Isr6qTiRZD5xa7OKq2g3shtGisB51nFfGexF+E6J5MXGPoqpOAo8neXnXtAU4BOwDtndt24F7e1UoaXB951H8JXBHkguB7wJ/yih87k5yM/AYcEPPezxvOcdC86JXUFTVw8Bi69ufHz9cQnqecGbmMmDPQkNzrccy5M/c1KwZFJKafPRYRvzqVEOxRyGpyR7FMuUAp2bJHoWkJnsUy9zCnoSLyjQN9igkNdmjOM/Yi9A02KOQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDU1CsokuxKcijJI0nuTLI6ydok+5Mc7V7XLFWxkoYxcVAkuRzYAbyuql4FrAC2ATuBA1W1CTjQ7Utaxvr0KH4CnAF+PclK4CLgh8BWYE93zh7g+l4VShrcxEFRVU8BHwS+D5wAflxVXwDWVdWJ7rSTwLreVUoaVJ9Hj5cB7wI2ApcAFye5afycqiqgznL9jiQHkxw8w+lJy5A0A30ePTYDX62qJ6vqDHAP8EbgiSTrAbrXU4tdXFW7q2pzVW2+gFU9ypA0bX2C4ghwVZKLkgTYAhwG9gHbu3O2A/f2K1HS0Cb+BUBV9XCSvwcOAr8AvgnsBl4A3J3kZuAx4IalKFTScHr9prCq+gDwgQXNpxn1LiSdJ5yZKanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIamoGRZJPJDmV5JGxtrVJ9ic52r2uGTu2K8mxJEeSXDOtwiXNznPpUXwKuHZB207gQFVtAg50+yS5AtgGvLK75qNJVixZtZIG0QyKqvoK8NSC5q3Anm57D3D9WPtdVXW6qr4HHANev0S1ShrIpGMU66rqRLd9EljXbV8KPD523vGuTdIy1nsws6oKqF/1uiQ7khxMcvAMp/uWIWmKJg2KJ5KsB+heT3XtPwAuGztvQ9f2LFW1u6o2V9XmC1g1YRmSZmHSoNgHbO+2twP3jrVvS7IqyUZgE/D1fiVKGtrK1glJ7gTeDLwkyXHgfcD7gbuT3Aw8BtwAUFWPJrkbOAQ8DdxSVT+fUu2SZqQZFFV141kObTnL+bcBt/UpStJ8cWampCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpqRkUST6R5FSSR8ba/ibJt5N8K8k/JXnx2LFdSY4lOZLkmmkVLml2nkuP4lPAtQva9gOvqqrfAr4D7AJIcgWwDXhld81Hk6xYsmolDaIZFFX1FeCpBW1fqKqnu92vARu67a3AXVV1uqq+BxwDXr+E9UoawFKMUfwZ8M/d9qXA42PHjndtkpaxlX0uTvJe4Gngjgmu3QHsAFjNRX3KkDRlEwdFkj8BrgO2VFV1zT8ALhs7bUPX9ixVtRvY3b3Xkw/U3p8BP5q0nil4CdZzLtZzbvNYz29OevFEQZHkWuA9wO9W1f+MHdoH/GOSDwGXAJuAr7fer6pemuRgVW2epJ5psJ5zs55zm9N6Lp/0+mZQJLkTeDPwkiTHgfcx+pZjFbA/CcDXqurPq+rRJHcDhxg9ktxSVT+ftDhJ86EZFFV14yLNt5/j/NuA2/oUJWm+zNPMzN1DF7CA9Zyb9ZzbeVVPfjkOKUmLm6cehaQ5NRdBkeTabm3IsSQ7B7j/ZUm+lORQkkeT3Nq1r02yP8nR7nXNDGtakeSbSe6bg1penGRvt77ncJKrB65nV/dv9UiSO5OsnmU9Z1n/dNb7T3v90yzWYw0eFN1akL8F3gZcAdzYrRmZpaeBd1fVFcBVwC1dDTuBA1W1CTjQ7c/KrcDhsf0ha/kI8PmqegXw6q6uQepJcjmjiXqvq6pXASsYrS+aZT2f4tnrnxa9/4zWPy1Wz9Kux6qqQf8AVwP3j+3vAnYNXNO9wFuBI8D6rm09cGRG99/A6MP2FuC+rm2oWl4EfI9uPGusfah61nYf/LWMvrW7D/j9WdcDXA480vr7WPh5Bu4Hrp52PQuO/SFwR596Bu9RMGfrQ7r/sa4EHgTWVdWJ7tBJYN2MyvgwowltvxhrG6qWjcCTwCe7R6GPJ7l4qHqq6ingg8D3gRPAj6vqC0PVM+Zs95+Hz3fv9VjzEBRzI8kLgM8A76yqn4wfq1H8Tv0roiTXAaeq6qGznTOrWjorgdcCH6uqK4GfsaBbP8t6krwMeBejALsEuDjJTUPVs5ih7z+uz3qscfMQFM95fcg0JbmAUUjcUVX3dM1PJFnfHV8PnJpBKW8C3pHkP4C7gLck+fRAtcDof5zjVfVgt7+XUXAMVc9m4KtV9WRVnQHuAd44YD3PONv9B/t8j63H+qMuvCauZx6C4hvApiQbk1zIaKBl3ywLyGge+u3A4ar60NihfcD2bns7o7GLqaqqXVW1oUbz8rcBX6yqm4aopavnJPB4kpd3TVsYTdEfpB5GYwFXJbmo+3fbwmhwdah6nnG2++8DtiVZlWQjz3H9U19j67HeUc9ej/Wr1zOLAajnMBDzdkYDVP8OvHeA+/82o67it4CHuz9vB36D0aDiUeABYO2M63ozvxzMHKwW4DXAwe7v57PAmoHr+StGYfUI8A+M1h3NrB7gTkbjI2cY9bhuPtf9gfd2n+0jwNtmVM8xRmMRz3ye/65PPc7MlNQ0D48ekuacQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaSm/wPCi+vH9wvScQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e98ef98>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADnxJREFUeJzt3XGonXd9x/H3Z0marBU1mRLSpqxBglJltnrRVscmZq7Vien+KSnryLZCGHSjiuCS+Yd/FZSJ6B/TEayaza6lxG4NxVnTqMgQa9M1uDYxJtPVxiZNXTcVB1mq3/1xnuIhvTe/6zn3nOfc9P2CcJ7n9zzPeb7cnPu5v/M7v9+9qSok6Xx+re8CJM0+g0JSk0EhqcmgkNRkUEhqMigkNRkUkpomFhRJrk9yNMnxJDsndR9Jk5dJTLhKsgL4LvAO4ATwMHBTVR1e8ptJmriVE3reNwHHq+p7AEnuBrYC8wbFRVlda7hkQqVIAvgp//2jqnrlKNdOKiguA54c2j8BvHn4hCQ7gB0Aa7iYN2fLhEqRBPBg7X1i1Gt7G8ysqt1VNVdVc6tY3VcZkhZhUkHxQ+Dyof2NXZukZWhSQfEwsDnJpiQXAduAfRO6l6QJm8gYRVU9l+QvgAeAFcBnqurxSdxL0uRNajCTqvoi8MVJPb+k6XFmpqQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqWnkoEhyeZKvJjmc5PEkt3Xt65LsT3Kse1y7dOVK6sM4PYrngPdX1ZXANcCtSa4EdgIHqmozcKDbl7SMjRwUVXWyqv6t2/4pcAS4DNgK7OlO2wPcMG6Rkvq1cimeJMkVwNXAQ8D6qjrZHToFrF/gmh3ADoA1XLwUZUiakLEHM5O8BPgC8N6q+snwsaoqoOa7rqp2V9VcVc2tYvW4ZUiaoLGCIskqBiFxZ1Xd2zU/nWRDd3wDcHq8EiX1bZxPPQLcARypqo8NHdoHbO+2twP3jV6epFkwzhjFW4E/Bv49yaGu7a+BDwP3JLkFeAK4cbwSJfVt5KCoqn8FssDhLaM+r6TZ48xMSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBsUEPfDUIR546lD7RGnGGRSSmpbkF9doftddelXfJUhLwh6FpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRQT4EQrXWgMCklNBsUE2bPQhcKgkNRkUEhqMigkNbkobAk5HqELlT0KSU1jB0WSFUkeTXJ/t78uyf4kx7rHteOXKalPS9GjuA04MrS/EzhQVZuBA92+pGVsrKBIshH4A+DTQ81bgT3d9h7ghnHuIal/4/YoPg58APjFUNv6qjrZbZ8C1o95D0k9GzkokrwbOF1Vjyx0TlUVUAtcvyPJwSQHz3Jm1DIkTcE4H4++FXhPkncBa4CXJvk88HSSDVV1MskG4PR8F1fVbmA3wEuzbt4wkTQbRu5RVNWuqtpYVVcA24CvVNXNwD5ge3faduC+sauU1KtJzKP4MPCOJMeA3+v2JS1jSzIzs6q+Bnyt2/4vYMtSPK+k2eDMTElNBoWkJoNCUpNBMQX+pistdwaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRRT5EekWq4MCklNBoWkJoNCUpNBIanJoJDUZFAsoesuvYrrLr3qvOe4QKzNr8/s8W+PTsBCYeE3wOK0wlbTZ49CUpNB0RPfgmg5MSgkNRkUkpoMCklNBsUUzTea71iFlgODQlKTQSGpyQlXU/b8249z324M7zvhSLNmrB5Fkpcn2ZvkO0mOJLk2ybok+5Mc6x7XLlWxkvox7luPTwBfqqrXAK8HjgA7gQNVtRk40O3rHOdbF+IAp2bNyEGR5GXA7wB3AFTV/1XV/wBbgT3daXuAG8YtUlK/xulRbAKeAT6b5NEkn05yCbC+qk5255wC1o9b5IXMnoWWg3GCYiXwBuBTVXU18DPOeZtRVQXUfBcn2ZHkYJKDZzkzRhmSJm2coDgBnKiqh7r9vQyC4+kkGwC6x9PzXVxVu6tqrqrmVrF6jDIufPYs1LeRg6KqTgFPJnl117QFOAzsA7Z3bduB+8aqUFLvxp1H8ZfAnUkuAr4H/CmD8LknyS3AE8CNY97jRWGh+RXDnj/mPAtN21hBUVWHgLl5Dm0Z53klzRZnZs6Y4d7CchyXsNdzYTIoZthi3o7MAqefX/hcFCapyR7FMvTAU4d6/cm9UA/H3sSFyx6FpKYMJk/266VZV2+OH5Qs1nw/0Rfz0/zcgcb5eibnGw+xx7C8PVh7H6mq+T6lbLJHIanJHsUyN6lPROw9XHjsUUiaKD/1WOZ+lTGGxVwvzceguMD4ja9J8K2HpCaDQovm78V48TIoJDU5RqEmV4TKHoWkJnsUL2KLXR5uT0L2KCQ12aN4EbOnoMWyRyGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JS01hBkWRXksNJHktyV5I1SdYl2Z/kWPe4dqmKldSPkYMiyRXADuCNVfU6YAWwDdgJHKiqzcCBbl/SMjZOj+InwFng15OsBC4GngK2Anu6c/YAN4xVoaTejRwUVfUs8FHgB8BJ4MdV9WVgfVWd7E47Bawfu0pJvRrnrcergPcBm4BLgUuS3Dx8Tg3+aMi8fzgkyY4kB5McPMuZUcuQNAXjvPWYA75RVc9U1VngXuAtwNNJNgB0j6fnu7iqdlfVXFXNrWL1GGVImrRxguIocE2Si5ME2AIcAfYB27tztgP3jVeipL6N/PsoqupQkr8HDgK/AB4FdgMvAe5JcgvwBHDjUhQqqT9j/eKaqvoI8JFzms8w6F1IukA4M1NSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNTUDIokn0lyOsljQ23rkuxPcqx7XDt0bFeS40mOJrluUoVLmp7F9Cg+B1x/TttO4EBVbQYOdPskuRLYBry2u+aTSVYsWbWSetEMiqr6OvDsOc1bgT3d9h7ghqH2u6vqTFV9HzgOvGmJapXUk1HHKNZX1clu+xSwvtu+DHhy6LwTXZukZWzswcyqKqB+1euS7EhyMMnBs5wZtwxJEzRqUDydZANA93i6a/8hcPnQeRu7theoqt1VNVdVc6tYPWIZkqZh1KDYB2zvtrcD9w21b0uyOskmYDPwrfFKlNS3la0TktwFvA14RZITwIeADwP3JLkFeAK4EaCqHk9yD3AYeA64tap+PqHaJU1JMyiq6qYFDm1Z4PzbgdvHKUrSbHFmpqQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqakZFEk+k+R0kseG2v4myXeSfDvJPyV5+dCxXUmOJzma5LpJFS5pehbTo/gccP05bfuB11XVbwHfBXYBJLkS2Aa8trvmk0lWLFm1knrRDIqq+jrw7DltX66q57rdbwIbu+2twN1Vdaaqvg8cB960hPVK6sFSjFH8GfAv3fZlwJNDx050bZKWsZXjXJzkg8BzwJ0jXLsD2AGwhovHKUPShI0cFEn+BHg3sKWqqmv+IXD50Gkbu7YXqKrdwO7uuZ55sPb+DPjRqPVMwCuwnvOxnvObxXp+c9SLRwqKJNcDHwB+t6r+d+jQPuAfk3wMuBTYDHyr9XxV9cokB6tqbpR6JsF6zs96zm9G67li1OubQZHkLuBtwCuSnAA+xOBTjtXA/iQA36yqP6+qx5PcAxxm8Jbk1qr6+ajFSZoNzaCoqpvmab7jPOffDtw+TlGSZssszczc3XcB57Ce87Oe87ug6skvxyElaX6z1KOQNKNmIiiSXN+tDTmeZGcP9788yVeTHE7yeJLbuvZ1SfYnOdY9rp1iTSuSPJrk/hmo5eVJ9nbre44kubbnenZ1/1ePJbkryZpp1rPA+qcF7z/p9U/TWI/Ve1B0a0H+FngncCVwU7dmZJqeA95fVVcC1wC3djXsBA5U1WbgQLc/LbcBR4b2+6zlE8CXquo1wOu7unqpJ8kVDCbqvbGqXgesYLC+aJr1fI4Xrn+a9/5TWv80Xz1Lux6rqnr9B1wLPDC0vwvY1XNN9wHvAI4CG7q2DcDRKd1/I4MX29uB+7u2vmp5GfB9uvGsofa+6lnXvfDXMfjU7n7g96ddD3AF8Fjr63Hu6xl4ALh20vWcc+wPgTvHqaf3HgUztj6k+4l1NfAQsL6qTnaHTgHrp1TGxxlMaPvFUFtftWwCngE+270V+nSSS/qqp6qeBT4K/AA4Cfy4qr7cVz1DFrr/LLy+x16PNQtBMTOSvAT4AvDeqvrJ8LEaxO/EPyJK8m7gdFU9stA506qlsxJ4A/Cpqroa+BnndOunWU+SVwHvYxBglwKXJLm5r3rm0/f9h42zHmvYLATFoteHTFKSVQxC4s6qurdrfjrJhu74BuD0FEp5K/CeJP8J3A28Pcnne6oFBj9xTlTVQ93+XgbB0Vc9c8A3quqZqjoL3Au8pcd6nrfQ/Xt7fQ+tx/qjLrxGrmcWguJhYHOSTUkuYjDQsm+aBWQwD/0O4EhVfWzo0D5ge7e9ncHYxURV1a6q2liDefnbgK9U1c191NLVcwp4Msmru6YtDKbo91IPg7GAa5Jc3P2/bWEwuNpXPc9b6P77gG1JVifZxCLXP41raD3We+qF67F+9XqmMQC1iIGYdzEYoPoP4IM93P+3GXQVvw0c6v69C/gNBoOKx4AHgXVTrutt/HIws7dagKuAg93X55+BtT3X81cMwuox4B8YrDuaWj3AXQzGR84y6HHdcr77Ax/sXttHgXdOqZ7jDMYinn89/9049TgzU1LTLLz1kDTjDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1/T82Pih7sHZcIAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54e9ad828>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADlVJREFUeJzt3X+oX3d9x/Hna0marHVqMiWkTVmDBKXKbPWirY5NzFw7J6b7p6SsI9sKYdCNKoJL5h/+VVAmon9MR7BqNruWUrs1FGeMUZEhVuMaXJsYk+lqY5OmrpuKgyzV9/74nuJ3t/fmE7/nfn/cu+cDwveczznne94kX155fz/nnHtTVUjShfzStAuQNPsMCklNBoWkJoNCUpNBIanJoJDUZFBIahpbUCS5McnxJCeT7B7XeSSNX8Zxw1WSVcC3gbcAp4CvA7dU1dElP5mksVs9pvd9HXCyqr4DkOReYDuwYFBckrW1jsvGVIokgB/znz+oqpeOcuy4guIK4Imh9VPA64d3SLIL2AWwjkt5fbaNqRRJAJ+v+x8f9dipTWZW1d6qmququTWsnVYZki7CuILi+8CVQ+ubuzFJy9C4guLrwNYkW5JcAuwA9o/pXJLGbCxzFFX1bJI/Aw4Aq4CPV9Vj4ziXpPEb12QmVfUZ4DPjen9Jk+OdmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKaRgyLJlUm+mORokseS3NGNb0hyMMmJ7nX90pUraRr6dBTPAu+qqquB64Dbk1wN7AYOVdVW4FC3LmkZGzkoqup0Vf1Lt/xj4BhwBbAd2Nfttg+4qW+RkqZr9VK8SZKrgGuBh4GNVXW623QG2LjIMbuAXQDruHQpypA0Jr0nM5O8APg08I6q+tHwtqoqoBY6rqr2VtVcVc2tYW3fMiSNUa+gSLKGQUjcXVUPdMNPJdnUbd8EnO1XoqRp63PVI8BdwLGq+uDQpv3Azm55J/Dg6OVJmgV95ijeCPwh8K9JjnRjfwm8D7gvyW3A48DN/UqUNG0jB0VV/TOQRTZvG/V9Jc0e78yU1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUY3TgySMcePJIe0dpxhkUkpoMCklNBoWkJoNCUpNBIanJoJDUtCS/10P/13OXRG+4/JopVyItDTsKSU0GhaQmg0JSk0EhqcmgkNRkUEhq8vLoEvJJUa1UvTuKJKuSPJLkoW59Q5KDSU50r+v7lylpmpbiq8cdwLGh9d3AoaraChzq1iUtY72CIslm4PeAjw0Nbwf2dcv7gJv6nEPS9PWdo/gQ8G7gV4bGNlbV6W75DLCx5zmWHW/d1kozckeR5G3A2ar6xmL7VFUBtcjxu5IcTnL4POdGLUPSBPTpKN4IvD3JW4F1wAuTfAp4KsmmqjqdZBNwdqGDq2ovsBfghdmwYJgsN3YSWqlG7iiqak9Vba6qq4AdwBeq6lZgP7Cz220n8GDvKiVN1ThuuHof8JYkJ4Df7tYlLWNLcsNVVX0J+FK3/B/AtqV43+XGn0OhlcpbuCU1GRSSmgwKSU0GhaQmg0JSk4+ZLyGvdmilsqOQ1GRQSGoyKMbgwJNH/GlXWlEMCklNTmaOgZOaWmnsKCQ1GRSSmgwKSU0GxRJa7GqHV0G03BkUkpoMiiV0w+XXXPCKh12FliuDQlKTQSGpyaCQ1GRQSGoyKCbMS6VajgwKSU0GxQS0LptKs86gkNRkUEzQcFfhXIWWE4NCUlOvoEjy4iT3J/lWkmNJrk+yIcnBJCe61/VLVayk6ejbUXwY+GxVvQJ4NXAM2A0cqqqtwKFuXZ35E5t+BdFyMHJQJHkR8JvAXQBV9T9V9V/AdmBft9s+4Ka+RUqarj4dxRbgaeATSR5J8rEklwEbq+p0t88ZYGPfIlciOwstJ32CYjXwGuCjVXUt8BPmfc2oqgJqoYOT7EpyOMnh85zrUYakcesTFKeAU1X1cLd+P4PgeCrJJoDu9exCB1fV3qqaq6q5NaztUcbKYlehWTRyUFTVGeCJJC/vhrYBR4H9wM5ubCfwYK8KJU1d39/r8efA3UkuAb4D/DGD8LkvyW3A48DNPc+xoj03T2EnoVnWKyiq6ggwt8CmbX3eV9Js8TeFzYj5V0Dmj0nTZFDMoPlfRwwMTZvPekhqsqOYYXYWmhV2FJKa7CiWgfmdxEKXUu02NE52FJKa7CiWoRsuv+Z5XYVdhsbJjkJSkx3FMnUx8xZeLdFSMShWiFHDYCmeMTGIVj6/ekhqsqP4f+4X6QYW6z4upiux61je7CgkNdlR6KK1uoIDTx6xc1ih7CgkNRkUWjJ2EyuXQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNTUKyiS7ElyNMmjSe5Jsi7JhiQHk5zoXtcvVbGSpmPkoEhyFbALeG1VvQpYBewAdgOHqmorcKhbl7SM9ekofgScB345yWrgUuBJYDuwr9tnH3BTrwolTd3IQVFVzwAfAL4HnAZ+WFWfAzZW1elutzPAxt5VSpqqPl89Xga8E9gCXA5cluTW4X2qqoBa5PhdSQ4nOXyec6OWIWkC+nz1mAO+UlVPV9V54AHgDcBTSTYBdK9nFzq4qvZW1VxVza1hbY8yJI1bn6A4DlyX5NIkAbYBx4D9wM5un53Ag/1KlDRtI//MzKo6kuRvgcPAz4BHgL3AC4D7ktwGPA7cvBSFSpqeXj9ct6reD7x/3vA5Bt2FpBXCOzMlNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNzaBI8vEkZ5M8OjS2IcnBJCe61/VD2/YkOZnkeJIbxlW4pMm5mI7ik8CN88Z2A4eqaitwqFsnydXADuCV3TEfSbJqyaqVNBXNoKiqLwPPzBveDuzrlvcBNw2N31tV56rqu8BJ4HVLVKukKRl1jmJjVZ3uls8AG7vlK4AnhvY71Y1JWsZ6T2ZWVQH1ix6XZFeSw0kOn+dc3zIkjdGoQfFUkk0A3evZbvz7wJVD+23uxp6nqvZW1VxVza1h7YhlSJqEUYNiP7CzW94JPDg0viPJ2iRbgK3A1/qVKGnaVrd2SHIP8CbgJUlOAe8F3gfcl+Q24HHgZoCqeizJfcBR4Fng9qr66ZhqlzQhzaCoqlsW2bRtkf3vBO7sU5Sk2eKdmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKZmUCT5eJKzSR4dGvurJN9K8s0k/5DkxUPb9iQ5meR4khvGVbikybmYjuKTwI3zxg4Cr6qqXwe+DewBSHI1sAN4ZXfMR5KsWrJqJU1FMyiq6svAM/PGPldVz3arXwU2d8vbgXur6lxVfRc4CbxuCeuVNAVLMUfxJ8A/dctXAE8MbTvVjUlaxlb3OTjJe4BngbtHOHYXsAtgHZf2KUPSmI0cFEn+CHgbsK2qqhv+PnDl0G6bu7Hnqaq9wN7uvZ7+fN3/E+AHo9YzBi/Bei7Eei5sFuv5tVEPHikoktwIvBv4rar676FN+4G/T/JB4HJgK/C11vtV1UuTHK6quVHqGQfruTDrubAZreeqUY9vBkWSe4A3AS9Jcgp4L4OrHGuBg0kAvlpVf1pVjyW5DzjK4CvJ7VX101GLkzQbmkFRVbcsMHzXBfa/E7izT1GSZsss3Zm5d9oFzGM9F2Y9F7ai6snP5yElaWGz1FFImlEzERRJbuyeDTmZZPcUzn9lki8mOZrksSR3dOMbkhxMcqJ7XT/BmlYleSTJQzNQy4uT3N8933MsyfVTrmdP92/1aJJ7kqybZD2LPP+06PnH/fzTJJ7HmnpQdM+C/DXwu8DVwC3dMyOT9Czwrqq6GrgOuL2rYTdwqKq2Aoe69Um5Azg2tD7NWj4MfLaqXgG8uqtrKvUkuYrBjXqvrapXAasYPF80yXo+yfOff1rw/BN6/mmhepb2eayqmuof4HrgwND6HmDPlGt6EHgLcBzY1I1tAo5P6PybGXzY3gw81I1Nq5YXAd+lm88aGp9WPRu6D/4GBlftHgJ+Z9L1AFcBj7b+PuZ/noEDwPXjrmfett8H7u5Tz9Q7Cmbs+ZDuf6xrgYeBjVV1utt0Btg4oTI+xOCGtp8NjU2rli3A08Anuq9CH0ty2bTqqapngA8A3wNOAz+sqs9Nq54hi51/Fj7fvZ/HmoWgmBlJXgB8GnhHVf1oeFsN4nfsl4iSvA04W1XfWGyfSdXSWQ28BvhoVV0L/IR5bf0k60nyMuCdDALscuCyJLdOq56FTPv8w/o8jzVsFoLiop8PGackaxiExN1V9UA3/FSSTd32TcDZCZTyRuDtSf4duBd4c5JPTakWGPyPc6qqHu7W72cQHNOqZw74SlU9XVXngQeAN0yxnucsdv6pfb6Hnsf6gy68Rq5nFoLi68DWJFuSXMJgomX/JAvI4D70u4BjVfXBoU37gZ3d8k4GcxdjVVV7qmpzDe7L3wF8oapunUYtXT1ngCeSvLwb2sbgFv2p1MNgLuC6JJd2/27bGEyuTque5yx2/v3AjiRrk2zhIp9/6mvoeay31/Ofx/rF65nEBNRFTMS8lcEE1b8B75nC+X+DQav4TeBI9+etwK8ymFQ8AXwe2DDhut7Ezyczp1YLcA1wuPv7+Udg/ZTr+QsGYfUo8HcMnjuaWD3APQzmR84z6Lhuu9D5gfd0n+3jwO9OqJ6TDOYinvs8/02ferwzU1LTLHz1kDTjDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1/S9bb/rkUAUQcwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ebad588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADr5JREFUeJzt3XGonXd9x/H3Z0marBU1mRLSpqxBglJlWr1oq2MTM9fqxHT/lJR1ZFshDLpRRXDJ/MO/CspE9I/pCFbNZtdSYmdDccY0KjLEalyDaxNjMl1tbNLUdVNxkKX63R/nKZ6l995fes495zk3vl8Qznl+z/Oc55ubw+f+zu/5/U5SVUjSYn6t7wIkzT6DQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmiYWFEluSHIsyYkkOyd1HUmTl0lMuEqyAvgu8FbgJPBN4OaqOrLkF5M0cSsn9LqvB05U1fcAktwDbAXmDYpLsrrWcNmESpEE8FP+60dV9dJRzp1UUFwBPD60fRJ4w/ABSXYAOwDWcClvyJYJlSIJ4MHa+9io5/Y2mFlVu6tqrqrmVrG6rzIkXYBJBcUPgSuHtjd2bZKWoUkFxTeBzUk2JbkE2Absm9C1JE3YRMYoquqZJH8B7AdWAJ+sqkcncS1JkzepwUyq6vPA5yf1+pKmx5mZkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkppGDIsmVSb6c5EiSR5Pc3rWvS3IgyfHuce3SlSupD+P0KJ4B3lNVVwPXArcluRrYCRysqs3AwW5b0jI2clBU1amq+tfu+U+Bo8AVwFZgT3fYHuDGcYuU1K+VS/EiSa4CrgEeAtZX1alu12lg/QLn7AB2AKzh0qUoQ9KEjD2YmeQFwGeBd1XVT4b3VVUBNd95VbW7quaqam4Vq8ctQ9IEjRUUSVYxCIm7quq+rvnJJBu6/RuAM+OVKKlv49z1CHAncLSqPjy0ax+wvXu+Hbh/9PIkzYJxxijeBPwx8G9JDndtfw18ALg3ya3AY8BN45UoqW8jB0VV/QuQBXZvGfV1Jc0eZ2ZKajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg2IJ7X/iMPufONw+UFpmDApJTUvy5boauP7y1/RdgjQR9igkNRkUkpoMiiXiIKYuZgaFpCaDYgl5e1QXK4NCUpO3R8dkD0K/CuxRSGoyKCQ1GRSSmsYOiiQrkjyc5IFue12SA0mOd49rxy9TUp+WokdxO3B0aHsncLCqNgMHu21Jy9hYQZFkI/AHwCeGmrcCe7rne4Abx7mGpP6N26P4CPBe4BdDbeur6lT3/DSwfsxrSOrZyEGR5B3Amar61kLHVFUBtcD5O5IcSnLoHGdHLUPSFIwz4epNwDuTvB1YA7wwyWeAJ5NsqKpTSTYAZ+Y7uap2A7sBXph184aJpNkwco+iqnZV1caqugrYBnypqm4B9gHbu8O2A/ePXaWkXk1iHsUHgLcmOQ78XrctaRlbkrUeVfUV4Cvd8/8EtizF60qaDc7MlNRkUEhqMigkNRkUkpoMCklNBoWWPb+rdPIMCklNBsUE+BuuH/7cJ8egGNP1l7+m+X+O+gbWcmdQSGry6/onyF7EdDzbo/PnPTn2KCQ1GRRT5G88LVcGhaQmxyiWyPCdD3sO/Xr259+6G6ULZ49CUpNBMQEXMrdCS8+f++QYFFPm5CstRwaFpCYHM3XR8ePH0rNHIanJoJigxQbXHKvQcmJQSGoyKKbA23Za7gwKSU0GRc8cq9ByYFBIahorKJK8OMneJN9JcjTJdUnWJTmQ5Hj3uHapipXUj3F7FB8FvlBVrwBeDRwFdgIHq2ozcLDbFotPBPIjiGbZyEGR5EXA7wB3AlTV/1bVfwNbgT3dYXuAG8ctUlK/xulRbAKeAj6V5OEkn0hyGbC+qk51x5wG1o9bpKR+jRMUK4HXAh+vqmuAn3Hex4yqKqDmOznJjiSHkhw6x9kxypA0aeMExUngZFU91G3vZRAcTybZANA9npnv5KraXVVzVTW3itVjlLG8tCZfOU6hWTRyUFTVaeDxJC/vmrYAR4B9wPaubTtw/1gVSurduMvM/xK4K8klwPeAP2UQPvcmuRV4DLhpzGv8yvE7HzVrxgqKqjoMzM2za8s4rytptjgzsycuFNNyYlD0zO+s0HJgUEhq8jszZ8Ri/4HQfL0KP7ZomuxRSGqyRzGDnu0tnH+bdLhnsdDYhT0NTYI9CklNGSzH6NcLs67ekOU99WL/E4en9tv8Qu6E2LPQ+R6svd+qqvnmPTXZo5DUZI9imZtU78I7LRefcXoUBsUS6nONRh8TswyO5cWPHpImytujF4n5frtPupcx6uvbE1l+7FFIarJHcRFbbLHZ83kNF6bJHoWkJnsUS2ihqdez5vnWdf7x9jB+9dijkNRkUGiqZrWXpcX50WOCZv0jyKgutr+P2uxRSGoyKCbAL87VxcagkNTkGMUE2avQxcIehaQmg0JSk0EhqWmsoEiyK8mRJI8kuTvJmiTrkhxIcrx7XLtUxUrqx8hBkeQqYAfwuqp6FbAC2AbsBA5W1WbgYLctaRkbp0fxE+Ac8OtJVgKXAk8AW4E93TF7gBvHqlBS70YOiqp6GvgQ8APgFPDjqvoisL6qTnWHnQbWj12lpF6N89HjZcC7gU3A5cBlSW4ZPqYG39w777f3JtmR5FCSQ+c4O2oZkqZgnI8ec8DXquqpqjoH3Ae8EXgyyQaA7vHMfCdX1e6qmququVWsHqMM6f/b/8RhvzNjiY0TFMeAa5NcmiTAFuAosA/Y3h2zHbh/vBIl9W3kKdxVdTjJ3wOHgF8ADwO7gRcA9ya5FXgMuGkpCpXUn7HWelTVB4EPntd8lkHvQtJFwkVhuui4GG/pOYVbUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIampGRRJPpnkTJJHhtrWJTmQ5Hj3uHZo364kJ5IcS3L9pAqXND0X0qP4NHDDeW07gYNVtRk42G2T5GpgG/DK7pyPJVmxZNVK6kUzKKrqq8DT5zVvBfZ0z/cANw6131NVZ6vq+8AJ4PVLVKuknow6RrG+qk51z08D67vnVwCPDx13smuTtIyNPZhZVQXU8z0vyY4kh5IcOsfZccuQNEGjBsWTSTYAdI9nuvYfAlcOHbexa3uOqtpdVXNVNbeK1SOWIWkaRg2KfcD27vl24P6h9m1JVifZBGwGvjFeiZL6trJ1QJK7gTcDL0lyEng/8AHg3iS3Ao8BNwFU1aNJ7gWOAM8At1XVzydUu6QpaQZFVd28wK4tCxx/B3DHOEVJmi3OzJTUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDU1gyLJJ5OcSfLIUNvfJPlOkm8n+ackLx7atyvJiSTHklw/qcIlTc+F9Cg+DdxwXtsB4FVV9VvAd4FdAEmuBrYBr+zO+ViSFUtWraReNIOiqr4KPH1e2xer6plu8+vAxu75VuCeqjpbVd8HTgCvX8J6JfVgKcYo/gz45+75FcDjQ/tOdm2SlrGV45yc5H3AM8BdI5y7A9gBsIZLxylD0oSNHBRJ/gR4B7Clqqpr/iFw5dBhG7u256iq3cDu7rWeerD2/gz40aj1TMBLsJ7FWM/iZrGe3xz15JGCIskNwHuB362q/xnatQ/4xyQfBi4HNgPfaL1eVb00yaGqmhulnkmwnsVZz+JmtJ6rRj2/GRRJ7gbeDLwkyUng/QzucqwGDiQB+HpV/XlVPZrkXuAIg48kt1XVz0ctTtJsaAZFVd08T/Odixx/B3DHOEVJmi2zNDNzd98FnMd6Fmc9i7uo6skvxyElaX6z1KOQNKNmIiiS3NCtDTmRZGcP178yyZeTHEnyaJLbu/Z1SQ4kOd49rp1iTSuSPJzkgRmo5cVJ9nbre44mua7nenZ1/1aPJLk7yZpp1rPA+qcFrz/p9U/TWI/Ve1B0a0H+FngbcDVwc7dmZJqeAd5TVVcD1wK3dTXsBA5W1WbgYLc9LbcDR4e2+6zlo8AXquoVwKu7unqpJ8lVDCbqva6qXgWsYLC+aJr1fJrnrn+a9/pTWv80Xz1Lux6rqnr9A1wH7B/a3gXs6rmm+4G3AseADV3bBuDYlK6/kcGb7S3AA11bX7W8CPg+3XjWUHtf9azr3vjrGNy1ewD4/WnXA1wFPNL6eZz/fgb2A9dNup7z9v0hcNc49fTeo2DG1od0v7GuAR4C1lfVqW7XaWD9lMr4CIMJbb8Yauurlk3AU8Cnuo9Cn0hyWV/1VNXTwIeAHwCngB9X1Rf7qmfIQtefhff32OuxZiEoZkaSFwCfBd5VVT8Z3leD+J34LaIk7wDOVNW3FjpmWrV0VgKvBT5eVdcAP+O8bv0060nyMuDdDALscuCyJLf0Vc98+r7+sHHWYw2bhaC44PUhk5RkFYOQuKuq7uuan0yyodu/ATgzhVLeBLwzyX8A9wBvSfKZnmqBwW+ck1X1ULe9l0Fw9FXPHPC1qnqqqs4B9wFv7LGeZy10/d7e30Prsf6oC6+R65mFoPgmsDnJpiSXMBho2TfNAjKYh34ncLSqPjy0ax+wvXu+ncHYxURV1a6q2liDefnbgC9V1S191NLVcxp4PMnLu6YtDKbo91IPg7GAa5Nc2v27bWEwuNpXPc9a6Pr7gG1JVifZxAWufxrX0Hqsd9Zz12M9/3qmMQB1AQMxb2cwQPXvwPt6uP5vM+gqfhs43P15O/AbDAYVjwMPAuumXNeb+eVgZm+1AK8BDnU/n88Ba3uu568YhNUjwD8wWHc0tXqAuxmMj5xj0OO6dbHrA+/r3tvHgLdNqZ4TDMYinn0//9049TgzU1LTLHz0kDTjDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1/R8c7E4jajkFvwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54eaba588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADg5JREFUeJzt3XHIXXd9x/H3Z0marBU1mRLSpqxBglJlWn3QVscmZq7VFdP9U1LWkW2FMOhGFcEl8w//KigT0T+mI1g1m11LqZ0NxVljVGSI1bgW1ybGZLraaNLUdVNxkKX63R/3FO/SJ/nFe557z33i+wXhnPM759zzJbl8nt/5nfN7kqpCks7l14YuQNL8MygkNRkUkpoMCklNBoWkJoNCUpNBIalpakGR5Lokh5McTbJzWteRNH2ZxgtXSVYA3wbeDBwDvg7cVFUHl/xikqZu5ZQ+97XA0ar6DkCSu4GtwKJBcVFW1xoumVIpkgB+wn/9sKpePMm50wqKy4AnxraPAa8bPyDJDmAHwBou5nXZMqVSJAF8vu59fNJzBxvMrKrdVbVQVQurWD1UGZLOw7SC4vvA5WPbG7s2ScvQtILi68DmJJuSXARsA/ZO6VqSpmwqYxRV9UySvwAeBFYAH6uqx6ZxLUnTN63BTKrqM8BnpvX5kmbHNzMlNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNEwdFksuTfDHJwSSPJbmta1+XZF+SI91y7dKVK2kIfXoUzwDvrKorgauBW5NcCewE9lfVZmB/ty1pGZs4KKrqeFX9a7f+E+AQcBmwFdjTHbYHuKFvkZKGtXIpPiTJFcBVwEPA+qo63u06Aaw/yzk7gB0Aa7h4KcqQNCW9BzOTPA/4FPD2qvrx+L6qKqAWO6+qdlfVQlUtrGJ13zIkTVGvoEiyilFI3FlV93XNTybZ0O3fAJzsV6KkofV56hHgDuBQVX1gbNdeYHu3vh24f/LyJM2DPmMUbwD+GPi3JI90bX8NvBe4J8ktwOPAjf1KlDS0iYOiqv4FyFl2b5n0cyXNH9/MlNRkUEhqMigkNRkUkpoMCklNBoWkJoNihh78wSPtg6Q5ZFBIajIoJDUZFDN07aWvGroEaSIGhaQmg2IGHvzBIw5kalkzKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqWlJ/l8PLc5HorpQ2KOQ1GRQSGoyKCQ1GRSSmgwKSU0+9Zgip5XrQmGPQlJT76BIsiLJw0ke6LbXJdmX5Ei3XNu/TElDWooexW3AobHtncD+qtoM7O+2JS1jvYIiyUbgD4CPjjVvBfZ063uAG/pcQ9Lw+vYoPgi8C/j5WNv6qjrerZ8A1ve8hqSBTRwUSa4HTlbVN852TFUVUGc5f0eSA0kOnObUpGVImoE+j0ffALwtyVuBNcDzk3wSeDLJhqo6nmQDcHKxk6tqN7Ab4PlZt2iYLHfPTgrzMamWu4l7FFW1q6o2VtUVwDbgC1V1M7AX2N4dth24v3eVkgY1jfco3gu8OckR4Pe67V9p/hZuLXdL8mZmVX0J+FK3/p/AlqX43AuFtx5a7nwzU1KTQTFD3n5ouTIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCYMd/S1HJkUEhqMigkNRkUkpoMihlycpiWK4NCUpNBMRCffmg5MSgkNflfCk6RYxK6UNijGJi3IFoODApJTd56zNiztyP+Kn8tJ/YoJDXZoxiIPQktJ/YoJDUZFHPGJyCaRwaFpCaDQlKTQTGHfAlL86ZXUCR5YZJ7k3wryaEk1yRZl2RfkiPdcu1SFStpGH17FB8CPltVLwNeCRwCdgL7q2ozsL/b1nnysanm0cRBkeQFwO8AdwBU1f9W1X8DW4E93WF7gBv6FilpWH16FJuAp4CPJ3k4yUeTXAKsr6rj3TEngPV9i/xV5ViF5kWfoFgJvBr4SFVdBfyUM24zqqqAWuzkJDuSHEhy4DSnepQhadr6BMUx4FhVPdRt38soOJ5MsgGgW55c7OSq2l1VC1W1sIrVPcq48Fx76av+31iFPQsNbeKgqKoTwBNJXto1bQEOAnuB7V3bduD+XhVKGlzfSWF/CdyZ5CLgO8CfMgqfe5LcAjwO3NjzGr+yzpySPt6r8OmIZqlXUFTVI8DCIru29PlcSfPFaebLwGK9B3/xjWbJoFimDAjNknM9JDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDX1Cooku5IcTPJokruSrEmyLsm+JEe65dqlKlbSMCYOiiRXADuA11TVK4AVwDZgJ7C/qjYD+7ttSctYnx7Fj4HTwK8nWQlcDPwA2Ars6Y7ZA9zQq0JJg5s4KKrqaeD9wPeA48CPqupzwPqqOt4ddgJY37tKSYPqc+vxEuAdwCbgUuCSJDePH1NVBdRZzt+R5ECSA6c5NWkZkmagz63HAvCVqnqqqk4D9wGvB55MsgGgW55c7OSq2l1VC1W1sIrVPcqQNG19guIwcHWSi5ME2AIcAvYC27tjtgP39ytR0tBWTnpiVT2S5O+BA8DPgYeB3cDzgHuS3AI8Dty4FIVKGs7EQQFQVe8D3ndG8ylGvQtJFwjfzJTUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDU1gyLJx5KcTPLoWNu6JPuSHOmWa8f27UpyNMnhJNdOq3BJs3M+PYpPANed0bYT2F9Vm4H93TZJrgS2AS/vzvlwkhVLVq2kQTSDoqq+DDx9RvNWYE+3vge4Yaz97qo6VVXfBY4Cr12iWiUNZNIxivVVdbxbPwGs79YvA54YO+5Y1yZpGes9mFlVBdQve16SHUkOJDlwmlN9y5A0RZMGxZNJNgB0y5Nd+/eBy8eO29i1PUdV7a6qhapaWMXqCcuQNAuTBsVeYHu3vh24f6x9W5LVSTYBm4Gv9StR0tBWtg5IchfwRuBFSY4B7wHeC9yT5BbgceBGgKp6LMk9wEHgGeDWqvrZlGqXNCPNoKiqm86ya8tZjr8duL1PUZLmi29mSmoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmppBkeRjSU4meXSs7W+SfCvJN5P8U5IXju3bleRoksNJrp1W4ZJm53x6FJ8ArjujbR/wiqr6LeDbwC6AJFcC24CXd+d8OMmKJatW0iCaQVFVXwaePqPtc1X1TLf5VWBjt74VuLuqTlXVd4GjwGuXsF5JA1iKMYo/A/65W78MeGJs37GuTdIytrLPyUneDTwD3DnBuTuAHQBruLhPGZKmbOKgSPInwPXAlqqqrvn7wOVjh23s2p6jqnYDu7vPeurzde9PgR9OWs8UvAjrORfrObd5rOc3Jz15oqBIch3wLuB3q+p/xnbtBf4xyQeAS4HNwNdan1dVL05yoKoWJqlnGqzn3Kzn3Oa0nismPb8ZFEnuAt4IvCjJMeA9jJ5yrAb2JQH4alX9eVU9luQe4CCjW5Jbq+pnkxYnaT40g6Kqblqk+Y5zHH87cHufoiTNl3l6M3P30AWcwXrOzXrO7YKqJ78Yh5Skxc1Tj0LSnJqLoEhyXTc35GiSnQNc//IkX0xyMMljSW7r2tcl2ZfkSLdcO8OaViR5OMkDc1DLC5Pc283vOZTkmoHr2dX9Wz2a5K4ka2ZZz1nmP531+tOe/zSL+ViDB0U3F+RvgbcAVwI3dXNGZukZ4J1VdSVwNXBrV8NOYH9VbQb2d9uzchtwaGx7yFo+BHy2ql4GvLKra5B6klzB6EW911TVK4AVjOYXzbKeT/Dc+U+LXn9G858Wq2dp52NV1aB/gGuAB8e2dwG7Bq7pfuDNwGFgQ9e2ATg8o+tvZPRlexPwQNc2VC0vAL5LN5411j5UPeu6L/46Rk/tHgB+f9b1AFcAj7b+Ps78PgMPAtdMu54z9v0hcGefegbvUTBn80O6n1hXAQ8B66vqeLfrBLB+RmV8kNELbT8faxuqlk3AU8DHu1uhjya5ZKh6qupp4P3A94DjwI+q6nND1TPmbNefh+937/lY8xAUcyPJ84BPAW+vqh+P76tR/E79EVGS64GTVfWNsx0zq1o6K4FXAx+pqquAn3JGt36W9SR5CfAORgF2KXBJkpuHqmcxQ19/XJ/5WOPmISjOe37INCVZxSgk7qyq+7rmJ5Ns6PZvAE7OoJQ3AG9L8h/A3cCbknxyoFpg9BPnWFU91G3fyyg4hqpnAfhKVT1VVaeB+4DXD1jPs852/cG+32Pzsf6oC6+J65mHoPg6sDnJpiQXMRpo2TvLAjJ6D/0O4FBVfWBs115ge7e+ndHYxVRV1a6q2lij9/K3AV+oqpuHqKWr5wTwRJKXdk1bGL2iP0g9jMYCrk5ycffvtoXR4OpQ9TzrbNffC2xLsjrJJs5z/lNfY/Ox3lbPnY/1y9cziwGo8xiIeSujAap/B949wPV/m1FX8ZvAI92ftwK/wWhQ8QjweWDdjOt6I78YzBysFuBVwIHu7+fTwNqB6/krRmH1KPAPjOYdzawe4C5G4yOnGfW4bjnX9YF3d9/tw8BbZlTPUUZjEc9+n/+uTz2+mSmpaR5uPSTNOYNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTf8HEjPbrrC5/VAAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ec8e080>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD8CAYAAACPd+p5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADmlJREFUeJzt3XHIXXd9x/H3Z0maLBU1mRLSpqxBgqPKZvVBWx2bmLlWV0wHo6SsI9sKYdCNKoIm+od/FSoT0T+mI1g1m11Lid0airOmUZEhVuMaXJsYk+lqY5OmrpuKgyzV7/64J/OSPk9+8d7n3nOf9P2CcM/5nXPu+fLk8nl+53d+57mpKiTpfH6l7wIkzT6DQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmiYWFEmuT3IkybEkOyZ1HkmTl0lMuEqyDPgO8FbgOPAN4OaqOrToJ5M0ccsn9L6vB45V1XcBktwLbAHmDYpLsrJWcemESpEE8BP+64dV9fJRjp1UUFwOPDm0fhx4w/AOSbYD2wFWsZo3ZPOESpEE8HDteWLUY3sbzKyqXVU1V1VzK1jZVxmSLsCkguIHwBVD6xu6NklL0KSC4hvApiQbk1wCbAX2TuhckiZsImMUVfVckr8EHgKWAZ+sqscncS5JkzepwUyq6nPA5yb1/pKmx5mZkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkppGDIskVSb6U5FCSx5Pc3rWvTbIvydHudc3ilSupD+P0KJ4D3l1VVwHXALcluQrYAeyvqk3A/m5d0hI2clBU1Ymq+tdu+SfAYeByYAuwu9ttN3DjuEVK6tfyxXiTJFcCVwOPAOuq6kS36SSwboFjtgPbAVaxejHKkDQhYw9mJnkR8FngnVX14+FtVVVAzXdcVe2qqrmqmlvBynHLkDRBYwVFkhUMQuLuqrq/a346yfpu+3rg1HglSurbOHc9AtwFHK6qDw9t2gts65a3AQ+MXp6kWTDOGMWbgD8B/i3Jwa7tfcCdwH1JbgWeAG4ar0RJfRs5KKrqX4AssHnzqO8rafY4M1NSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCbooacO8tBTB9s7SjPOoJDUZFBIajIoJDUZFJKaxvlKQS3g3AHMs+vXXfaaPsqRxjZ2jyLJsiSPJnmwW1+bZF+So93rmvHLlNSnxbj0uB04PLS+A9hfVZuA/d26pCVsrKBIsgH4A+ATQ81bgN3d8m7gxnHOIal/4/YoPgK8B/j5UNu6qjrRLZ8E1o15Dkk9GzkoktwAnKqqby60T1UVUAscvz3JgSQHznB61DIkTcE4dz3eBLwjyduBVcCLk3wGeDrJ+qo6kWQ9cGq+g6tqF7AL4MVZO2+YXCy826GlbuQeRVXtrKoNVXUlsBX4YlXdAuwFtnW7bQMeGLtKSb2axISrO4G3JjkK/F63LmkJW5QJV1X1ZeDL3fJ/ApsX430lzQancEtqMiimwL9LoaXOoJDUZFBMkb0KLVUGhaQmg0JSk0EhqcmgmIDrLnuN07Z1UfEvXE3A+QYt/WtXWorsUUhqMigkNRkUkpoMCklNBoWkJoOiJz4opqXEoJDU5DyKCVhojoQ9CC1V9iimaDhAzs7e9BJES4FBIanJoNBFx17a4jMoJDUZFDPC34KaZQaFpCZvj07ZQrdOfexcs8wehaQmexQ9syex+PyZLj57FJKaxgqKJC9NsifJt5McTnJtkrVJ9iU52r2uWaxiJfVj3EuPjwKfr6o/SnIJsBp4H7C/qu5MsgPYAbx3zPNc9M53a9SutPo2co8iyUuA3wHuAqiq/62q/wa2ALu73XYDN45bpKR+jXPpsRF4BvhUkkeTfCLJpcC6qjrR7XMSWDdukS90TsZS38YJiuXAa4GPV9XVwE8ZXGb8v6oqoOY7OMn2JAeSHDjD6THKkDRp4wTFceB4VT3Sre9hEBxPJ1kP0L2emu/gqtpVVXNVNbeClWOUcXG4kC8NsmehvowcFFV1EngyySu7ps3AIWAvsK1r2wY8MFaFkno37l2PvwLu7u54fBf4Mwbhc1+SW4EngJvGPMcLynCvYqHew0NPHfROiKZqrKCoqoPA3DybNo/zvpJmizMzZ5hfdqxZ4bMeS8DZsBi+FDn3ssRA0STZo5DUZI/iBWS+wVF7IroQ9igkNWUwebJfL87aekO8UTKKC5mAdW6vwZ7FC9PDteebVTXfXcomexSSmhyjeAE424M422uw96Bflj0KSU32KJa4hcYf7DVoMRkUFxkDQpPgpYekJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU1jBUWSnUkOJXksyT1JViVZm2RfkqPd65rFKlZSP0YOiiRXAtuB11XVq4FlwFZgB7C/qjYB+7t1SUvYOD2KHwNngF9NshxYDTwFbAF2d/vsBm4cq0JJvRs5KKrqWeBDwPeBE8CPquoLwLqqOtHtdhJYN3aVkno1zqXHK4B3ARuBy4BLk9wyvE8NvoZs3q8iS7I9yYEkB85wetQyJE3BOJcec8BXq+qZqjoD3A+8EXg6yXqA7vXUfAdX1a6qmququRWsHKMMSZM2TlAcAa5JsjpJgM3AYWAvsK3bZxvwwHglSurbyN/rUVUHk/wdcAD4OfAosAt4EXBfkluBJ4CbFqNQSf0Z6wuAquqDwAfPaT7NoHch6SLhzExJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpCaDQlJTMyiSfDLJqSSPDbWtTbIvydHudc3Qtp1JjiU5kuS6SRUuaXoupEfxaeD6c9p2APurahOwv1snyVXAVuBV3TEfS7Js0aqV1ItmUFTVV4Bnz2neAuzulncDNw6131tVp6vqe8Ax4PWLVKuknow6RrGuqk50yyeBdd3y5cCTQ/sd79okLWFjD2ZWVQH1yx6XZHuSA0kOnOH0uGVImqBRg+LpJOsButdTXfsPgCuG9tvQtT1PVe2qqrmqmlvByhHLkDQNowbFXmBbt7wNeGCofWuSlUk2ApuAr49XoqS+LW/tkOQe4M3Ay5IcBz4A3Ancl+RW4AngJoCqejzJfcAh4Dngtqr62YRqlzQlzaCoqpsX2LR5gf3vAO4YpyhJs8WZmZKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGoyKCQ1GRSSmgwKSU0GhaQmg0JSk0EhqcmgkNRkUEhqMigkNRkUkpoMCklNBoWkJoNCUpNBIanJoJDUZFBIajIoJDUZFJKaDApJTQaFpKZmUCT5ZJJTSR4bavvrJN9O8q0k/5jkpUPbdiY5luRIkusmVbik6bmQHsWngevPadsHvLqqfhP4DrATIMlVwFbgVd0xH0uybNGqldSLZlBU1VeAZ89p+0JVPdetfg3Y0C1vAe6tqtNV9T3gGPD6RaxXUg8WY4ziz4F/7pYvB54c2na8a5O0hC0f5+Ak7weeA+4e4djtwHaAVawepwxJEzZyUCT5U+AGYHNVVdf8A+CKod02dG3PU1W7gF3dez3zcO35KfDDUeuZgJdhPedjPec3i/X8+qgHjxQUSa4H3gP8blX9z9CmvcA/JPkwcBmwCfh66/2q6uVJDlTV3Cj1TIL1nJ/1nN+M1nPlqMc3gyLJPcCbgZclOQ58gMFdjpXAviQAX6uqv6iqx5PcBxxicElyW1X9bNTiJM2GZlBU1c3zNN91nv3vAO4YpyhJs2WWZmbu6ruAc1jP+VnP+V1U9eQX45CSNL9Z6lFImlEzERRJru+eDTmWZEcP578iyZeSHEryeJLbu/a1SfYlOdq9rpliTcuSPJrkwRmo5aVJ9nTP9xxOcm3P9ezs/q8eS3JPklXTrGeB558WPP+kn3+axvNYvQdF9yzI3wBvA64Cbu6eGZmm54B3V9VVwDXAbV0NO4D9VbUJ2N+tT8vtwOGh9T5r+Sjw+ar6DeC3urp6qSfJlQwm6r2uql4NLGPwfNE06/k0z3/+ad7zT+n5p/nqWdznsaqq13/AtcBDQ+s7gZ091/QA8FbgCLC+a1sPHJnS+Tcw+LC9BXiwa+urlpcA36Mbzxpq76uetd0Hfy2Du3YPAr8/7XqAK4HHWj+Pcz/PwEPAtZOu55xtfwjcPU49vfcomLHnQ7rfWFcDjwDrqupEt+kksG5KZXyEwYS2nw+19VXLRuAZ4FPdpdAnklzaVz1V9SzwIeD7wAngR1X1hb7qGbLQ+Wfh8z3281izEBQzI8mLgM8C76yqHw9vq0H8TvwWUZIbgFNV9c2F9plWLZ3lwGuBj1fV1cBPOadbP816krwCeBeDALsMuDTJLX3VM5++zz9snOexhs1CUFzw8yGTlGQFg5C4u6ru75qfTrK+274eODWFUt4EvCPJfwD3Am9J8pmeaoHBb5zjVfVIt76HQXD0Vc8c8NWqeqaqzgD3A2/ssZ6zFjp/b5/voeex/rgLr5HrmYWg+AawKcnGJJcwGGjZO80CMpiHfhdwuKo+PLRpL7CtW97GYOxioqpqZ1VtqMG8/K3AF6vqlj5q6eo5CTyZ5JVd02YGU/R7qYfBWMA1SVZ3/2+bGQyu9lXPWQudfy+wNcnKJBu5wOefxjX0PNY76vnPY/3y9UxjAOoCBmLezmCA6t+B9/dw/t9m0FX8FnCw+/d24NcYDCoeBR4G1k65rjfzi8HM3moBXgMc6H4+/wSs6bme9zIIq8eAv2fw3NHU6gHuYTA+coZBj+vW850feH/32T4CvG1K9RxjMBZx9vP8t+PU48xMSU2zcOkhacYZFJKaDApJTQaFpCaDQlKTQSGpyaCQ1GRQSGr6P3Cm/uuigbVjAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2ad54ed19710>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
}
],
"source": [
"i=[4,6,5,3]\n",
"j=[7,5,8,6]\n",
"for a in i:\n",
" for b in j:\n",
" plt.imshow(reshaped_val_y[a,b,:,:])\n",
" plt.show()\n",
" plt.imshow(reshaped_pp[a,b,:,:])\n",
" plt.show()\n",
" print(\"-----------------------------\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Testing Trained Models"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.ensemble import RandomForestClassifier\n",
"trn_x_mean=np.mean(train_x)\n",
"trn_x_std=np.std(train_x)\n",
"train_norm_x=(train_x-trn_x_mean)/trn_x_std\n",
"random_forest2 = RandomForestClassifier(n_estimators=128,class_weight='balanced',min_samples_split=20,min_samples_leaf=10)\n",
"random_forest2.fit(train_norm_x,train_y)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"random_stride1=pickle.load(open(\"/home/cvh255/Cartilage/jobsubmission/random_stride1\",'rb'))"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"val_trained=random_stride1.predict(val_norm_x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_trained=random_stride1.predict(train_norm_x)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADHpJREFUeJzt3U+InPd9x/H3p7K8Jo4LVpMKWRa1DCIgH6qERS7UBIKbyPFFzsUoh6KDQRc3JKU9yM3FF0MaSHpzQCEmoqRWTRJjHYyNLQKmEGLLQbElOYo2/oOlyFJTB2J6UGzl28M+28xP2tX+m9l5Rnq/YNlnfvPMztcj9s3zPDN4U1VI0pw/G/cAkvrFKEhqGAVJDaMgqWEUJDWMgqTGyKKQ5L4kp5LMJNk/queRNFwZxecUkqwDfgV8HjgDvAJ8uapODv3JJA3VqI4UdgIzVfVmVf0BOATsHtFzSRqiG0b0czcD7w7cPgPcvdDON2aqbuLmEY0iCeADfvfbqvrkYvuNKgqLSrIP2AdwEx/j7tw7rlGk68KL9cN3lrLfqE4fzgJbBm7f3q39v6o6UFXTVTW9nqkRjSFpuUYVhVeAbUm2JrkR2AMcHtFzSRqikZw+VNVHSf4BeB5YBzxRVSdG8VyShmtk1xSq6lng2VH9fEmj4ScaJTWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaN6zmwUneBj4ALgEfVdV0kg3AfwJ3AG8DD1bV71Y3pqS1Mowjhc9V1Y6qmu5u7weOVNU24Eh3W9KEGMXpw27gYLd9EHhgBM8haURWG4UCXkzyapJ93drGqjrXbb8HbFzlc0haQ6u6pgDcU1Vnk/wl8EKSXw7eWVWVpOZ7YBeRfQA38bFVjiFpWFZ1pFBVZ7vvF4CngZ3A+SSbALrvFxZ47IGqmq6q6fVMrWYMSUO04igkuTnJLXPbwBeA48BhYG+3217gmdUOKWntrOb0YSPwdJK5n/MfVfVckleAp5I8BLwDPLj6MSWtlRVHoareBP56nvX/Ae5dzVCSxsdPNEpqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNRaNQpInklxIcnxgbUOSF5Kc7r7fOnDfI0lmkpxKsmtUg0sajaUcKXwfuO+ytf3AkaraBhzpbpNkO7AHuKt7zONJ1g1tWkkjt2gUquol4P3LlncDB7vtg8ADA+uHqupiVb0FzAA7hzSrpDWw0msKG6vqXLf9HrCx294MvDuw35luTdKEWPWFxqoqoJb7uCT7khxNcvRDLq52jDXx/G+OjXsEaeRWGoXzSTYBdN8vdOtngS0D+93erV2hqg5U1XRVTa9naoVjSBq2lUbhMLC3294LPDOwvifJVJKtwDbg5dWN2C8eLehat5S3JJ8Efgp8KsmZJA8B3wA+n+Q08HfdbarqBPAUcBJ4Dni4qi6Navi1tuu2HeMeQRq5Gxbboaq+vMBd9y6w/2PAY6sZStL4+IlGSQ2jIKlhFJbBi4y6HhgFSQ2jsERzRwm+A6FrnVGQ1DAKkhpGQVLDKCyT70DoWmcUJDWMwhL5roOuF0ZhBTyF0LXMKEhqGAVJDaOwDF5X0PXAKEhqGAVJDaOwQr4DoWuVUZDUMArL5MVGXeuMgqSGUZDUWPR/8a4reQqha5lHCpIaRkFSwyhIahiFEfHDTZpURmGEnv/NMeOgiWMUJDWMwogMvm3p0YImiVFYI4ZBk8IorCHDoElgFCQ1jMII+XFoTSKjIKlhFNaY1xXUd4tGIckTSS4kOT6w9miSs0mOdV/3D9z3SJKZJKeS7BrV4JPCUwhNmqUcKXwfuG+e9X+rqh3d17MASbYDe4C7usc8nmTdsIadVJeHwaMF9dmiUaiql4D3l/jzdgOHqupiVb0FzAA7VzHfNcswqK9Wc03hK0le604vbu3WNgPvDuxzplu77s13GmEY1EcrjcJ3gDuBHcA54FvL/QFJ9iU5muToh1xc4RiTxesLmgQrikJVna+qS1X1R+C7/OkU4SywZWDX27u1+X7Ggaqarqrp9UytZIxrgkcL6psVRSHJpoGbXwLm3pk4DOxJMpVkK7ANeHl1I0paS0t5S/JJ4KfAp5KcSfIQ8M0kryd5Dfgc8I8AVXUCeAo4CTwHPFxVl0Y2/QTy2oL6LlU17hn482you3PvuMdYU/OFwGsOGqUX64evVtX0Yvv5icYx2XXbjnk/v+BRg8bNKIyZRwfqG6PQAx4xqE+MQk94AVJ9YRR6ZKHrDNJaMgoTwDBoLRmFHlroVMI4aC0YhZ5a6F0Jw6BRMwo9Zhg0DjeMewBd3UJ/VGZu2885aNg8UpggfgpSa8EjhQm067YdV4RgGEcOV4uLRyTXD6MwoeYLA7S/2Iv9Ii/1CMMgXF+MwgRbKAxzVnNaYQiuX0Zhwg3zr1sbAoFRuKYs9yPSRkDzMQrXMH/ptRK+JSmpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqTGolFIsiXJT5KcTHIiyVe79Q1JXkhyuvt+68BjHkkyk+RUkl2j/A+QNFxLOVL4CPinqtoO/A3wcJLtwH7gSFVtA450t+nu2wPcBdwHPJ5k3SiGlzR8i0ahqs5V1c+77Q+AN4DNwG7gYLfbQeCBbns3cKiqLlbVW8AMsHPYg0sajWVdU0hyB/Bp4GfAxqo61931HrCx294MvDvwsDPdmqQJsOQoJPk48CPga1X1+8H7qqqAWs4TJ9mX5GiSox9ycTkPlTRCS4pCkvXMBuEHVfXjbvl8kk3d/ZuAC936WWDLwMNv79YaVXWgqqarano9UyudX9KQLeXdhwDfA96oqm8P3HUY2Ntt7wWeGVjfk2QqyVZgG/Dy8EaWNEpL+bNxfwv8PfB6krk/TvgvwDeAp5I8BLwDPAhQVSeSPAWcZPadi4er6tLQJ5c0EotGoar+C8gCd9+7wGMeAx5bxVySxsRPNEpqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUiNVNe4ZSPLfwP8Cvx33LMv0CZx5LUzazH2d96+q6pOL7dSLKAAkOVpV0+OeYzmceW1M2syTNu/lPH2Q1DAKkhp9isKBcQ+wAs68NiZt5kmbt9GbawqS+qFPRwqSemDsUUhyX5JTSWaS7B/3PAtJ8naS15McS3K0W9uQ5IUkp7vvt455xieSXEhyfGBtwRmTPNK97qeS7OrRzI8mOdu91seS3N+zmbck+UmSk0lOJPlqt97r13rJqmpsX8A64NfAncCNwC+A7eOc6Sqzvg184rK1bwL7u+39wL+OecbPAp8Bji82I7C9e72ngK3dv8O6nsz8KPDP8+zbl5k3AZ/ptm8BftXN1uvXeqlf4z5S2AnMVNWbVfUH4BCwe8wzLcdu4GC3fRB4YIyzUFUvAe9ftrzQjLuBQ1V1sareAmaY/fdYUwvMvJC+zHyuqn7ebX8AvAFspuev9VKNOwqbgXcHbp/p1vqogBeTvJpkX7e2sarOddvvARvHM9pVLTRj31/7ryR5rTu9mDsM793MSe4APg38jMl9rRvjjsIkuaeqdgBfBB5O8tnBO2v2OLHXb+VMwoyd7zB7SrkDOAd8a7zjzC/Jx4EfAV+rqt8P3jdBr/UVxh2Fs8CWgdu3d2u9U1Vnu+8XgKeZPfw7n2QTQPf9wvgmXNBCM/b2ta+q81V1qar+CHyXPx1q92bmJOuZDcIPqurH3fLEvdbzGXcUXgG2Jdma5EZgD3B4zDNdIcnNSW6Z2wa+ABxndta93W57gWfGM+FVLTTjYWBPkqkkW4FtwMtjmO8Kc79YnS8x+1pDT2ZOEuB7wBtV9e2BuybutZ7XuK90Avcze/X218DXxz3PAjPeyezV418AJ+bmBP4COAKcBl4ENox5zieZPdz+kNnz1oeuNiPw9e51PwV8sUcz/zvwOvAas79Qm3o28z3Mnhq8Bhzrvu7v+2u91C8/0SipMe7TB0k9YxQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSY3/A1NLa2mW+mXPAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97ba642400>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADmxJREFUeJzt3V+IXOd5x/HvU0VeE8cFq06FLItaBlGQL6qERS7UhBQ3keMbOTdGuSi6MKgXbkgguZCbi/rGkBaS3jmgEBNRUqsmibEuTIwtAqZQYstBsSW5ijb+gyXLUlMHYnqh2MrTiz3bzDva2Z1/Z845s98PLHPmnTMzz5zd97fve+bMmchMJGnFHzVdgKR2MRQkFQwFSQVDQVLBUJBUMBQkFWoLhYi4LyLORcRSRByu63kkTVfUcZxCRGwCfgl8DrgAvAx8KTPPTv3JJE1VXSOFvcBSZr6Rmb8DjgH7a3ouSVP0sZoedzvwTs/1C8Ddg1a+IRbyRm6qqRRJAB/wm19n5ifXW6+uUFhXRBwCDgHcyMe5O+5tqhRpQ3ghf/j2MOvVNX24COzouX571fb/MvNIZi5m5uJmFmoqQ9Ko6gqFl4FdEbEzIm4ADgDHa3ouSVNUy/QhMz+KiL8HngM2AU9k5pk6nkvSdNW2TyEznwWerevxJdXDIxolFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBU+Ngkd46It4APgGvAR5m5GBFbgH8H7gDeAh7MzN9MVqakWZnGSOGvM3NPZi5W1w8DJzJzF3Ciui6pI+qYPuwHjlbLR4EHangOSTWZNBQSeCEiXomIQ1Xb1sy8VC2/B2yd8DkkzdBE+xSAezLzYkT8KfB8RPxX742ZmRGRq92xCpFDADfy8QnLkDQtE40UMvNidXkFeBrYC1yOiG0A1eWVAfc9kpmLmbm4mYVJypA0RWOHQkTcFBE3rywDnwdOA8eBg9VqB4FnJi1S0uxMMn3YCjwdESuP82+Z+ZOIeBl4KiIeAt4GHpy8TEmzMnYoZOYbwF+s0v4/wL2TFNVWz717in237Wm6DKlWHtE4oufePdV0CVKtDIUROVLQvDMUJBUMBUkFQ2EETh20ERgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGwoQ8u7PmjaEgqWAoSCoYCpIKhsKIBu1DcN+C5oWhMIbn3j11XQh4+nfNC0NhRCud3xDQvDIUxuR0QfNq7K+i34j6g8Bg0DxypDCCQVMGw0HzxFAYkcGgeWcojMjOr3lnKIxp3217fAdCc8lQGMFz754qwmCYUYMjC3XNuqEQEU9ExJWION3TtiUino+I89XlLT23PRIRSxFxLiL21VV4E/pHBmuNFFbCwNGEumaYkcL3gfv62g4DJzJzF3Ciuk5E7AYOAHdV93k8IjZNrVpJtVs3FDLzReD9vub9wNFq+SjwQE/7scy8mplvAkvA3inV2rhRpwIr6zuFUJeMu09ha2ZeqpbfA7ZWy9uBd3rWu1C1zYX+qcB6nd2pg7po4h2NmZlAjnq/iDgUEScj4uSHXJ20jEas1+kdIaiLxg2FyxGxDaC6vFK1XwR29Kx3e9V2ncw8kpmLmbm4mYUxy5A0beOGwnHgYLV8EHimp/1ARCxExE5gF/DSZCW22zCjBacR6pJh3pJ8EvhP4M8j4kJEPAR8E/hcRJwH/qa6TmaeAZ4CzgI/AR7OzGt1Fd+0YaYH+27b4zRCnbLupyQz80sDbrp3wPqPAY9NUlSXDOrwjg7UVR7RWAPPyqQuMxQmMKizGwLT5fEes2UoTEnv5yH6z+HoH/Pk3IazYyhMqP/DUY4S1HWejm1Cw4wIDAp1iSOFCXl25/q5bWfLUBiB89pmuN1ny1AYkd8QNXuOxmbLUBjBWqdg8w+2Xm7f2TEURrTaiMBDmWdjta/r0/QZCjXxP9v0uU1nw1AY0TB/mP7xqssMhRo4xFWXGQpTYAhonhgKNXD6oC4zFGrgyKE+Bm79DIUa+IerLjMUauBIQV1mKEgqGAqSCobChPyAlOaNoTAhdypq3hgKNXK0oC4yFKZgrY9UGwzqGkNhBjZqMGzU1911hsKMbJQO0n+Ke7+zoXs8m/MU9Z/ufSNZ6zVvxO3RZYZCDQadiWlevoF6lE4+D693ozEUVAvDoLsMhZrM83kbV+vw8zIKkjsaJfUxFDQVjhLmh6FQo3nuKE1PjTzde30MBY2l6cBr+vnnmaEwY/53mx6DoR6GQgMMBrXZuqEQEU9ExJWION3T9mhEXIyIU9XP/T23PRIRSxFxLiL21VV4V/hBKXXNMCOF7wP3rdL+L5m5p/p5FiAidgMHgLuq+zweEZumVWxXOcxVl6wbCpn5IvD+kI+3HziWmVcz801gCdg7QX1zbSOOFnpfsx+WaqdJ9il8OSJeraYXt1Rt24F3eta5ULVteE4jlvVuh3k+6rPLxg2F7wB3AnuAS8C3Rn2AiDgUEScj4uSHXB2zjPmwUTvGyut2etUuY4VCZl7OzGuZ+Xvgu/xhinAR2NGz6u1V22qPcSQzFzNzcTML45TROf7xX29ltLBRg7GNxgqFiNjWc/WLwMo7E8eBAxGxEBE7gV3AS5OVuDFspE6x2n4Ftce6n5KMiCeBzwK3RsQF4B+Bz0bEHiCBt4C/A8jMMxHxFHAW+Ah4ODOv1VN6N611IpYuftKw/3UMU/9a+1e69vrnUWRm0zXwx7El7457my6jEauFQ1c7Ru9r8ePV7fNC/vCVzFxcbz2PaGzYWmeCbrtB+wIGvZ6uvs6NxlBooa7Ns3vDwY7ffU4fWqTtU4lRw6pNtcvpw9zowtt1K52/fyrUhdp1PUcKLbNWJ2rqP++wHduRQbs5UuiotTpWm/7z9tfZexBSW2rUeAyFDpp1pxt2BLAyfeg9FsOA6B5DoYX6O1cb9R+TMKjzt/k1aHXuU+iApjtc70FH4/7nNxyaN+w+BUOhQ9brkON0vGkETh11afoMhTk1zn/qleH9uOcvGKZTt/FdE5WGDQW/Nq5jxunY0zjDkTsMNw53NHbQrP/zDvogkyOA+eRIQSPrP6VaL0cU3WcodFT/4cSzfs5J1lG7OX2YA3Uf02BH31gcKcyR9Q6RHuexnA5sPI4UNoi1AqP/CMq19hlo/jlS2EAmPX/iOI+n7jEUNJRpBYDnaWw/pw+aKQOh/QwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUWDcUImJHRPw0Is5GxJmI+ErVviUino+I89XlLT33eSQiliLiXETsq/MFSJquYUYKHwFfy8zdwF8CD0fEbuAwcCIzdwEnqutUtx0A7gLuAx6PiE11FC9p+tYNhcy8lJk/r5Y/AF4HtgP7gaPVakeBB6rl/cCxzLyamW8CS8DeaRcuqR4j7VOIiDuATwE/A7Zm5qXqpveArdXyduCdnrtdqNokdcDQoRARnwB+BHw1M3/be1suf3X1SF9fHRGHIuJkRJz8kKuj3FVSjYYKhYjYzHIg/CAzf1w1X46IbdXt24ArVftFYEfP3W+v2gqZeSQzFzNzcTML49YvacqGefchgO8Br2fmt3tuOg4crJYPAs/0tB+IiIWI2AnsAl6aXsmS6jTM9z78FfC3wGsRsfKNIP8AfBN4KiIeAt4GHgTIzDMR8RRwluV3Lh7OzGtTr1xSLdYNhcz8DyAG3HzvgPs8Bjw2QV2SGuIRjZIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCpEZjZdAxHx38D/Ar9uupYR3Yo1z0LXam5rvX+WmZ9cb6VWhAJARJzMzMWm6xiFNc9G12ruWr39nD5IKhgKkgptCoUjTRcwBmueja7V3LV6C63ZpyCpHdo0UpDUAo2HQkTcFxHnImIpIg43Xc8gEfFWRLwWEaci4mTVtiUino+I89XlLQ3X+EREXImI0z1tA2uMiEeq7X4uIva1qOZHI+Jita1PRcT9Lat5R0T8NCLORsSZiPhK1d7qbT20zGzsB9gE/Aq4E7gB+AWwu8ma1qj1LeDWvrZ/Bg5Xy4eBf2q4xs8AnwZOr1cjsLva3gvAzur3sKklNT8KfH2VddtS8zbg09XyzcAvq9pava2H/Wl6pLAXWMrMNzLzd8AxYH/DNY1iP3C0Wj4KPNBgLWTmi8D7fc2DatwPHMvMq5n5JrDE8u9jpgbUPEhbar6UmT+vlj8AXge20/JtPaymQ2E78E7P9QtVWxsl8EJEvBIRh6q2rZl5qVp+D9jaTGlrGlRj27f9lyPi1Wp6sTIMb13NEXEH8CngZ3R3WxeaDoUuuScz9wBfAB6OiM/03pjL48RWv5XThRor32F5SrkHuAR8q9lyVhcRnwB+BHw1M3/be1uHtvV1mg6Fi8COnuu3V22tk5kXq8srwNMsD/8uR8Q2gOrySnMVDjSoxtZu+8y8nJnXMvP3wHf5w1C7NTVHxGaWA+EHmfnjqrlz23o1TYfCy8CuiNgZETcAB4DjDdd0nYi4KSJuXlkGPg+cZrnWg9VqB4FnmqlwTYNqPA4ciIiFiNgJ7AJeaqC+66x0rMoXWd7W0JKaIyKA7wGvZ+a3e27q3LZeVdN7OoH7Wd57+yvgG03XM6DGO1nee/wL4MxKncCfACeA88ALwJaG63yS5eH2hyzPWx9aq0bgG9V2Pwd8oUU1/yvwGvAqyx1qW8tqvoflqcGrwKnq5/62b+thfzyiUVKh6emDpJYxFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUuH/AHP+vbl8wp3CAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1801048>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADGtJREFUeJzt3U+InPd9x/H3p5K8Jo4LVpwKRRa1DKIgH6KERS7UhAbRyPFFzsUoh6KDQRc3JKU9yM2hvhjSQNKbAwoxESW1KpIY62ASbBEwhRJbDootyVG88R8sVZaaOhDTg2Ir3x72UTM/eVe72pnZeWb7fsEyz/zmmZ2vx+jN8zwzSKkqJOmqP5r0AJL6xShIahgFSQ2jIKlhFCQ1jIKkxtiikOS+JGeTzCU5OK7XkTRaGcf3FJKsA34J/BVwDngR+GJVnRn5i0kaqXEdKewC5qrq9ar6HXAE2Dum15I0QuvH9Hu3AG8P3D8H3LPYzjdlpm7mljGNIgngPX7z66r6+FL7jSsKS0pyADgAcDMf4Z7sntQo0v8Lz9X331rOfuM6fTgPbB24f0e39n+q6lBVzVbV7AZmxjSGpBs1rii8CGxPsi3JTcA+4NiYXkvSCI3l9KGqPkjyN8CPgXXAE1V1ehyvJWm0xnZNoaqeAZ4Z1++XNB5+o1FSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqbF+mCcneRN4D7gCfFBVs0k2Av8G3Am8CTxYVb8ZbkxJq2UURwqfraqdVTXb3T8IHK+q7cDx7r6kKTGO04e9wOFu+zDwwBheQ9KYDBuFAp5L8lKSA93apqq60G2/A2wa8jUkraKhrikA91bV+SR/Ajyb5BeDD1ZVJamFnthF5ADAzXxkyDEkjcpQRwpVdb67vQQ8BewCLibZDNDdXlrkuYeqaraqZjcwM8wYkkZoxVFIckuSW69uA58DTgHHgP3dbvuBp4cdUtLqGeb0YRPwVJKrv+dfq+pHSV4EjiZ5CHgLeHD4MSWtlhVHoapeBz65wPp/A7uHGUrS5PiNRkkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGURiBH//nyUmPII2MUZDUMAqSGkZBUsMoSGoYBUkNozAkP3nQWmMURmDPJ3ZOegRpZIyCpIZRGAFPIbSWGAVJDaMgqWEUJDWMwpD85EFrjVGQ1DAKQ/KTB601S0YhyRNJLiU5NbC2McmzSV7rbm8beOyRJHNJzibZM67B+8Y4aK1YzpHCd4H7rlk7CByvqu3A8e4+SXYA+4C7u+c8nmTdyKbtIa8paK1ZMgpV9Tzw7jXLe4HD3fZh4IGB9SNVdbmq3gDmgF0jmlXSKljpNYVNVXWh234H2NRtbwHeHtjvXLcmaUoMfaGxqgqoG31ekgNJTiQ58T6Xhx1jYryWoLVmpVG4mGQzQHd7qVs/D2wd2O+Obu1DqupQVc1W1ewGZlY4hqRRW2kUjgH7u+39wNMD6/uSzCTZBmwHXhhuREmraf1SOyR5EvhL4PYk54B/BL4GHE3yEPAW8CBAVZ1OchQ4A3wAPFxVV8Y0u6QxWDIKVfXFRR7avcj+jwGPDTPUtPB6gtYiv9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYzCEBb6W5f86rOmnVGQ1DAKY+DRgqaZUZDUMApDuva6gn+7s6adURgTTyE0rYyCpIZRkNQwCiPgdQStJUZhDK5GwusKmkZGQVLDKEhqGIUR8DRBa4lRGIGFriF4XUHTyiiMiJ9AaK0wCiO20JGBRwuaJkZhjDx60DQyCiN0vesIHi1oWhgFSQ2jMGLXO2XwaEHTwCiMmdcVNG2MgqSGURgDTyE0zYzCBBgG9ZlRWAVeV9A0MQoT4tGC+mrJKCR5IsmlJKcG1h5Ncj7Jye7n/oHHHkkyl+Rskj3jGnza7PnEzg8dMRgG9dFyjhS+C9y3wPo/V9XO7ucZgCQ7gH3A3d1zHk+yblTDShq/JaNQVc8D7y7z9+0FjlTV5ap6A5gDdg0x35rn0YL6ZphrCl9K8nJ3enFbt7YFeHtgn3Pdmjr+o7Tqu5VG4VvAXcBO4ALwjRv9BUkOJDmR5MT7XF7hGNPJMKjPVhSFqrpYVVeq6vfAt/nDKcJ5YOvArnd0awv9jkNVNVtVsxuYWckYU22xMBgHTdqKopBk88DdLwBXP5k4BuxLMpNkG7AdeGG4Edcuv7+gPlrOR5JPAv8B/FmSc0keAr6e5JUkLwOfBf4WoKpOA0eBM8CPgIer6srYpl8DPJVQ36SqJj0Df5yNdU92T3qMiVosBB5NaFSeq++/VFWzS+3nNxp7YqEvN4HXGbT6jELPLHZkYBi0WoxCD10vDMZB42YUemqx0wnwqEHjZRR67npxkMbBKEwJw6DVYhSmiGHQajAKU8Z/uFbjZhSm0GAYjINGbf2kB9DKDJ5KLBQGTzW0UkZhDTAAGiVPHyQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1loxCkq1JfpLkTJLTSb7crW9M8myS17rb2wae80iSuSRnk+wZ53+ApNFazpHCB8DfVdUO4M+Bh5PsAA4Cx6tqO3C8u0/32D7gbuA+4PEk68YxvKTRWzIKVXWhqn7Wbb8HvApsAfYCh7vdDgMPdNt7gSNVdbmq3gDmgF2jHlzSeNzQNYUkdwKfAn4KbKqqC91D7wCbuu0twNsDTzvXrUmaAsuOQpKPAj8AvlJVvx18rKoKqBt54SQHkpxIcuJ9Lt/IUyWN0bKikGQD80H4XlX9sFu+mGRz9/hm4FK3fh7YOvD0O7q1RlUdqqrZqprdwMxK55c0Ysv59CHAd4BXq+qbAw8dA/Z32/uBpwfW9yWZSbIN2A68MLqRJY3T+mXs8xfAXwOvJDnZrf0D8DXgaJKHgLeABwGq6nSSo8AZ5j+5eLiqrox8ckljsWQUqurfgSzy8O5FnvMY8NgQc0maEL/RKKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjVTVpGcgyX8B/wP8etKz3KDbcebVMG0z93XeP62qjy+1Uy+iAJDkRFXNTnqOG+HMq2PaZp62ea/l6YOkhlGQ1OhTFA5NeoAVcObVMW0zT9u8jd5cU5DUD306UpDUAxOPQpL7kpxNMpfk4KTnWUySN5O8kuRkkhPd2sYkzyZ5rbu9bcIzPpHkUpJTA2uLzpjkke59P5tkT49mfjTJ+e69Ppnk/p7NvDXJT5KcSXI6yZe79V6/18tWVRP7AdYBvwLuAm4Cfg7smORM15n1TeD2a9a+Dhzstg8C/zThGT8DfBo4tdSMwI7u/Z4BtnX/H9b1ZOZHgb9fYN++zLwZ+HS3fSvwy262Xr/Xy/2Z9JHCLmCuql6vqt8BR4C9E57pRuwFDnfbh4EHJjgLVfU88O41y4vNuBc4UlWXq+oNYI75/x+rapGZF9OXmS9U1c+67feAV4Et9Py9Xq5JR2EL8PbA/XPdWh8V8FySl5Ic6NY2VdWFbvsdYNNkRruuxWbs+3v/pSQvd6cXVw/DezdzkjuBTwE/ZXrf68akozBN7q2qncDngYeTfGbwwZo/Tuz1RznTMGPnW8yfUu4ELgDfmOw4C0vyUeAHwFeq6reDj03Re/0hk47CeWDrwP07urXeqarz3e0l4CnmD/8uJtkM0N1emtyEi1psxt6+91V1saquVNXvgW/zh0Pt3sycZAPzQfheVf2wW56693ohk47Ci8D2JNuS3ATsA45NeKYPSXJLkluvbgOfA04xP+v+brf9wNOTmfC6FpvxGLAvyUySbcB24IUJzPchV/9gdb7A/HsNPZk5SYDvAK9W1TcHHpq693pBk77SCdzP/NXbXwFfnfQ8i8x4F/NXj38OnL46J/Ax4DjwGvAcsHHCcz7J/OH2+8yftz50vRmBr3bv+1ng8z2a+V+AV4CXmf8DtblnM9/L/KnBy8DJ7uf+vr/Xy/3xG42SGpM+fZDUM0ZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNT4X0LVXsF02Ka5AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c189d588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADi5JREFUeJzt3U+sXOV9xvHvU2MchSQSLqlljNUYyRtY1ImuoFJRRIUaEzYmG+QuKi+Q3AWNEqldmGaRbCKllZLuiEQUFKtK41pJEF6gRmBFiroJmIgAhjo4/BF2DG5KpKAuHCC/Lu65zbyXe33/zMw9Z+79fqSrOfOeM3d+c+6cZ973zDtzU1VI0oI/6rsAScNiKEhqGAqSGoaCpIahIKlhKEhqTC0Uktyd5FyS80mOTet+JE1WpjFPIck24BfAXwEXgKeBv66qFyd+Z5Imalo9hduA81X1SlX9DjgBHJrSfUmaoGum9Hv3AG+MXL8A3L7cxtdmR32I66ZUiiSAd/jNr6vq4yttN61QWFGSo8BRgA/xYW7PXX2VIm0JT9b3X1/NdtMaPlwE9o5cv6lr+39V9XBVzVXV3HZ2TKkMSWs1rVB4GtifZF+Sa4HDwKkp3ZekCZrK8KGq3kvyd8CPgG3AI1V1dhr3JWmypnZOoaoeBx6f1u+XNB3OaJTUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLjmnFunOQ14B3gfeC9qppLshP4d+ATwGvAfVX1m/HKlLRRJtFT+MuqOlBVc931Y8DpqtoPnO6uS5oR0xg+HAKOd8vHgXuncB+SpmTcUCjgySTPJDnate2qqkvd8pvArjHvQ9IGGuucAnBHVV1M8ifAE0n+a3RlVVWSWuqGXYgcBfgQHx6zDEmTMlZPoaoudpeXgUeB24C3kuwG6C4vL3Pbh6tqrqrmtrNjnDIkTdC6QyHJdUk+urAMfAZ4ATgFHOk2OwI8Nm6RkjbOOMOHXcCjSRZ+z79V1X8keRo4meR+4HXgvvHLlLRR1h0KVfUK8GdLtP8PcNc4RUnqjzMaJTUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMhQn40a+e5Ue/erbvMqSJMBQkNQyFCbLHoM3AUJgCg0GzzFAYkwGgzcZQkNQwFCQ1DAVJDUNBUsNQGNPBGw/0XYI0UYaCpIahMAH2FrSZGApT4vwFzSpDQVLDUFgDX/21FawYCkkeSXI5yQsjbTuTPJHk5e7y+pF1DyY5n+RckoPTKrwPnjvQVrCansJ3gLsXtR0DTlfVfuB0d50ktwCHgVu72zyUZNvEqu2ZPQVtBSuGQlX9BHh7UfMh4Hi3fBy4d6T9RFVdqapXgfPAbROqtVcLgbDaYLBXoVm13nMKu6rqUrf8JrCrW94DvDGy3YWubeZ5kGurGPtEY1UVUGu9XZKjSc4kOfMuV8YtY8MYDtrs1hsKbyXZDdBdXu7aLwJ7R7a7qWv7gKp6uKrmqmpuOzvWWcbGWksgeP5Bs2q9oXAKONItHwEeG2k/nGRHkn3AfuCp8UqcDfYgtFlcs9IGSb4H3AnckOQC8GXga8DJJPcDrwP3AVTV2SQngReB94AHqur9KdU+GEv1CgwJzarMnxLo18eys27PXX2XIW1qT9b3n6mquZW2c0bjBPgtztpMDAUNnoG7sQyFCfEcwvQcvPGAwbCBDIUxrXWmo9bH0N04hsKE+KTVZmEoSGoYChPi8EGbhaEwIQ4ftFkYCmNaCAN7ChvPfT4dhsKYRp+YPkk3lr2z6TAUJsxg0KwzFMZ08MYDvmJpUzEUxrTQMxgNBnsLmmWGgqSGoTABS31K0t6CZpWhMCbPJ2izMRQkNQwFSQ1DYQKWG0J4XkGzyFCQ1DAUJDUMhSlzCKFZYyhMiG9NarMwFDaAvQXNEkNBUsNQ0KD4j3X6ZyhMkOcVJsP92C9DYcKW+34FX/1W5j4aBkNhA/mkXx33U78MBQ2Ow4d+GQpT4hN7bfwC3OEwFDaYT/iljYaogdovQ2GKfHKvnfusf4ZCD+wttEbnJjhPoX+GwpT5ynd1SwWA+6xfhkJPtvqroT2C4VoxFJI8kuRykhdG2r6S5GKSZ7ufe0bWPZjkfJJzSQ5Oq/BZ4jczzVsIgqs9bnsJ/VtNT+E7wN1LtP9LVR3ofh4HSHILcBi4tbvNQ0m2TarYWbbVg2GrPM7NYMVQqKqfAG+v8vcdAk5U1ZWqehU4D9w2Rn2biq+CmgXjnFP4fJLnuuHF9V3bHuCNkW0udG26iq3wKrpUIC58TmRhnaE5DOsNhW8CNwMHgEvA19f6C5IcTXImyZl3ubLOMjaPzXzibeGxjR78iwPAQBiOdYVCVb1VVe9X1e+Bb/GHIcJFYO/Ipjd1bUv9joeraq6q5razYz1lzKSt9l+qR8PAuQizYV2hkGT3yNXPAQvvTJwCDifZkWQfsB94arwSt5ZZP1iWOvCXe0yz/lg3q2tW2iDJ94A7gRuSXAC+DNyZ5ABQwGvA3wJU1dkkJ4EXgfeAB6rq/emUPtsWv3rOooXal/rcgt8pMbtSVX3XwMeys27PXX2X0ZvlDpZZGGaM1r5Svc5P6NeT9f1nqmpupe1W7Clo+pbrNazlgBualXoFs/Z4thKnOQ/I1Q6UWeh6r2bGIhgIQ2dPYWAO3nhgxRNzQzmoFvdk/HDT5uA5hYEa8qvtOL0WQ6I/qz2n4PBhoIZ88CyeiTjattLtgCXfqnTuwnDYUxi4WXhnYnSC0mjbuIb0GDcDewqbxCx8unKlzzX42YbZYijMgI2eGj1O4Cye0bieb2nealPBh8bhw4yZ1Bn+tRz44x6gaw0ZA2E6Vjt8MBRmUF9Dh4W3HUcP2oXri2ta6zRug2D6nNGodVl8gI8e3Ct9wGnULM/G3OrsKcywcXsMaz1Yl/oY9GruY6l3J7Tx7Clscn1NIFo4wBcPIa52PwbCbLGnsMn0ORNyaNOw1XKewha1eF7ARv6PxpXeShzS3Aotz1DYpIb4aj3EmvRBnlPYAjwYtRb2FDRVSw0ZVvu9C+qHoSBg7Z9SXO+kpKt9u5SGweGDgLUPMdY7JFnNW5nql6Gg3niuY5gcPqh39hiGxVBQ7+wxDIuhIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKmxYigk2Zvkx0leTHI2yRe69p1Jnkjycnd5/chtHkxyPsm5JAen+QAkTdZqegrvAX9fVbcAfw48kOQW4Bhwuqr2A6e763TrDgO3AncDDyXZNo3iJU3eiqFQVZeq6mfd8jvAS8Ae4BBwvNvsOHBvt3wIOFFVV6rqVeA8cNukC5c0HWs6p5DkE8AngZ8Cu6rqUrfqTWBXt7wHeGPkZhe6NkkzYNWhkOQjwA+AL1bVb0fX1fz/nlvT/59LcjTJmSRn3uXKWm4qaYpWFQpJtjMfCN+tqh92zW8l2d2t3w1c7tovAntHbn5T19aoqoeraq6q5razY731S5qw1bz7EODbwEtV9Y2RVaeAI93yEeCxkfbDSXYk2QfsB56aXMmSpmk1X/H+F8DfAM8nWfja3X8EvgacTHI/8DpwH0BVnU1yEniR+XcuHqiq9ydeuaSpWDEUquo/gSyzesn/H19VXwW+OkZdknrijEZJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1UlV910CS/wb+F/h137Ws0Q1Y80aYtZqHWu+fVtXHV9poEKEAkORMVc31XcdaWPPGmLWaZ63exRw+SGoYCpIaQwqFh/suYB2seWPMWs2zVm9jMOcUJA3DkHoKkgag91BIcneSc0nOJznWdz3LSfJakueTPJvkTNe2M8kTSV7uLq/vucZHklxO8sJI27I1Jnmw2+/nkhwcUM1fSXKx29fPJrlnYDXvTfLjJC8mOZvkC137oPf1qlVVbz/ANuCXwM3AtcDPgVv6rOkqtb4G3LCo7Z+BY93yMeCfeq7x08CngBdWqhG4pdvfO4B93d9h20Bq/grwD0tsO5SadwOf6pY/Cvyiq23Q+3q1P333FG4DzlfVK1X1O+AEcKjnmtbiEHC8Wz4O3NtjLVTVT4C3FzUvV+Mh4ERVXamqV4HzzP89NtQyNS9nKDVfqqqfdcvvAC8Bexj4vl6tvkNhD/DGyPULXdsQFfBkkmeSHO3adlXVpW75TWBXP6Vd1XI1Dn3ffz7Jc93wYqEbPriak3wC+CTwU2Z3Xzf6DoVZckdVHQA+CzyQ5NOjK2u+nzjot3JmocbON5kfUh4ALgFf77ecpSX5CPAD4ItV9dvRdTO0rz+g71C4COwduX5T1zY4VXWxu7wMPMp89++tJLsBusvL/VW4rOVqHOy+r6q3qur9qvo98C3+0NUeTM1JtjMfCN+tqh92zTO3r5fSdyg8DexPsi/JtcBh4FTPNX1AkuuSfHRhGfgM8ALztR7pNjsCPNZPhVe1XI2ngMNJdiTZB+wHnuqhvg9YOLA6n2N+X8NAak4S4NvAS1X1jZFVM7evl9T3mU7gHubP3v4S+FLf9SxT483Mnz3+OXB2oU7gj4HTwMvAk8DOnuv8HvPd7XeZH7fef7UagS91+/0c8NkB1fyvwPPAc8wfULsHVvMdzA8NngOe7X7uGfq+Xu2PMxolNfoePkgaGENBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1/g9WJcXqyKxmHAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c18f9588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADHNJREFUeJzt3E+MnPV9x/H3p8YsCqESDqlljFWM5Is51IlWplJRRGU1JlxMLsg5VD4guQcaJVJ7MM0hXJDSSklvRHIUFKtKca0kCB9QEViRUC8BEzlgmzps+CNsjJ2USEE9OOB8e9hnm/nZu94/s7PzjHm/pNU885uZna8HzVvP88ywqSokac6fjHsASf1iFCQ1jIKkhlGQ1DAKkhpGQVJjZFFIcn+SM0lmkhwY1fNIWl0ZxfcUkqwDfgn8DXAWeBn4SlWdXvUnk7SqRrWnsBOYqao3q+r3wGFgz4ieS9IqumFEv3cz8O7A9bPAPQvd+cZM1U3cPKJRJAF8yG9/U1WfXex+o4rCopLsB/YD3MSnuCe7xjWK9InwQv3onaXcb1SHD+eALQPX7+jW/l9VHayq6aqaXs/UiMaQtFyjisLLwLYkW5PcCOwFjo7ouSStopEcPlTVx0n+HngOWAc8WVWnRvFcklbXyM4pVNWzwLOj+v2SRsNvNEpqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNW4Y5sFJ3gY+BC4DH1fVdJINwH8AdwJvAw9V1W+HG1PSWlmNPYW/rqodVTXdXT8AHKuqbcCx7rqkCTGKw4c9wKFu+xDw4AieQ9KIDBuFAl5I8kqS/d3axqo6322/D2wc8jkkraGhzikA91bVuSR/Bjyf5L8Hb6yqSlLzPbCLyH6Am/jUkGNIWi1D7SlU1bnu8iLwNLATuJBkE0B3eXGBxx6squmqml7P1DBjSFpFK45CkpuT3DK3DXwROAkcBfZ1d9sHPDPskJLWzjCHDxuBp5PM/Z5/r6r/TPIycCTJw8A7wEPDjylpraw4ClX1JvAX86z/D7BrmKEkjY/faJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaiwahSRPJrmY5OTA2oYkzyd5o7u8deC2R5PMJDmTZPeoBpc0GkvZU/gBcP8VaweAY1W1DTjWXSfJdmAvcHf3mCeSrFu1aSWN3KJRqKoXgQ+uWN4DHOq2DwEPDqwfrqpLVfUWMAPsXKVZJa2BlZ5T2FhV57vt94GN3fZm4N2B+53t1iRNiKFPNFZVAbXcxyXZn+R4kuMfcWnYMSStkpVG4UKSTQDd5cVu/RywZeB+d3RrV6mqg1U1XVXT65la4RiSVttKo3AU2Ndt7wOeGVjfm2QqyVZgG/DScCNKWks3LHaHJE8B9wG3JTkLfBP4FnAkycPAO8BDAFV1KskR4DTwMfBIVV0e0eySRmDRKFTVVxa4adcC938ceHyYoSSNj99olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKIzQc++dGPcI0rItGoUkTya5mOTkwNpjSc4lOdH9PDBw26NJZpKcSbJ7VINPgt237+C5904YB02Upewp/AC4f571f62qHd3PswBJtgN7gbu7xzyRZN1qDStp9BaNQlW9CHywxN+3BzhcVZeq6i1gBtg5xHwTb/ftOwAPJTQ5hjmn8NUkr3aHF7d2a5uBdwfuc7ZbE4ZBk2GlUfgucBewAzgPfHu5vyDJ/iTHkxz/iEsrHGMyzO0tSJNgRVGoqgtVdbmq/gB8jz8eIpwDtgzc9Y5ubb7fcbCqpqtqej1TKxljohgGTYoVRSHJpoGrXwbmPpk4CuxNMpVkK7ANeGm4Ea8vHkKo725Y7A5JngLuA25Lchb4JnBfkh1AAW8DfwdQVaeSHAFOAx8Dj1TV5dGMPnnmPqKU+ixVNe4Z+NNsqHuya9xjrIm5KHg4obX2Qv3olaqaXux+fqNxjfkRpfrOKIyRYVAfGYUxMwzqG6MwBp5PUJ8ZhTEZDIN7C+oTozBGhkF9ZBR6xDCoD4zCmO2+fYd7DOoVo9ATnnxUXyz6NWetnYW+2GQwtJbcU+ih+Q4pPKzQWnFPoceu3EP4JP1/E8+9d+IT8e/sI6MwQeY7IXm9vXGu13/XJDEKE27wsGKS30jXy7/jemAUJtR8JyUn7Y3leZJ+8kTjhFvozd/3k5MLzTYJMbveuadwHbjWX3Tq296DMeg/o3CdWOiTioXW1vJNeK09FmPQP0Zhgg1zeDCuQwsj0H9GYUIt93P8PpxfMAiTwShMqOW+wYYJyDB/hdoQTB6joKusxhvZGEwuo6AlWcqJzPluNw6TxyhoRXyzX7/88pKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUmPRKCTZkuSnSU4nOZXka936hiTPJ3mju7x14DGPJplJcibJ7lH+AyStrqXsKXwM/ENVbQf+EngkyXbgAHCsqrYBx7rrdLftBe4G7geeSLJuFMNLWn2LRqGqzlfVz7vtD4HXgc3AHuBQd7dDwIPd9h7gcFVdqqq3gBlg52oPLmk0lnVOIcmdwOeAnwEbq+p8d9P7wMZuezPw7sDDznZrkibAkqOQ5NPAj4GvV9XvBm+rqgJqOU+cZH+S40mOf8Sl5TxU0ggtKQpJ1jMbhB9W1U+65QtJNnW3bwIuduvngC0DD7+jW2tU1cGqmq6q6fVMrXR+SatsKZ8+BPg+8HpVfWfgpqPAvm57H/DMwPreJFNJtgLbgJdWb2RJo7SUv9H4V8DfAq8lmftrnf8EfAs4kuRh4B3gIYCqOpXkCHCa2U8uHqmqy6s+uaSRWDQKVfVfQBa4edcCj3kceHyIuSSNid9olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkRqpq3DOQ5NfA/wK/Gfcsy3QbzrwWJm3mvs7751X12cXu1IsoACQ5XlXT455jOZx5bUzazJM275U8fJDUMAqSGn2KwsFxD7ACzrw2Jm3mSZu30ZtzCpL6oU97CpJ6YOxRSHJ/kjNJZpIcGPc8C0nydpLXkpxIcrxb25Dk+SRvdJe3jnnGJ5NcTHJyYG3BGZM82r3uZ5Ls7tHMjyU5173WJ5I80LOZtyT5aZLTSU4l+Vq33uvXesmqamw/wDrgV8BdwI3AL4Dt45zpGrO+Ddx2xdq/AAe67QPAP495xi8AnwdOLjYjsL17vaeArd1/h3U9mfkx4B/nuW9fZt4EfL7bvgX4ZTdbr1/rpf6Me09hJzBTVW9W1e+Bw8CeMc+0HHuAQ932IeDBMc5CVb0IfHDF8kIz7gEOV9WlqnoLmGH2v8eaWmDmhfRl5vNV9fNu+0PgdWAzPX+tl2rcUdgMvDtw/Wy31kcFvJDklST7u7WNVXW+234f2Die0a5poRn7/tp/Ncmr3eHF3G5472ZOcifwOeBnTO5r3Rh3FCbJvVW1A/gS8EiSLwzeWLP7ib3+KGcSZux8l9lDyh3AeeDb4x1nfkk+DfwY+HpV/W7wtgl6ra8y7iicA7YMXL+jW+udqjrXXV4EnmZ29+9Ckk0A3eXF8U24oIVm7O1rX1UXqupyVf0B+B5/3NXuzcxJ1jMbhB9W1U+65Yl7recz7ii8DGxLsjXJjcBe4OiYZ7pKkpuT3DK3DXwROMnsrPu6u+0DnhnPhNe00IxHgb1JppJsBbYBL41hvqvMvbE6X2b2tYaezJwkwPeB16vqOwM3TdxrPa9xn+kEHmD27O2vgG+Me54FZryL2bPHvwBOzc0JfAY4BrwBvABsGPOcTzG7u/0Rs8etD19rRuAb3et+BvhSj2b+N+A14FVm31CbejbzvcweGrwKnOh+Huj7a73UH7/RKKkx7sMHST1jFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjf8DQMpsJFUGYfgAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c18bcdd8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADlZJREFUeJzt3V+onHedx/H3Z2Ma8R80qxtiGtYIQagXG+XQLqwIUjW1N6k3kr1YclHITVd02b1I1xtvBFfQvVOoWAyL2C3+oYEVSxsEEcSaSm2b1thoK01Mm3UVLHsRa/3uxXnOOr/Tc3LmzJnnzDxz3i84zDO/eebM9/zOPJ/5Pb/nmZlUFZK04i9mXYCk+WIoSGoYCpIahoKkhqEgqWEoSGr0FgpJbk9yIcnFJKf6ehxJ05U+zlNIsgv4OfAh4BLwY+Dvq+rpqT+YpKnqa6RwC3Cxqn5ZVX8A7geO9fRYkqbodT393gPACyPXLwG3rrfyDdlTr+eNPZUiCeBlfvebqnrbRuv1FQobSnISOAnwet7ArbltVqVIO8Ij9Y1fjbNeX7sPl4GDI9dv6tr+X1XdW1VLVbW0mz09lSFps/oKhR8Dh5McSnIDcBw409NjSZqiXnYfquqPSf4ReAjYBdxXVef7eCxJ09XbnEJVfQf4Tl+/X1I/PKNRUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJjddt5c5JngdeBl4F/lhVS0n2Av8JvAN4HvhYVf1ua2VK2i7TGCl8oKqOVNVSd/0UcLaqDgNnu+uSBqKP3YdjwOlu+TRwZw+PIaknWw2FAh5J8liSk13bvqq60i2/COzb4mNI2kZbmlMA3ldVl5P8FfBwkp+N3lhVlaTWumMXIicBXs8btliGpGnZ0kihqi53l1eBbwO3AC8l2Q/QXV5d5773VtVSVS3tZs9WypA0RROHQpI3JnnzyjLwYeAp4AxwolvtBPDgVouUtH22MlLYB/wgyU+BR4H/qqrvAp8FPpTkWeCD3fWF8NCvH591CVLvJp5TqKpfAn+zRvv/ALdtpah59tCvH+fo24/MugypN57ROAFHDFpkhsIEHClokRkKE3CkoEVmKEhqGAoTcPdBi8xQGJO7DNoptnqa847iCEE7gSOFMRkI2ikMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ2HK/M5JDZ2hMGV+vZyGzlCQ1NgwFJLcl+RqkqdG2vYmeTjJs93ljSO33ZPkYpILSY72VbikfowzUvgqcPuqtlPA2ao6DJztrpPkZuA48O7uPl9Msmtq1c6hh379uPMIWigbhkJVfR/47armY8Dpbvk0cOdI+/1Vda2qngMuArdMqdaZut6G7zyCFsmkcwr7qupKt/wisK9bPgC8MLLepa5toTlS0CLZ8kRjVRVQm71fkpNJziU59wrXtlpG79YaDYyGwfWCwdDQkEwaCi8l2Q/QXV7t2i8DB0fWu6lre42qureqlqpqaTd7JixjvhgMWgSThsIZ4ES3fAJ4cKT9eJI9SQ4Bh4FHt1bi8DnnMF0GbL/GOST5deCHwLuSXEpyF/BZ4ENJngU+2F2nqs4DDwBPA98F7q6qV/sqfjtN+kT06EQ/7NP+ZHlKYLbekr11a26bdRkTWf3kXG/uwdHCdK30u/06vkfqG49V1dJG63lGY898RdPQGApjcuOeL0fffsRRQk8MhTGt9wRcb3fB4a2GylDomSOMfqz0q/07fYbCFFxvKOtIoR9H337EQOiJoSCpYShMkaMFLQJDoUcOb/vjRG5/DAVJDUNBUsNQkNQwFHrmG6I0NIbCNnAyTENiKEhqGArbwN2HfjgC64eh0IPVT1afvBqS1826gEW2EgaeaDN99mV/HCn0wHfwacgcKfTA3QcNmSOFnjla2B728/QYCj1zlNAPQ6A/hoIGx0Dol6GgwVn5pKvRcHBENj2GggbJIzz9MRQkNQwFDZ6jhekyFKbIJ6cWgScvTZmnNG8P+7c/jhQkNQyFnrgroaEyFKbIIe2y0Y+gGyccDdD5Yij0aCc/2VcCcpygNEzni6EwZauf4DsxGCbZyHdiP80rQ2Eb+IRf3+pdDftq9gyFHqz1SrmTnuzrzSms3vjX6hN3JWYvVTXrGnhL9tatuW3WZUzdTn/STxKEW9312En9u1mP1Dceq6qljdbbcKSQ5L4kV5M8NdL26SSXkzze/dwxcts9SS4muZDk6OR/wvDt9CfoyrsZR382spUg2en9PS3j7D58Fbh9jfZ/r6oj3c93AJLcDBwH3t3d54tJdk2rWA3bRhv8VjZqA2F6NgyFqvo+8Nsxf98x4P6qulZVzwEXgVu2UJ8WxLgjgOtt3DtpXmaWtjLR+PEkT3S7Fzd2bQeAF0bWudS17Vi+gi1vzNfbfRh318K+3B6ThsKXgHcCR4ArwOc3+wuSnExyLsm5V7g2YRnDsxNf7TbamHdin8yziUKhql6qqler6k/Al/nzLsJl4ODIqjd1bWv9jnuraqmqlnazZ5IyBsNXuPWNO0rQ9pkoFJLsH7n6UWDlyMQZ4HiSPUkOAYeBR7dW4uLxldGgnGfjHJL8OvBD4F1JLiW5C/hckieTPAF8APgngKo6DzwAPA18F7i7ql7trfoB8fTnP/MQ4nzz5KVttjoMFnHDWJlY3OjkrZX1tD3GPXnJUNhm640QFmXj2K6zGLV544aCH8e2zdZ7BR2qSf8Wg2B++YaoOTHUoNjsxu3Rhvnn7sOMLNpuhCOG+Te1N0SpH+ttDEMdMUxqp/29Q+Ccwgwt0vzC9Y42XO8ow+jnKjhqmA+GwoyttTEt0kbidz4Oj7sPc2BRdiWmEWJD+5sXkaEwJ9ablR/i5xb6uQjD5tGHObWZIJjnDWl0PmH1x6b5MWrby6MPA7eZ4/nzPJoY/RvWe8+DgTBfHCkMwGY3+CFsZL7vYfv53ocFtIjhoO3jex8W0Op3GEp9MBQGapwTn3b6905oMobCgK01q7+RSYPCXZedwzmFBTPE3QoDZHt4SHKHGtIG5tuo55OhsICGsrHN8/kVO5lzCgtsGt9+Pe13cg4hrHY6Q2GH2Sgo1rp9dEJzKyFhIAyDoaCxN9bVpyk79F9MhoImNk44ODoYHkNBW7beuyA1TIaCpsYgWAwekpTUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSY0NQyHJwSTfS/J0kvNJPtG1703ycJJnu8sbR+5zT5KLSS4kOdrnHyBpusYZKfwR+Oequhn4W+DuJDcDp4CzVXUYONtdp7vtOPBu4Hbgi0l29VG8pOnbMBSq6kpV/aRbfhl4BjgAHANOd6udBu7slo8B91fVtap6DrgI3DLtwiX1Y1NzCkneAbwH+BGwr6qudDe9COzrlg8AL4zc7VLXJmkAxg6FJG8Cvgl8sqp+P3pbLX95xKa+QCLJySTnkpx7hWubuaukHo0VCkl2sxwIX6uqb3XNLyXZ392+H7jatV8GDo7c/aaurVFV91bVUlUt7WbPpPVLmrJxjj4E+ArwTFV9YeSmM8CJbvkE8OBI+/Eke5IcAg4Dj06vZEl9Gufj2P4O+AfgySQrH8L3r8BngQeS3AX8CvgYQFWdT/IA8DTLRy7urqpXp165pF5sGApV9QMg69y85hdAVtVngM9soS5JM+IZjZIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGqkqmZdA0n+G/hf4DezrmWT3oo1b4eh1Tyv9f51Vb1to5XmIhQAkpyrqqVZ17EZ1rw9hlbz0Opdzd0HSQ1DQVJjnkLh3lkXMAFr3h5Dq3lo9TbmZk5B0nyYp5GCpDkw81BIcnuSC0kuJjk163rWk+T5JE8meTzJua5tb5KHkzzbXd444xrvS3I1yVMjbevWmOSert8vJDk6RzV/Osnlrq8fT3LHnNV8MMn3kjyd5HyST3Ttc93XY6uqmf0Au4BfAO8EbgB+Ctw8y5quU+vzwFtXtX0OONUtnwL+bcY1vh94L/DURjUCN3f9vQc41P0fds1JzZ8G/mWNdeel5v3Ae7vlNwM/72qb674e92fWI4VbgItV9cuq+gNwP3BsxjVtxjHgdLd8GrhzhrVQVd8Hfruqeb0ajwH3V9W1qnoOuMjy/2NbrVPzeual5itV9ZNu+WXgGeAAc97X45p1KBwAXhi5fqlrm0cFPJLksSQnu7Z9VXWlW34R2Deb0q5rvRrnve8/nuSJbvdiZRg+dzUneQfwHuBHDLevG7MOhSF5X1UdAT4C3J3k/aM31vI4ca4P5Qyhxs6XWN6lPAJcAT4/23LWluRNwDeBT1bV70dvG1Bfv8asQ+EycHDk+k1d29ypqsvd5VXg2ywP/15Ksh+gu7w6uwrXtV6Nc9v3VfVSVb1aVX8Cvsyfh9pzU3OS3SwHwteq6ltd8+D6ei2zDoUfA4eTHEpyA3AcODPjml4jyRuTvHllGfgw8BTLtZ7oVjsBPDibCq9rvRrPAMeT7ElyCDgMPDqD+l5jZcPqfJTlvoY5qTlJgK8Az1TVF0ZuGlxfr2nWM53AHSzP3v4C+NSs61mnxneyPHv8U+D8Sp3AXwJngWeBR4C9M67z6ywPt19heb/1ruvVCHyq6/cLwEfmqOb/AJ4EnmB5g9o/ZzW/j+VdgyeAx7ufO+a9r8f98YxGSY1Z7z5ImjOGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIavwf2AXPPu5fJRcAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c19b9588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADGNJREFUeJzt3U+InPd9x/H3p7K8Jo4Pdp0KRRa1DKIgH6qERSnUhAbTyPFFzsUoh6KDQRc3JKU9yM2hvgjSQNKbAwo2ESW1KpoY62BibBEwhRJbCYotyVG88R8sWZaaOhDTg2Ir3x722WZ+8q52tTOz88zm/YJln/nNMztfj9Gb53lmVkpVIUkL/mjSA0jqF6MgqWEUJDWMgqSGUZDUMAqSGmOLQpL7kpxNMpfkwLieR9JoZRyfU0iyAfgF8NfAOeAl4EtVdWbkTyZppMZ1pLALmKuq16vqt8ARYM+YnkvSCN0wpp+7BXh74PY54DNL7XxjZuombh7TKJIA3ufXv6qqTyy337iisKwk+4H9ADfxMT6Teyc1ivQH4fn6j7dWst+4Th/OA1sHbt/Rrf2/qjpUVbNVNbuRmTGNIel6jSsKLwHbk2xLciOwFzg2pueSNEJjOX2oqg+T/C3wLLABeKKqTo/juSSN1tiuKVTVM8Az4/r5ksbDTzRKahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDVuGObBSd4E3geuAB9W1WyS24B/B+4E3gQerKpfDzempLUyiiOFz1XVzqqa7W4fAI5X1XbgeHdb0pQYx+nDHuBwt30YeGAMzyFpTIaNQgHPJ/lJkv3d2qaqutBtvwtsGvI5JK2hoa4pAPdU1fkkfwI8l+Tng3dWVSWpxR7YRWQ/wE18bMgxJI3KUEcKVXW++34JeArYBVxMshmg+35picceqqrZqprdyMwwY0gaoVVHIcnNSW5Z2AY+D5wCjgH7ut32AU8PO6SktTPM6cMm4KkkCz/n36rqh0leAo4meQh4C3hw+DElrZVVR6GqXgf+fJH1/wHuHWYoSZPjJxolNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYhRF49p2Tkx5BGhmjIKlhFCQ1jIKkhlGQ1DAKQ/Iio9YboyCpYRQkNYzCCOz+5M5JjyCNjFGQ1DAKkhpGQVLDKEhqGAVJjWWjkOSJJJeSnBpYuy3Jc0le677fOnDfI0nmkpxNsntcg0saj5UcKXwXuO+qtQPA8araDhzvbpNkB7AXuLt7zGNJNoxsWkljt2wUquoF4L2rlvcAh7vtw8ADA+tHqupyVb0BzAG7RjSrpDWw2msKm6rqQrf9LrCp294CvD2w37luTdKUGPpCY1UVUNf7uCT7k5xIcuIDLg87xkT4y1Baj1YbhYtJNgN03y916+eBrQP73dGtfURVHaqq2aqa3cjMKseQNGqrjcIxYF+3vQ94emB9b5KZJNuA7cCLw40oaS3dsNwOSZ4E/gq4Pck54J+ArwNHkzwEvAU8CFBVp5McBc4AHwIPV9WVMc0uaQyWjUJVfWmJu+5dYv+DwMFhhpo2z75z0t+U1LrhJxolNYyCpIZRGAFPHbSeGAVJDaMgqWEUJDWMgqSGUZDUMApD8p0HrTdGQVLDKEhqGAVJDaMgqWEUhuTfvqT1xihIahgFSQ2jMISFzygMnkJ4OqFpZxTGwDBomhmFEbk6BIZB08oojNjgx54Ng6aRUZDUMApDWu4Xojxa0LQxCiNkALQeGIUR8GhB64lRGDH/YRhNO6MwIoZA64VRWCOeQmhaGIUx2f3JnR85ejAMmgZGQVLDKIyZ1xo0bYzCGFzrNMFTCPWdURghjwq0HhiFEVvsAqMXHDVNjIKkhlFYIx4taFoYhQkyDOqjZaOQ5Ikkl5KcGlh7NMn5JCe7r/sH7nskyVySs0l2j2vwabTYhUjDoL5ZyZHCd4H7Fln/l6ra2X09A5BkB7AXuLt7zGNJNoxqWEnjt2wUquoF4L0V/rw9wJGqulxVbwBzwK4h5vuD4NGC+mSYawpfTvJyd3pxa7e2BXh7YJ9z3Zo6fpZBfbfaKHwbuAvYCVwAvnm9PyDJ/iQnkpz4gMurHGP98GhBfbGqKFTVxaq6UlW/A77D708RzgNbB3a9o1tb7GccqqrZqprdyMxqxphaSx0tGAb1waqikGTzwM0vAgvvTBwD9iaZSbIN2A68ONyI65OnEeqrlbwl+STwX8CfJTmX5CHgG0leSfIy8Dng7wCq6jRwFDgD/BB4uKqujG36KedblOqjG5bboaq+tMjy49fY/yBwcJihJE2On2icsMV+gUqaJKPQE/5zc+oLo9AjHjGoD4xCzyyE4dl3TnrEoIkwCj1nHLTWln33QWtv8GhhwdVh8FRD4+KRQo9d650Jjx40LkZhCnhUoLVkFKbEwlGDb11q3LymMIWW+vsePaLQKBiFdcAYaJQ8fZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUWDYKSbYm+VGSM0lOJ/lKt35bkueSvNZ9v3XgMY8kmUtyNsnucf4HSBqtlRwpfAj8fVXtAP4CeDjJDuAAcLyqtgPHu9t09+0F7gbuAx5LsmEcw0savWWjUFUXquqn3fb7wKvAFmAPcLjb7TDwQLe9BzhSVZer6g1gDtg16sEljcd1XVNIcifwKeDHwKaqutDd9S6wqdveArw98LBz3ZqkKbDiKCT5OPB94KtV9ZvB+6qqgLqeJ06yP8mJJCc+4PL1PFTSGK0oCkk2Mh+E71XVD7rli0k2d/dvBi516+eBrQMPv6Nba1TVoaqararZjcysdn5JI7aSdx8CPA68WlXfGrjrGLCv294HPD2wvjfJTJJtwHbgxdGNLGmcbljBPn8J/A3wSpKT3do/Al8HjiZ5CHgLeBCgqk4nOQqcYf6di4er6srIJ5c0FstGoar+E8gSd9+7xGMOAgeHmEvShPiJRkkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaqSqJj0DSf4b+F/gV5Oe5TrdjjOvhWmbua/z/mlVfWK5nXoRBYAkJ6pqdtJzXA9nXhvTNvO0zXs1Tx8kNYyCpEafonBo0gOsgjOvjWmbedrmbfTmmoKkfujTkYKkHph4FJLcl+RskrkkByY9z1KSvJnklSQnk5zo1m5L8lyS17rvt054xieSXEpyamBtyRmTPNK97meT7O7RzI8mOd+91ieT3N+zmbcm+VGSM0lOJ/lKt97r13rFqmpiX8AG4JfAXcCNwM+AHZOc6RqzvgncftXaN4AD3fYB4J8nPONngU8Dp5abEdjRvd4zwLbu/8OGnsz8KPAPi+zbl5k3A5/utm8BftHN1uvXeqVfkz5S2AXMVdXrVfVb4AiwZ8IzXY89wOFu+zDwwARnoapeAN67anmpGfcAR6rqclW9Acwx//9jTS0x81L6MvOFqvppt/0+8CqwhZ6/1is16ShsAd4euH2uW+ujAp5P8pMk+7u1TVV1odt+F9g0mdGuaakZ+/7afznJy93pxcJheO9mTnIn8Cngx0zva92YdBSmyT1VtRP4AvBwks8O3lnzx4m9fitnGmbsfJv5U8qdwAXgm5MdZ3FJPg58H/hqVf1m8L4peq0/YtJROA9sHbh9R7fWO1V1vvt+CXiK+cO/i0k2A3TfL01uwiUtNWNvX/uqulhVV6rqd8B3+P2hdm9mTrKR+SB8r6p+0C1P3Wu9mElH4SVge5JtSW4E9gLHJjzTRyS5OcktC9vA54FTzM+6r9ttH/D0ZCa8pqVmPAbsTTKTZBuwHXhxAvN9xMIfrM4XmX+toSczJwnwOPBqVX1r4K6pe60XNekrncD9zF+9/SXwtUnPs8SMdzF/9fhnwOmFOYE/Bo4DrwHPA7dNeM4nmT/c/oD589aHrjUj8LXudT8LfKFHM/8r8ArwMvN/oDb3bOZ7mD81eBk42X3d3/fXeqVffqJRUmPSpw+SesYoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIa/wdKyFPl58Yq0AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1957828>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADepJREFUeJzt3U+sXGd9xvHvU+MYAamUNNQyjtUYyZtkUYOukkpFiCoqDtk4bCKzqLyI5C5SBFK7cMoCNpFoJeguSEFEWBUljfijeIEaJRZS1A2Jg0yIE0wMSRQ7TlwKElEXJgm/Lu65MO/N/T8zd+Ycfz/SaM6858zMb449z7zve86dSVUhSUv+ZNYFSJovhoKkhqEgqWEoSGoYCpIahoKkxtRCIckdSc4lOZ/k+LSeR9JkZRrnKSTZAfwc+FvgAvA08Jmqen7iTyZpoqbVU7gVOF9Vv6yq3wEPA4en9FySJug9U3rcvcCrI7cvALettvE12VXv5f1TKkUSwJv85ldV9cH1tptWKKwryTHgGMB7eR+35fZZlSJdFZ6o77yyke2mNXy4COwbuX1j1/YHVfVgVS1U1cJOdk2pDEmbNa1QeBo4kGR/kmuAI8DJKT2XpAmayvChqt5O8g/AY8AO4KGqOjuN55I0WVObU6iqHwA/mNbjS5oOz2iU1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FS4z3j3DnJy8CbwDvA21W1kOR64D+Bm4CXgbur6jfjlSlpu0yip/A3VXWwqha628eBU1V1ADjV3ZbUE9MYPhwGTnTLJ4C7pvAckqZk3FAo4IkkzyQ51rXtrqpL3fLrwO4xn0PSNhprTgH4WFVdTPLnwONJfja6sqoqSa10xy5EjgG8l/eNWYakSRmrp1BVF7vry8D3gVuBN5LsAeiuL69y3weraqGqFnaya5wyJE3QlkMhyfuTXLu0DHwSeA44CRztNjsKPDpukZK2zzjDh93A95MsPc5/VNV/JXkaeCTJPcArwN3jlylpu2w5FKrql8BfrtD+v8Dt4xQlaXY8o1FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1AYw2OvnZl1CdLEGQpjOPShg7MuQZo4Q0FSw1CQ1DAUJDUMhTE99toZJxw1KIbChBgMGgpDYYIMBg2BoTBhBoP6zlCYAoNBfWYoSGoYCmOwR6AhMhQmyNOeNQSGwhhGQ8BA0FC8Z9YFDIVDCQ2FPYUJWOolLO8tGBTqI0NhQlYaSjikUB8ZChOw/O8f7CGozwyFTfINr6FbNxSSPJTkcpLnRtquT/J4khe76+tG1t2X5HySc0kOTavw7bZWT+DQhw46VNBgbKSn8E3gjmVtx4FTVXUAONXdJsnNwBHglu4+DyTZMbFqZ2wpDFYKAHsQGop1Q6GqngR+vaz5MHCiWz4B3DXS/nBVXamql4DzwK0TqnUuOamoodnqnMLuqrrULb8O7O6W9wKvjmx3oWsbnJV6BvYWNARjTzRWVQG12fslOZbkdJLTb3Fl3DKmbq15g5W+fcmAUF9tNRTeSLIHoLu+3LVfBPaNbHdj1/YuVfVgVS1U1cJOdm2xjO23fLjgm19Ds9VQOAkc7ZaPAo+OtB9JsivJfuAA8NR4Jc4nv5tRQ7Xu3z4k+TbwCeCGJBeALwJfBh5Jcg/wCnA3QFWdTfII8DzwNnBvVb0zpdpnyp6ChmrdUKiqz6yy6vZVtr8fuH+covrgsdfOeMRBg+QZjVt06EMH7SVokAwFSQ1DQVLDUJDUMBQkNQyFKfHIhPrK72jcgvWOOhgI6jN7Clvgm15DZihMmIGhvjMUJswTmtR3hoKkhqEwBfYW1GeGwhY5d6ChMhQkNQwFSQ1DYUqcV1BfGQpTZDCojwwFSQ1DYQxLX/u+1pEIewvqG0NhGxgM6hNDYUI8b0FDYShIahgK28QhhPrCUJgghxAaAkNhwgyGzbMXNV8MBc3EaBAYpPPFUJgC/5OvzZ7BfDMUttHV/GZY3jMwOOeXoSCpYShMydX0SbiRHtDVtD/6zlDYZkMdQjz22pk/vLa1XuPodppPhsIUXU2fjqPzBFfT6x6iVNWsa+BPc33dlttnXcbUrPTJ2Kc3zmr1L29f7zU99tqZXr3uoXmivvNMVS2st509Ba1rpaMFWwkE9YM9hW0y1N6C+mOjPQV/YFYbsloAOCQYnnWHD0keSnI5yXMjbV9KcjHJme5y58i6+5KcT3IuyaFpFd43G+mC95GBMDwbmVP4JnDHCu3/VlUHu8sPAJLcDBwBbunu80CSHZMqVtL0rRsKVfUk8OsNPt5h4OGqulJVLwHngVvHqG/whtBb0LCMc/Ths0me7YYX13Vte4FXR7a50LWps1J322DQPNlqKHwN+DBwELgEfGWzD5DkWJLTSU6/xZUtljEcBoPmxZZCoareqKp3qur3wNf54xDhIrBvZNMbu7aVHuPBqlqoqoWd7NpKGb211kz+UCydzjyk13S12FIoJNkzcvPTwNKRiZPAkSS7kuwHDgBPjVfiMA09GDbymxiaT+uep5Dk28AngBuSXAC+CHwiyUGggJeBvweoqrNJHgGeB94G7q2qd6ZTuqRp8IzGGRvCmYKr9W769jqGzr996IkhnNS01jDBeYX+MRTm1FDeSM4r9I+hMCeGcv7C6OvoY/1yTmFu9f0r0P1Dqfmz0TkFQ2GOrfVJO69vOCcd55cTjQOwnePxlSYEN9v9X++7GdUPhkIPbEcwrBRAk35eg6Ef/JKVnljpOxEnaZxu/1r3XW1uYek+Divmj3MKAjb+2w1bDSbf/LPn17FdhcaZ8R/nTbtWWBgG/WMoDMwsDmUuf04PR/aboTAQK31STyMg1vvrTicT+8+jDz02i+8sGH2utYLAcOgvewo9tvyU4q38atNmrBYCS8/hMGIY7CkMxOjvOE7rNx1X+uKU5T2V0XUrhYXmn4cktWV9//uMq42HJDUx633SGwjD4vBBa1pvXsBAGB57ClrVaCD45r962FPQqgyCq5OhIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpMa6oZBkX5IfJnk+ydkkn+var0/yeJIXu+vrRu5zX5LzSc4lOTTNFyBpsjbSU3gb+Mequhn4K+DeJDcDx4FTVXUAONXdplt3BLgFuAN4IMmOaRQvafLWDYWqulRVP+6W3wReAPYCh4ET3WYngLu65cPAw1V1papeAs4Dt066cEnTsak5hSQ3AR8BfgTsrqpL3arXgd3d8l7g1ZG7XejaJPXAhkMhyQeA7wKfr6rfjq6rxV+U2dSvyiQ5luR0ktNvcWUzd5U0RRsKhSQ7WQyEb1XV97rmN5Ls6dbvAS537ReBfSN3v7Fra1TVg1W1UFULO9m11folTdhGjj4E+AbwQlV9dWTVSeBot3wUeHSk/UiSXUn2AweApyZXsqRp2siPwfw18HfAT5Ms/X7YPwNfBh5Jcg/wCnA3QFWdTfII8DyLRy7urap3Jl65pKlYNxSq6r+BrLJ6xV+Frar7gfvHqEvSjHhGo6SGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqpqlnXQJL/Af4P+NWsa9mkG7Dm7dC3mue13r+oqg+ut9FchAJAktNVtTDrOjbDmrdH32ruW73LOXyQ1DAUJDXmKRQenHUBW2DN26NvNfet3sbczClImg/z1FOQNAdmHgpJ7khyLsn5JMdnXc9qkryc5KdJziQ53bVdn+TxJC9219fNuMaHklxO8txI26o1Jrmv2+/nkhyao5q/lORit6/PJLlzzmrel+SHSZ5PcjbJ57r2ud7XG1ZVM7sAO4BfAB8GrgF+Atw8y5rWqPVl4IZlbf8KHO+WjwP/MuMaPw58FHhuvRqBm7v9vQvY3/077JiTmr8E/NMK285LzXuAj3bL1wI/72qb63290cusewq3Auer6pdV9TvgYeDwjGvajMPAiW75BHDXDGuhqp4Efr2sebUaDwMPV9WVqnoJOM/iv8e2WqXm1cxLzZeq6sfd8pvAC8Be5nxfb9SsQ2Ev8OrI7Qtd2zwq4IkkzyQ51rXtrqpL3fLrwO7ZlLam1Wqc933/2STPdsOLpW743NWc5CbgI8CP6O++bsw6FPrkY1V1EPgUcG+Sj4+urMV+4lwfyulDjZ2vsTikPAhcAr4y23JWluQDwHeBz1fVb0fX9Whfv8usQ+EisG/k9o1d29ypqovd9WXg+yx2/95Isgegu748uwpXtVqNc7vvq+qNqnqnqn4PfJ0/drXnpuYkO1kMhG9V1fe65t7t65XMOhSeBg4k2Z/kGuAIcHLGNb1LkvcnuXZpGfgk8ByLtR7tNjsKPDqbCte0Wo0ngSNJdiXZDxwAnppBfe+y9MbqfJrFfQ1zUnOSAN8AXqiqr46s6t2+XtGsZzqBO1mcvf0F8IVZ17NKjR9mcfb4J8DZpTqBPwNOAS8CTwDXz7jOb7PY3X6LxXHrPWvVCHyh2+/ngE/NUc3/DvwUeJbFN9SeOav5YywODZ4FznSXO+d9X2/04hmNkhqzHj5ImjOGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIavw/09KS0Q2e8iIAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1a5e6d8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADC5JREFUeJzt3E+InPd9x/H3p7IsE8cFq06FLItaBhGQD1XCIhdqQoqbyPFFzsUoh6KDQT24IYH2IDeH+mJIC0lvDijERJTUqklirIOJsUXAFEpsOSi2JFfxxn+wFFlq6kBMD4qtfHvYZ5v5yVrvandmnmfc9wuWeeY3z+x88xi/eZ5nx0lVIUmL/qDvASQNi1GQ1DAKkhpGQVLDKEhqGAVJjYlFIcndSU4nmU9yYFKfI2m8MonvKSRZB/wc+BxwBngB+FJVnRr7h0kaq0mdKewC5qvqtar6LXAY2DOhz5I0RtdM6PduAd4aeX4GuGOpna/NhrqO6yc0iiSAd/n1r6rqE8vtN6koLCvJfmA/wHV8jDtyV1+jSP8vPFvff3Ml+03q8uEssHXk+S3d2v+pqoNVNVdVc+vZMKExJF2tSUXhBWB7km1JrgX2Akcm9FmSxmgilw9V9X6SvwGeBtYBj1bVyUl8lqTxmtg9hap6CnhqUr9f0mT4jUZJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpMY1a3lzkjeAd4FLwPtVNZdkI/BvwK3AG8B9VfXrtY0paVrGcabwF1W1s6rmuucHgKNVtR042j2XNCMmcfmwBzjUbR8C7p3AZ0iakLVGoYBnk7yYZH+3tqmqznXbbwOb1vgZkqZoTfcUgDur6mySPwaeSfKfoy9WVSWpK72xi8h+gOv42BrHkDQuazpTqKqz3eMF4AlgF3A+yWaA7vHCEu89WFVzVTW3ng1rGUPSGK06CkmuT3LD4jbweeAEcATY1+22D3hyrUNKmp61XD5sAp5Isvh7/rWqfpTkBeDxJPcDbwL3rX1MSdOy6ihU1WvAn15h/b+Bu9YylKT++I1GSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGYUqe/uXxvkeQVsQoSGoYhSnybEGzwChIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGIUp8JuMmiVGQVLDKEzR7pt39j2CtCyjIKlhFCQ1jMKELd5k9NJBs8IoSGoYBUkNoyCpYRQkNYzClPitRs0KoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaiwbhSSPJrmQ5MTI2sYkzyR5tXu8ceS1B5PMJzmdZPekBpc0GSs5U/gucPdlaweAo1W1HTjaPSfJDmAvcHv3nkeSrBvbtJImbtkoVNVzwDuXLe8BDnXbh4B7R9YPV9XFqnodmAd2jWnWmeR/Mq1Zs9p7Cpuq6ly3/TawqdveArw1st+Zbk34VWfNhjXfaKyqAupq35dkf5JjSY69x8W1jiFpTFYbhfNJNgN0jxe69bPA1pH9bunWPqCqDlbVXFXNrWfDKseQNG6rjcIRYF+3vQ94cmR9b5INSbYB24Hn1zaipGlayZ8kHwP+A/hkkjNJ7ge+DnwuyavAX3bPqaqTwOPAKeBHwANVdWlSw8867zFoiK5Zboeq+tISL921xP4PAw+vZaiPqtG/RDz9y+P+ZUKD5Dcae+AZgobMKEyJZwWaFUZBUsMoTMnoJYNnDRoyoyCpYRR65A1HDZFRmILFywUjoFlgFKZo9F6C9xU0VEZhSpaKgGcPGhqj0CMvKzRERqFnhkFDYxQkNYzCAHi2oCExCpIaRmEgPFvQUBiFAfG7CxoCozAwu2/e6dmCemUUJDWMwkB5tqC+GIUB8qaj+mQUBsowqC9GYQYYBk2TURiwy/8v4aVpMAoDZxg0bUZhBhgGTZNRmBGGQdNiFGbI7pt3+lVoTZxRmEGLX4X2jEGTYBRmnGHQuBmFGTV6KWEYNE5GYcZ5j0HjZhQ+AgyDxskoSGoYBUkNoyCpYRQkNZaNQpJHk1xIcmJk7aEkZ5Mc737uGXntwSTzSU4n2T2pwSVNxkrOFL4L3H2F9X+uqp3dz1MASXYAe4Hbu/c8kmTduIaVNHnLRqGqngPeWeHv2wMcrqqLVfU6MA/sWsN8kqZsLfcUvpzkpe7y4sZubQvw1sg+Z7o1STNitVH4FnAbsBM4B3zjan9Bkv1JjiU59h4XVzmGpHFbVRSq6nxVXaqq3wHf5veXCGeBrSO73tKtXel3HKyquaqaW8+G1YwhaQJWFYUkm0eefhFY/MvEEWBvkg1JtgHbgefXNqKkabpmuR2SPAZ8FrgpyRngH4DPJtkJFPAG8NcAVXUyyePAKeB94IGqujSZ0SVNQqqq7xn4w2ysO3JX32NIH2nP1vdfrKq55fbzG42SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSY1lo5Bka5IfJzmV5GSSr3TrG5M8k+TV7vHGkfc8mGQ+yekkuyf5P0DSeK3kTOF94G+ragfwZ8ADSXYAB4CjVbUdONo9p3ttL3A7cDfwSJJ1kxhe0vgtG4WqOldVP+223wVeAbYAe4BD3W6HgHu77T3A4aq6WFWvA/PArnEPLmkyruqeQpJbgU8BPwE2VdW57qW3gU3d9hbgrZG3nenWJM2AFUchyceBHwBfrarfjL5WVQXU1Xxwkv1JjiU59h4Xr+atkiZoRVFIsp6FIHyvqn7YLZ9Psrl7fTNwoVs/C2wdefst3Vqjqg5W1VxVza1nw2rnlzRmK/nrQ4DvAK9U1TdHXjoC7Ou29wFPjqzvTbIhyTZgO/D8+EaWNEnXrGCfPwf+Cng5yfFu7e+BrwOPJ7kfeBO4D6CqTiZ5HDjFwl8uHqiqS2OfXNJELBuFqvp3IEu8fNcS73kYeHgNc0nqid9olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkRqqq7xlI8l/A/wC/6nuWq3QTzjwNszbzUOf9k6r6xHI7DSIKAEmOVdVc33NcDWeejlmbedbmvZyXD5IaRkFSY0hRONj3AKvgzNMxazPP2ryNwdxTkDQMQzpTkDQAvUchyd1JTieZT3Kg73mWkuSNJC8nOZ7kWLe2MckzSV7tHm/secZHk1xIcmJkbckZkzzYHffTSXYPaOaHkpztjvXxJPcMbOatSX6c5FSSk0m+0q0P+livWFX19gOsA34B3AZcC/wM2NHnTB8y6xvATZet/RNwoNs+APxjzzN+Bvg0cGK5GYEd3fHeAGzr/jmsG8jMDwF/d4V9hzLzZuDT3fYNwM+72QZ9rFf60/eZwi5gvqpeq6rfAoeBPT3PdDX2AIe67UPAvT3OQlU9B7xz2fJSM+4BDlfVxap6HZhn4Z/HVC0x81KGMvO5qvppt/0u8AqwhYEf65XqOwpbgLdGnp/p1oaogGeTvJhkf7e2qarOddtvA5v6Ge1DLTXj0I/9l5O81F1eLJ6GD27mJLcCnwJ+wuwe60bfUZgld1bVTuALwANJPjP6Yi2cJw76TzmzMGPnWyxcUu4EzgHf6HecK0vyceAHwFer6jejr83Qsf6AvqNwFtg68vyWbm1wqups93gBeIKF07/zSTYDdI8X+ptwSUvNONhjX1Xnq+pSVf0O+Da/P9UezMxJ1rMQhO9V1Q+75Zk71lfSdxReALYn2ZbkWmAvcKTnmT4gyfVJbljcBj4PnGBh1n3dbvuAJ/uZ8EMtNeMRYG+SDUm2AduB53uY7wMW/8XqfJGFYw0DmTlJgO8Ar1TVN0demrljfUV93+kE7mHh7u0vgK/1Pc8SM97Gwt3jnwEnF+cE/gg4CrwKPAts7HnOx1g43X6PhevW+z9sRuBr3XE/DXxhQDP/C/Ay8BIL/0JtHtjMd7JwafAScLz7uWfox3qlP36jUVKj78sHSQNjFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjf8F0fxAN1Y3fhoAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c19ff7b8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADOdJREFUeJzt3U+MXfV5h/HnW2OMQoiES2oZYxUjeWMWdaKRqVQUUaHGhI3JBrmLygskZ0GjRGoXplmETaS0UtIdkRwFxapSXIsEYVWoCFuRUDcBEznENnWY8EfYGLspkYK6cIC+XcyZ9v6Mx/Pnzpl7LjwfaTTnnnvvzMvB88zvnHsxqSokad4fTHoAScNiFCQ1jIKkhlGQ1DAKkhpGQVKjtygkuS/J2SSzSQ709X0kra708T6FJOuAXwF/AZwDXgT+sqrOrPo3k7Sq+lop7AJmq+q1qvo9cBjY09P3krSKruvp624B3hq5fQ64a6EHX58NdQM39jSKJID3+O1vquqziz2urygsKsl+YD/ADXyKu3LvpEaRPhGO1ZNvLuVxfZ0+nAe2jty+rdv3f6rqYFXNVNXMejb0NIak5eorCi8C25NsS3I9sBc42tP3krSKejl9qKoPkvw18CywDni8qk738b0kra7erilU1TPAM319fUn98B2NkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUmN68Z5cpI3gPeAD4EPqmomyUbgX4DbgTeAB6vqt+ONKWmtrMZK4c+ramdVzXS3DwDHq2o7cLy7LWlK9HH6sAc41G0fAh7o4XtI6sm4USjgWJKXkuzv9m2qqgvd9jvApjG/h6Q1NNY1BeDuqjqf5I+A55L8x+idVVVJ6mpP7CKyH+AGPjXmGJJWy1grhao6332+BDwF7AIuJtkM0H2+tMBzD1bVTFXNrGfDOGNIWkUrjkKSG5PcNL8NfBE4BRwF9nUP2wc8Pe6QktbOOKcPm4Cnksx/nX+uqn9L8iJwJMlDwJvAg+OPKWmtrDgKVfUa8CdX2f9fwL3jDCVpcnxHo6SGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCmvo2bdPTnoEaVHj/n0KWoQh0LRxpdAjg6BpZBR6tPvWnZMeQVo2o7DGXD1o6IzCGnP1oKEzCmvMlYKGzij06GoBcKWgoTMKkhpGYY15+qChMwprzNMHDZ1RkNQwCpIaRkFSwyhIahgFSQ2j0BNfetS0MgqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCmvMNzVp6BaNQpLHk1xKcmpk38YkzyV5tft888h9jySZTXI2ye6+Bp9W/n0KGrqlrBR+CNx3xb4DwPGq2g4c726TZAewF7ize85jSdat2rRTZKEfflcKGrpFo1BVzwPvXrF7D3Co2z4EPDCy/3BVXa6q14FZYNcqzSppDaz0msKmqrrQbb8DbOq2twBvjTzuXLdP0pQY+0JjVRVQy31ekv1JTiQ58T6Xxx1D0ipZaRQuJtkM0H2+1O0/D2wdedxt3b6PqKqDVTVTVTPr2bDCMSSttpVG4Siwr9veBzw9sn9vkg1JtgHbgRfGG/Hjx4uNGrLrFntAkieAe4BbkpwDvgl8GziS5CHgTeBBgKo6neQIcAb4AHi4qj7saXZJPcjcJYHJ+kw21l25d9Jj9OJaqwLfs6C1dKyefKmqZhZ7nO9o7JGnCZpGRqFH11oJuErQUBmFCXEVoaEyChNkGDREi776oPFceZpgCDR0rhQkNVwpTIAXGVfu2bdPevx65kphwjydWD6PWb+Mwhq78rfc7lt3+od8GVwl9M8oDIRh0FAYhQExDIvzmkL/jIKmhkFYG0ZhAEb/oLtauDaPT/+MwkD4G3BpPE79MwoD4h94DYFRGBCXxtdmNNeGURgg46BJMgoDZRg0KUZhQHbfutNXIjRxRmHgDIPWmlGYAoZh6TxW4zMKA+RVdk2SUZgSz7590t+CS2BQx2cUBsr/lb0mxShMIcOgPhmFAXMprEkwClPK1YL6YhQG7lqrhfmLjwZCq8koTIEr3+ko9ckoTJHFVg3jctUhMApTZ7VXDPMRGI3BNMRh6PNNs1TVpGfgM9lYd+XeSY8xVRb6oVhKNEafe+V/gOVpysfXsXrypaqaWexxrhQ+Zhb6Lb+U36wGQeBKYaot9oPuD7lGuVL4BJh/VWL+h9+/j0Grwf/B7MfEaAyGukLwmsV0WHSlkOTxJJeSnBrZ92iS80lOdh/3j9z3SJLZJGeT7O5rcE2X0SC4ghm2pZw+/BC47yr7/7GqdnYfzwAk2QHsBe7snvNYknWrNaymn0EYvkWjUFXPA+8u8evtAQ5X1eWqeh2YBXaNMZ8GYLnvW7jysQu9BKphGudC41eTvNydXtzc7dsCvDXymHPdPk2plfxmv9oP/jRc89CclUbhe8AdwE7gAvCd5X6BJPuTnEhy4n0ur3AMTQMjMF1W9OpDVV2c307yfeBfu5vnga0jD72t23e1r3EQOAhz71NYyRzqnz/QnzwrWikk2Txy88vA/CsTR4G9STYk2QZsB14Yb0RJa2nRlUKSJ4B7gFuSnAO+CdyTZCdQwBvAVwCq6nSSI8AZ4APg4ar6sJ/RJfXBtzlLnxC+zVnSihgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDUWjUKSrUl+muRMktNJvtbt35jkuSSvdp9vHnnOI0lmk5xNsrvPfwBJq2spK4UPgL+pqh3AnwIPJ9kBHACOV9V24Hh3m+6+vcCdwH3AY0nW9TG8pNW3aBSq6kJV/bzbfg94BdgC7AEOdQ87BDzQbe8BDlfV5ap6HZgFdq324JL6saxrCkluBz4H/AzYVFUXurveATZ121uAt0aedq7bJ2kKLDkKST4N/Bj4elX9bvS+qiqglvONk+xPciLJife5vJynSurRkqKQZD1zQfhRVf2k230xyebu/s3ApW7/eWDryNNv6/Y1qupgVc1U1cx6Nqx0fkmrbCmvPgT4AfBKVX135K6jwL5uex/w9Mj+vUk2JNkGbAdeWL2RJfXpuiU85s+AvwJ+meRkt+/vgG8DR5I8BLwJPAhQVaeTHAHOMPfKxcNV9eGqTy6pF4tGoar+HcgCd9+7wHO+BXxrjLkkTYjvaJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpEaqatIzkOQ/gf8GfjPpWZbpFpx5LUzbzEOd94+r6rOLPWgQUQBIcqKqZiY9x3I489qYtpmnbd4refogqWEUJDWGFIWDkx5gBZx5bUzbzNM2b2Mw1xQkDcOQVgqSBmDiUUhyX5KzSWaTHJj0PAtJ8kaSXyY5meREt29jkueSvNp9vnnCMz6e5FKSUyP7FpwxySPdcT+bZPeAZn40yfnuWJ9Mcv/AZt6a5KdJziQ5neRr3f5BH+slq6qJfQDrgF8DdwDXA78AdkxypmvM+gZwyxX7/gE40G0fAP5+wjN+Afg8cGqxGYEd3fHeAGzr/j2sG8jMjwJ/e5XHDmXmzcDnu+2bgF91sw36WC/1Y9IrhV3AbFW9VlW/Bw4DeyY803LsAQ5124eAByY4C1X1PPDuFbsXmnEPcLiqLlfV68Asc/8+1tQCMy9kKDNfqKqfd9vvAa8AWxj4sV6qSUdhC/DWyO1z3b4hKuBYkpeS7O/2baqqC932O8CmyYx2TQvNOPRj/9UkL3enF/PL8MHNnOR24HPAz5jeY92YdBSmyd1VtRP4EvBwki+M3llz68RBv5QzDTN2vsfcKeVO4ALwncmOc3VJPg38GPh6Vf1u9L4pOtYfMekonAe2jty+rds3OFV1vvt8CXiKueXfxSSbAbrPlyY34YIWmnGwx76qLlbVh1X1P8D3+f+l9mBmTrKeuSD8qKp+0u2eumN9NZOOwovA9iTbklwP7AWOTnimj0hyY5Kb5reBLwKnmJt1X/ewfcDTk5nwmhaa8SiwN8mGJNuA7cALE5jvI+Z/sDpfZu5Yw0BmThLgB8ArVfXdkbum7lhf1aSvdAL3M3f19tfANyY9zwIz3sHc1eNfAKfn5wT+EDgOvAocAzZOeM4nmFtuv8/ceetD15oR+EZ33M8CXxrQzP8E/BJ4mbkfqM0Dm/lu5k4NXgZOdh/3D/1YL/XDdzRKakz69EHSwBgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLjfwGKe7Iub8dtmAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1b098d0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADJRJREFUeJzt23+o3fV9x/HnazFGtBaa2YUYw0wh/8TB0hLiYFIcsmplEPuPpH9sgcqyP1zXQvdHbP+oMIRuUPefhZRKw2jNQlsxDJloKMhgq8aSahKXmvoDE2PSrkJlf6SavffH/WY7n5t7c3+dc7/fmzwfcDnf8znfc+8733iefr/nnqSqkKSLfqfvASQNi1GQ1DAKkhpGQVLDKEhqGAVJjYlFIck9SU4kOZlkz6R+jqTxyiQ+p5BkFfBz4E+BU8CLwOer6vjYf5iksZrUmcJ24GRVvV5VvwX2Azsm9LMkjdE1E/q+G4C3R+6fAm6fbedrs6au44YJjSIJ4H3e+1VVfXyu/SYVhTkl2Q3sBriO67k9d/U1inRVeK5+8NZ89pvU5cNpYOPI/Vu6tf9TVXuraltVbVvNmgmNIWmhJhWFF4HNSTYluRbYCRyc0M+SNEYTuXyoqg+T/DXwDLAKeLyqjk3iZ0kar4m9p1BVTwNPT+r7S5oMP9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNS4ZilPTvIm8D5wAfiwqrYlWQv8M3Ar8CZwf1W9t7QxJS2XcZwp/ElVba2qbd39PcChqtoMHOruS1ohJnH5sAPY123vA+6bwM+QNCFLjUIBzyV5Kcnubm1dVZ3ptt8F1i3xZ0haRkt6TwG4o6pOJ/k94Nkk/zn6YFVVkprpiV1EdgNcx/VLHEPSuCzpTKGqTne354Ange3A2STrAbrbc7M8d29VbauqbatZs5QxJI3RoqOQ5IYkN17cBj4DHAUOAru63XYBTy11SEnLZymXD+uAJ5Nc/D7fr6p/TfIicCDJA8BbwP1LH1PScll0FKrqdeAPZ1j/L+CupQwlqT9+olFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqTFnFJI8nuRckqMja2uTPJvkte72YyOPPZTkZJITSe6e1OCSJmM+ZwrfBe6ZtrYHOFRVm4FD3X2SbAF2Ard1z3ksyaqxTStp4uaMQlU9D/x62vIOYF+3vQ+4b2R9f1Wdr6o3gJPA9jHNKmkZLPY9hXVVdabbfhdY121vAN4e2e9UtyZphVjyG41VVUAt9HlJdic5nOTwB5xf6hiSxmSxUTibZD1Ad3uuWz8NbBzZ75Zu7RJVtbeqtlXVttWsWeQYksZtsVE4COzqtncBT42s70yyJskmYDPwwtJGlLScrplrhyRPAHcCNyU5BXwd+AZwIMkDwFvA/QBVdSzJAeA48CHwYFVdmNDskiZgzihU1edneeiuWfZ/BHhkKUNJ6o+faJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRWCbPvHOk7xGkeTEKy+Tum7f2PYI0L0ZhGXm2oJXAKEhqGIVl5CWEVgKjIKlhFJaZ7yto6IyCpIZR6IFnCxoyoyCpYRSW2cXfQDzzzhHPGMbAYzh+RkFSwyj0YPTzCv6fTkNjFHpiGDRURkErljGdDKPQI88Wls6Pjo+fUeiZYVgcj9XkGAVJDaMwAJ4taEiMwkB4bTx/z7xzhLtv3uoxmxCjMCCjn3bUzDw2k2cUBsYwzMyPhS8fozBgvhCmTD8GXjZMllEYoOn/0V/NYTAIy88oDNT0N9KuxjAYhH4YhYEbjcPVdDlhEPpjFFaIq+mswSD0yyisINPPGq5EBqF/18y1Q5LHgT8DzlXVH3RrDwN/Cfyy2+2rVfV099hDwAPABeBvquqZCcx9VbvcWcNKfBFdCX+GK8l8zhS+C9wzw/o/VtXW7utiELYAO4Hbuuc8lmTVuIbVpWZ6Q3IlnUUYhOGZ80yhqp5Pcus8v98OYH9VnQfeSHIS2A78+6In1LzMFoahvsiMwXDNGYXL+GKSvwAOA1+pqveADcB/jOxzqlvTMhry5cXQ5tGlFhuFbwF/B1R3+03gCwv5Bkl2A7sBruP6RY6hy5l+tjDTpcVyvShnuqQxCMO0qChU1dmL20m+DfxLd/c0sHFk11u6tZm+x15gL8BHs7YWM4dmNv0FOHp/+m8v+nj/wRgM26KikGR9VZ3p7n4OONptHwS+n+RR4GZgM/DCkqfUglzuRTfbmcKk42AIVo75/EryCeBO4KYkp4CvA3cm2crU5cObwF8BVNWxJAeA48CHwINVdWEyo2sx5vp3FTO9eBcaDAOwsqWq/zP3j2Zt3Z67+h7jqna5F74v8ivDc/WDl6pq21z7LeW3D7qCLOSFb0CubEZBC+YL/8rmv32Q1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGnNGIcnGJD9OcjzJsSRf6tbXJnk2yWvd7cdGnvNQkpNJTiS5e5J/AEnjNZ8zhQ+Br1TVFuCPgAeTbAH2AIeqajNwqLtP99hO4DbgHuCxJKsmMbyk8ZszClV1pqp+2m2/D7wKbAB2APu63fYB93XbO4D9VXW+qt4ATgLbxz24pMlY0HsKSW4FPgn8BFhXVWe6h94F1nXbG4C3R552qluTtALMOwpJPgL8EPhyVf1m9LGqKqAW8oOT7E5yOMnhDzi/kKdKmqB5RSHJaqaC8L2q+lG3fDbJ+u7x9cC5bv00sHHk6bd0a42q2ltV26pq22rWLHZ+SWM2n98+BPgO8GpVPTry0EFgV7e9C3hqZH1nkjVJNgGbgRfGN7KkSbpmHvv8MfDnwCtJjnRrXwW+ARxI8gDwFnA/QFUdS3IAOM7Uby4erKoLY59c0kTMGYWq+jcgszx81yzPeQR4ZAlzSeqJn2iU1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqRGqqrvGUjyS+C/gV/1PcsC3YQzL4eVNvNQ5/39qvr4XDsNIgoASQ5X1ba+51gIZ14eK23mlTbvdF4+SGoYBUmNIUVhb98DLIIzL4+VNvNKm7cxmPcUJA3DkM4UJA1A71FIck+SE0lOJtnT9zyzSfJmkleSHElyuFtbm+TZJK91tx/recbHk5xLcnRkbdYZkzzUHfcTSe4e0MwPJzndHesjSe4d2Mwbk/w4yfEkx5J8qVsf9LGet6rq7QtYBfwC+ARwLfAzYEufM11m1jeBm6at/QOwp9veA/x9zzN+GvgUcHSuGYEt3fFeA2zq/h5WDWTmh4G/nWHfocy8HvhUt30j8PNutkEf6/l+9X2msB04WVWvV9Vvgf3Ajp5nWogdwL5uex9wX4+zUFXPA7+etjzbjDuA/VV1vqreAE4y9fexrGaZeTZDmflMVf20234feBXYwMCP9Xz1HYUNwNsj9091a0NUwHNJXkqyu1tbV1Vnuu13gXX9jHZZs8049GP/xSQvd5cXF0/DBzdzkluBTwI/YeUe60bfUVhJ7qiqrcBngQeTfHr0wZo6Txz0r3JWwoydbzF1SbkVOAN8s99xZpbkI8APgS9X1W9GH1tBx/oSfUfhNLBx5P4t3drgVNXp7vYc8CRTp39nk6wH6G7P9TfhrGabcbDHvqrOVtWFqvof4Nv8/6n2YGZOspqpIHyvqn7ULa+4Yz2TvqPwIrA5yaYk1wI7gYM9z3SJJDckufHiNvAZ4ChTs+7qdtsFPNXPhJc124wHgZ1J1iTZBGwGXuhhvktcfGF1PsfUsYaBzJwkwHeAV6vq0ZGHVtyxnlHf73QC9zL17u0vgK/1Pc8sM36CqXePfwYcuzgn8LvAIeA14Dlgbc9zPsHU6fYHTF23PnC5GYGvdcf9BPDZAc38T8ArwMtMvaDWD2zmO5i6NHgZONJ93Tv0Yz3fLz/RKKnR9+WDpIExCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkxv8CosWS9Fw+wMEAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1b51630>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADXNJREFUeJzt3X+o3fV9x/Hna/6IaB3U2YUYw0whG9jB0hJ0MJEO12plEPuPZH9sgcmyP1zXQvdHbP+YMArdWPtnCymVZaPTSVsxDGkwoSCDthpLqonOmvoDE6NpV6F2f1h17/1xv9nOJ96bc84959zzPTfPB4TzPd9zzj1vv7nn6ff7PefmpqqQpLN+bd4DSOoXoyCpYRQkNYyCpIZRkNQwCpIaM4tCktuSPJfkRJK9s3oeSdOVWXxOIclFwI+BjwEngSeAP6mqZ6b+ZJKmalZ7CjcAJ6rqhar6FfAAsHNGzyVpii6e0dfdDLwycP0kcONKd740G+oyrpjRKJIA3uSNn1XVB4bdb1ZRGCrJHmAPwGVczo25ZV6jSBeEQ/XNl0e536wOH04BWwauX9ut+z9Vta+qdlTVjkvYMKMxJI1rVlF4AtiWZGuSS4FdwIEZPZekKZrJ4UNVvZPkr4CDwEXAfVV1fBbPJWm6ZnZOoaoeAR6Z1deXNBt+olFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqXHxJA9O8hLwJvAu8E5V7UhyFfBvwHXAS8CdVfXGZGNKWivT2FP4w6raXlU7uut7gcNVtQ043F2XtCBmcfiwE9jfLe8H7pjBc0iakUmjUMChJE8m2dOt21hVp7vl14CNEz6HpDU00TkF4KaqOpXkN4FHk/zn4I1VVUlquQd2EdkDcBmXTziGpGmZaE+hqk51l2eAh4AbgNeTbALoLs+s8Nh9VbWjqnZcwoZJxpA0RauOQpIrklx5dhn4OHAMOADs7u62G3h40iElrZ1JDh82Ag8lOft1/rWqvpPkCeDBJHcBLwN3Tj6mpLWy6ihU1QvA7y2z/r+AWyYZStL8+IlGSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNozChg68e5eCrR+c9hjQ1RmECxkDrkVFYpXODYCC0XhgFSQ2jMKbznUNwb0HrgVEYw7AX/a3XbF+jSaTZMQpj8EWvC4FRkNQwCmPwnIEuBEZhDB4+6EJgFCQ1jIKkhlGQ1DAKkhpGQVLDKIzJdyC03hmFMflZBa13RkFSwyhIagyNQpL7kpxJcmxg3VVJHk3yfHf5/oHb7klyIslzSW6d1eB9Mup5Bg89tAhG2VP4J+C2c9btBQ5X1TbgcHedJNcDu4APdY/5SpKLpjZtTx189agnILVuDI1CVT0G/Pyc1TuB/d3yfuCOgfUPVNVbVfUicAK4YUqzSg33vGZjtecUNlbV6W75NWBjt7wZeGXgfie7devesG/Qs7f7jTwdbsfZmfhEY1UVUOM+LsmeJEeSHHmbtyYdY83ces32ZQ8Vhh0+eHgxG8Zh+lYbhdeTbALoLs90608BWwbud2237j2qal9V7aiqHZewYZVj9IffnGtrMLJu++labRQOALu75d3AwwPrdyXZkGQrsA14fLIRF8OwPYHBb1y/iSfnNpydUd6SvB/4HvA7SU4muQv4IvCxJM8Df9Rdp6qOAw8CzwDfAe6uqndnNfw8DUZglEODwcMODyUm5zacnSydEpivX89VdWNumfcYWjDn7i0YivM7VN98sqp2DLvfxWsxjDRLxmC6/JjzhDy2nZ+V3gnSZIzChDwLrvXGKEhqGIUpcldW64FRmAEPI7TIjMIMuMegRWYUJDWMghaah2rTZxQkNYyCFprnb6bPKEhqGAUtNM8pTJ9RkNQwClpot16z3b2FKTMKa+jcb16/mdVH/nsKM2YItGjcU9C6YGynxyjM2Dj/oKtWz88rTI9RWAOGYbYMwnQZBS08ozpdRmGNuLcwO+4pTJdRWEMr/bo5v6nVJ0ahJwyD+sIozJEhUB8ZhTU2aggOvnp0oX59/SLMqNEYhTkYZw+h72E4N159nVOj83dJSheIUX+XpHsKkhpGQVLDn5LsqcFjc9+l0FpyT6GHlvtx676fcNT6YRR6aKU9A8OgtWAUemqUn5UwDpoFo9BD47zgDYOmzSj02Kg/LOVeg6Zp6IeXktwH/DFwpqp+t1t3L/AXwE+7u32uqh7pbrsHuAt4F/jrqjo4bAg/vDSeUQPQ13ctzs6/3HwHXz3a27kX3agfXholCjcDvwT++Zwo/LKq/vGc+14P3A/cAFwDHAJ+u6rePd9zGIXxjbtn0KcX2rmz92m29WzUKAz9nEJVPZbkuhGfdyfwQFW9BbyY5ARLgfjeiI/XiM6+kMY997DaF+AozzPqoY76bZIPL30qyZ8BR4DPVtUbwGbg+wP3Odmt04yM+8tQlrvv+V7M4+zOr/YF7yFDv6w2Cl8F/g6o7vJLwJ+P8wWS7AH2AFzG5ascQ9C+qFfzwhz2mFn8330wZgahX1YVhap6/exykq8B/95dPQVsGbjrtd265b7GPmAfLJ1TWM0cWmzGoJ9W9ZZkkk0DVz8JHOuWDwC7kmxIshXYBjw+2Yhaj3wbtb+G7ikkuR/4KHB1kpPA3wIfTbKdpcOHl4C/BKiq40keBJ4B3gHuHvbOg6Zrpbf5+sg9hX7yH1m5APUhEgZh7U3tLUmtP31469CTjP1lFLSsYT+pOS2+Hdk//uyDhjp7UnA1H2Aa/PkNX/yLwXMKGmpan2Yc9vWMxmx5TkFTM+xTk+O+mH3x95tR0Eh8IV84PKcgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUmNoFJJsSfLdJM8kOZ7k0936q5I8muT57vL9A4+5J8mJJM8luXWW/wGSpmuUPYV3gM9W1fXA7wN3J7ke2AscrqptwOHuOt1tu4APAbcBX0ly0SyGlzR9Q6NQVaer6ofd8pvAs8BmYCewv7vbfuCObnkn8EBVvVVVLwIngBumPbik2RjrnEKS64APAz8ANlbV6e6m14CN3fJm4JWBh53s1klaACNHIcn7gG8Bn6mqXwzeVlUF1DhPnGRPkiNJjrzNW+M8VNIMjRSFJJewFIRvVNW3u9WvJ9nU3b4JONOtPwVsGXj4td26RlXtq6odVbXjEjasdn5JUzbKuw8Bvg48W1VfHrjpALC7W94NPDywfleSDUm2AtuAx6c3sqRZuniE+/wB8KfA00mOdus+B3wReDDJXcDLwJ0AVXU8yYPAMyy9c3F3Vb079cklzcTQKFTVfwBZ4eZbVnjMF4AvTDCXpDnxE42SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNRIVc17BpL8FPhv4GfznmVMV+PMa2HRZu7rvL9VVR8YdqdeRAEgyZGq2jHvOcbhzGtj0WZetHnP5eGDpIZRkNToUxT2zXuAVXDmtbFoMy/avI3enFOQ1A992lOQ1ANzj0KS25I8l+REkr3znmclSV5K8nSSo0mOdOuuSvJokue7y/fPecb7kpxJcmxg3YozJrmn2+7PJbm1RzPfm+RUt62PJrm9ZzNvSfLdJM8kOZ7k0936Xm/rkVXV3P4AFwE/AT4IXAr8CLh+njOdZ9aXgKvPWfcPwN5ueS/w93Oe8WbgI8CxYTMC13fbewOwtft7uKgnM98L/M0y9+3LzJuAj3TLVwI/7mbr9bYe9c+89xRuAE5U1QtV9SvgAWDnnGcax05gf7e8H7hjjrNQVY8BPz9n9Uoz7gQeqKq3qupF4ARLfx9raoWZV9KXmU9X1Q+75TeBZ4HN9Hxbj2reUdgMvDJw/WS3ro8KOJTkySR7unUbq+p0t/wasHE+o53XSjP2fdt/KslT3eHF2d3w3s2c5Drgw8APWNxt3Zh3FBbJTVW1HfgEcHeSmwdvrKX9xF6/lbMIM3a+ytIh5XbgNPCl+Y6zvCTvA74FfKaqfjF42wJt6/eYdxROAVsGrl/breudqjrVXZ4BHmJp9+/1JJsAussz85twRSvN2NttX1WvV9W7VfU/wNf4/13t3syc5BKWgvCNqvp2t3rhtvVy5h2FJ4BtSbYmuRTYBRyY80zvkeSKJFeeXQY+Dhxjadbd3d12Aw/PZ8LzWmnGA8CuJBuSbAW2AY/PYb73OPvC6nySpW0NPZk5SYCvA89W1ZcHblq4bb2seZ/pBG5n6eztT4DPz3ueFWb8IEtnj38EHD87J/AbwGHgeeAQcNWc57yfpd3tt1k6br3rfDMCn++2+3PAJ3o0878ATwNPsfSC2tSzmW9i6dDgKeBo9+f2vm/rUf/4iUZJjXkfPkjqGaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGr8Lz/lKe1SF3y5AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97b9b365f8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADClJREFUeJzt3U+MnPV9x/H3p8YsCqESLqlljFWM5Is51IlWplJRRIUaEy4mF+QcKh+Q3AONEqk9mOYQLkhppaQ3IjkKilWluFYShA+oCKxIqJeAiRximzhs+CPsGLspkYJ6cMD59rCPm/kZL7venZnnGfp+Sat55jfP7HwZy289z7OzJlWFJF32R30PIGlYjIKkhlGQ1DAKkhpGQVLDKEhqTCwKSe5LcjrJQpL9k3odSeOVSXxOIck64BfAXwNngJeAL1bVqbG/mKSxmtSRwk5goaper6rfAYeA3RN6LUljdN2Evu9m4O2R+2eAu5ba+frM1Q3cOKFRJAG8x29+XVWfWm6/SUVhWUn2AfsAbuAT3JV7+xpF+n/h+fr+WyvZb1KnD2eBLSP3b+vW/k9VHaiq+aqaX8/chMaQdK0mFYWXgG1Jtia5HtgDHJnQa0kao4mcPlTVB0n+DngWWAc8UVUnJ/FaksZrYtcUquoZ4JlJfX9Jk+EnGiU1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGtet5clJ3gTeAy4BH1TVfJINwL8DtwNvAg9W1W/WNqakaRnHkcJfVdWOqprv7u8HjlbVNuBod1/SjJjE6cNu4GC3fRB4YAKvIWlC1hqFAp5P8nKSfd3axqo6122/A2xc42tImqI1XVMA7q6qs0n+FHguyc9HH6yqSlJXe2IXkX0AN/CJNY4haVzWdKRQVWe72wvAU8BO4HySTQDd7YUlnnugquaran49c2sZQ9IYrToKSW5MctPlbeBzwAngCLC3220v8PRah5Q0PWs5fdgIPJXk8vf5t6r6jyQvAYeTPAS8BTy49jElTcuqo1BVrwN/fpX1/wbuXctQkvrjJxolNYyCpIZRkNQwCpIaRmGKnv3V8b5HkJZlFCQ1jMKUeJSgWWEUJDWMgqSGUZDUMApT4PUEzRKjIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUpmjXrTv6HkFallGQ1DAKkhpGQVLDKEhqGIUp8SKjZoVRkNQwCpIaRkFSwyhMgdcTNEuMgqSGUZDUMApT8OyvjvsvOmtmGAVJDaMgqWEUpshTCM2CZaOQ5IkkF5KcGFnbkOS5JK91tzePPPZIkoUkp5PsmtTgkiZjJUcK3wXuu2JtP3C0qrYBR7v7JNkO7AHu7J7zeJJ1Y5tW0sQtG4WqegF494rl3cDBbvsg8MDI+qGqulhVbwALwM4xzTqz/PCSZslqrylsrKpz3fY7wMZuezPw9sh+Z7o1STNizRcaq6qAutbnJdmX5FiSY+9zca1jSBqT1UbhfJJNAN3thW79LLBlZL/burUPqaoDVTVfVfPrmVvlGJLGbbVROALs7bb3Ak+PrO9JMpdkK7ANeHFtI0qapuuW2yHJk8A9wC1JzgBfA74OHE7yEPAW8CBAVZ1Mchg4BXwAPFxVlyY0u6QJWDYKVfXFJR66d4n9HwMeW8tQkvrjJxolNYyCpIZRkNQwCj3yF6Q0REZBUsMoSGoYBUkNo9AzrytoaIzCFC31K9SGQUNiFKbkakEYXTMMGgqj0DPDoKExCpIaRmEAPFrQkBgFSQ2jMBD+464aCqMgqWEUBsSjBQ2BURiYXbfu8GKjemUUBsr/fb36YhQGyNMI9ckoDNTlMHi0oGkzCgPmEYP6YBQGzguPmjajMCMMg6bFKMyA0esLxkGTZhRmhL80pWkxCjPEMGgajMKM2XXrDk8nNFFGQVLDKMwoTyU0KUZhhl15KiGNg1H4GDAMGqfr+h5A43FlGPyItFbLI4WPmcunFB41aLWMwseUYdBqGYWPMU8htBrLRiHJE0kuJDkxsvZokrNJjndf94889kiShSSnk+ya1OCSJmMlRwrfBe67yvq/VNWO7usZgCTbgT3And1zHk+yblzDSpq8ZaNQVS8A767w++0GDlXVxap6A1gAdq5hPklTtpZrCl9K8kp3enFzt7YZeHtknzPdmqQZsdoofAu4A9gBnAO+ca3fIMm+JMeSHHufi6scQ9K4rSoKVXW+qi5V1e+Bb/OHU4SzwJaRXW/r1q72PQ5U1XxVza9nbjVjSJqAVUUhyaaRu18ALv9k4giwJ8lckq3ANuDFtY0oaZqW/ZhzkieBe4BbkpwBvgbck2QHUMCbwN8CVNXJJIeBU8AHwMNVdWkyo0uahFRV3zPwx9lQd+XevseQPtaer++/XFXzy+3nJxolNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhrLRiHJliQ/SnIqyckkX+7WNyR5Lslr3e3NI895JMlCktNJdk3yP0DSeK3kSOED4O+rajvwF8DDSbYD+4GjVbUNONrdp3tsD3AncB/weJJ1kxhe0vgtG4WqOldVP+m23wNeBTYDu4GD3W4HgQe67d3Aoaq6WFVvAAvAznEPLmkyrumaQpLbgU8DPwY2VtW57qF3gI3d9mbg7ZGnnenWJM2AFUchySeBHwBfqarfjj5WVQXUtbxwkn1JjiU59j4Xr+WpkiZoRVFIsp7FIHyvqn7YLZ9Psql7fBNwoVs/C2wZefpt3Vqjqg5U1XxVza9nbrXzSxqzlfz0IcB3gFer6psjDx0B9nbbe4GnR9b3JJlLshXYBrw4vpElTdJ1K9jnL4G/AX6W5Hi39o/A14HDSR4C3gIeBKiqk0kOA6dY/MnFw1V1aeyTS5qIZaNQVf8JZImH713iOY8Bj61hLkk98RONkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUSFX1PQNJ/gv4H+DXfc9yjW7Bmadh1mYe6rx/VlWfWm6nQUQBIMmxqprve45r4czTMWszz9q8V/L0QVLDKEhqDCkKB/oeYBWceTpmbeZZm7cxmGsKkoZhSEcKkgag9ygkuS/J6SQLSfb3Pc9SkryZ5GdJjic51q1tSPJckte625t7nvGJJBeSnBhZW3LGJI907/vpJLsGNPOjSc527/XxJPcPbOYtSX6U5FSSk0m+3K0P+r1esarq7QtYB/wSuAO4HvgpsL3PmT5i1jeBW65Y+2dgf7e9H/innmf8LPAZ4MRyMwLbu/d7Dtja/TmsG8jMjwL/cJV9hzLzJuAz3fZNwC+62Qb9Xq/0q+8jhZ3AQlW9XlW/Aw4Bu3ue6VrsBg522weBB3qchap6AXj3iuWlZtwNHKqqi1X1BrDA4p/HVC0x81KGMvO5qvpJt/0e8CqwmYG/1yvVdxQ2A2+P3D/TrQ1RAc8neTnJvm5tY1Wd67bfATb2M9pHWmrGob/3X0rySnd6cfkwfHAzJ7kd+DTwY2b3vW70HYVZcndV7QA+Dzyc5LOjD9biceKgf5QzCzN2vsXiKeUO4BzwjX7HuboknwR+AHylqn47+tgMvdcf0ncUzgJbRu7f1q0NTlWd7W4vAE+xePh3PskmgO72Qn8TLmmpGQf73lfV+aq6VFW/B77NHw61BzNzkvUsBuF7VfXDbnnm3uur6TsKLwHbkmxNcj2wBzjS80wfkuTGJDdd3gY+B5xgcda93W57gaf7mfAjLTXjEWBPkrkkW4FtwIs9zPchl/9idb7A4nsNA5k5SYDvAK9W1TdHHpq59/qq+r7SCdzP4tXbXwJf7XueJWa8g8Wrxz8FTl6eE/gT4CjwGvA8sKHnOZ9k8XD7fRbPWx/6qBmBr3bv+2ng8wOa+V+BnwGvsPgXatPAZr6bxVODV4Dj3df9Q3+vV/rlJxolNfo+fZA0MEZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNT4X4zlQOpmLn4GAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1aee470>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADTlJREFUeJzt3V+o3/V9x/HnazFGai2Y2YUYw4yQGx0sLYc4mBSHrLEyiL2R7GLkQppduK6F7SK2F/Wm0A3a3VlIqTSMzizYimHIxISCDEY1FquJLjX1DyaLSbsWKrtINXvv4nzP9vvEc3L+/n6/7zc+H3A439/39/ud8/an5+nn+/19k5OqQpLm/M60B5DUL0ZBUsMoSGoYBUkNoyCpYRQkNcYWhST3JjmV5HSS/eP6PpLWVsZxnUKSdcDPgD8FzgAvAH9eVa+u+TeTtKbGtVLYCZyuqjeq6rfAIWD3mL6XpDV0zZi+7hbgnZHbZ4A7F3rwtdlQ13H9mEaRBPAev/5lVX1ysceNKwqLSrIP2AdwHR/jztwzrVGkj4Sj9cTbS3ncuA4fzgJbR27f0u37P1V1oKpmqmpmPRvGNIak5RpXFF4AtifZluRaYA9wZEzfS9IaGsvhQ1V9kOSvgGeAdcBjVXVyHN9L0toa2zmFqnoaeHpcX1/SeHhFo6SGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFS45rVPDnJW8B7wCXgg6qaSbIR+GfgVuAt4IGq+vXqxpQ0KWuxUviTqtpRVTPd7f3AsaraDhzrbksaiHEcPuwGDnbbB4H7x/A9JI3JaqNQwNEkLybZ1+3bVFXnuu13gU2r/B6SJmhV5xSAu6rqbJLfA55N8h+jd1ZVJan5nthFZB/AdXxslWNIWiurWilU1dnu8wXgSWAncD7JZoDu84UFnnugqmaqamY9G1YzhqQ1tOIoJLk+yQ1z28BngRPAEWBv97C9wFOrHVLS5Kzm8GET8GSSua/zT1X1r0leAA4neRB4G3hg9WNKmpQVR6Gq3gD+cJ79/wXcs5qhJE2PVzRKahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGIUJeuY/X5r2CNKijMKYzYXAIGgojMIEGAQNiVGQ1DAKkhpGQVLDKEhqGIUJ86Sj+s4oTNium3dMewTpioyCpIZRmDAPH9R3RmHCPHxQ3xkFSQ2jMEYeKmiIjMKYGAQNlVEYk1037/D8gQbJKEhqrPZX0WsBHj5oqFwpjImHDhoqoyCpYRQkNYyCpIZRkNQwCmPkyUYNkVGQ1DAKE+b1C+o7oyCpsWgUkjyW5EKSEyP7NiZ5Nsnr3ecbR+57OMnpJKeS7BrX4JLGYykrhe8B9162bz9wrKq2A8e62yS5HdgD3NE959Ek69Zs2gHyZKOGZtEoVNVzwK8u270bONhtHwTuH9l/qKouVtWbwGlg5xrNKmkCVnpOYVNVneu23wU2ddtbgHdGHnem2ydpIFZ9orGqCqjlPi/JviTHkxx/n4urHUPSGllpFM4n2QzQfb7Q7T8LbB153C3dvg+pqgNVNVNVM+vZsMIxJK21lUbhCLC3294LPDWyf0+SDUm2AduB51c34vBdfrLRaxXUZ4v+JStJHgfuBm5Kcgb4GvAN4HCSB4G3gQcAqupkksPAq8AHwENVdWlMsw+GEdCQZPaUwHR9Ihvrztwz7THGar4w+HalJuloPfFiVc0s9jivaJTUMAoT4OGDhsQoSGoYhQkYPXcwuu0KQn1kFCbIE4saAqMwRqMrgbkguDpQ3xmFMXJloCEyChPm1Y3qO6MwBfOFwTioL4zClMyFwUMM9Y1RmCIPJdRHRqEHdt28wxWDesMo9MTcKsHVgqbNKPSEqwX1hVHoEVcJ6gOjIKlhFHrIFYOmySj0jH9GQtNmFHrE6xbUB0ahh3wXQtNkFHpodIXgamH5fM1WxygMgP+Ra5KMwkAYhqXz8Gt1jEIPLXR1o2HQJBiFHutTGAzSR4dR6Lm+hMEl+UeHURiA+Q4n/D+3xsUoDMiQwuBfMTdci/7WafXLUC6D9nBjuFwpDFzf46DhMQoDtVa/fm5ume/f/KQ5Hj5cJeZ+mFezbL88DLtu3rHsrzvfb8XSsLhSGLCF3q5czkm+pfzgLvaY+VYZBmG4UlXTnoFPZGPdmXumPcZgLSUAV7re4fKTlyv5gV5sBiMxfUfriReramaxx3n4cBUYXeYvZL77L3/e5ecp1uoH2SAMiyuFq8hKVwzj+n7GoF/WbKWQ5DHgz4ALVfUH3b5HgC8Av+ge9pWqerq772HgQeAS8NdV9cyK/gm0bPNd3DSuH0zfpbh6LeVE4/eAe+fZ/w9VtaP7mAvC7cAe4I7uOY8mWbdWw2p5xrEquPxww9+JefVZdKVQVc8luXWJX283cKiqLgJvJjkN7AT+fcUTqhcu/+EfjYBhuLqs5i3JLyZ5OcljSW7s9m0B3hl5zJlun6SBWGkUvg3cBuwAzgHfXO4XSLIvyfEkx9/n4grH0NAs91yEf7Bq8lb0lmRVnZ/bTvId4F+6m2eBrSMPvaXbN9/XOAAcgNl3H1Yyh4ZnuYcYHpJM3opWCkk2j9z8PHCi2z4C7EmyIck2YDvw/OpG1NXI//v311LeknwcuBu4KckZ4GvA3Ul2AAW8BfwlQFWdTHIYeBX4AHioqi6NZ3QN2dyFU64E+seLl6SPCC9zVi95FWT/GQVN1OgfvjIA/eQfndZUGIT+MgqSGkZBUsMoSGoYBUkNoyCpYRQ0cf518v1mFDRx/v0L/WYUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBU2F1yj0l1HQVHiNQn8ZBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqbFoFJJsTfKjJK8mOZnkS93+jUmeTfJ69/nGkec8nOR0klNJdo3zH0DS2lrKSuED4G+q6nbgj4CHktwO7AeOVdV24Fh3m+6+PcAdwL3Ao0nWjWN4SWtv0ShU1bmq+km3/R7wGrAF2A0c7B52ELi/294NHKqqi1X1JnAa2LnWg0saj2WdU0hyK/Ap4MfApqo61931LrCp294CvDPytDPdPkkDsOQoJPk48APgy1X1m9H7qqqAWs43TrIvyfEkx9/n4nKeKmmMlhSFJOuZDcL3q+qH3e7zSTZ3928GLnT7zwJbR55+S7evUVUHqmqmqmbWs2Gl80taY0t59yHAd4HXqupbI3cdAfZ223uBp0b270myIck2YDvw/NqNLGmcrlnCY/4Y+AvglSRzv+vrK8A3gMNJHgTeBh4AqKqTSQ4DrzL7zsVDVXVpzSeXNBaLRqGq/g3IAnffs8Bzvg58fRVzSZoSr2iU1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqRGqmraM5DkF8B/A7+c9izLdBPOPAlDm7mv8/5+VX1ysQf1IgoASY5X1cy051gOZ56Moc08tHkv5+GDpIZRkNToUxQOTHuAFXDmyRjazEObt9GbcwqS+qFPKwVJPTD1KCS5N8mpJKeT7J/2PAtJ8laSV5K8lOR4t29jkmeTvN59vnHKMz6W5EKSEyP7FpwxycPd634qya4ezfxIkrPda/1Skvt6NvPWJD9K8mqSk0m+1O3v9Wu9ZFU1tQ9gHfBz4DbgWuCnwO3TnOkKs74F3HTZvr8H9nfb+4G/m/KMnwE+DZxYbEbg9u713gBs6/49rOvJzI8AfzvPY/sy82bg0932DcDPutl6/Vov9WPaK4WdwOmqeqOqfgscAnZPeabl2A0c7LYPAvdPcRaq6jngV5ftXmjG3cChqrpYVW8Cp5n99zFRC8y8kL7MfK6qftJtvwe8Bmyh56/1Uk07CluAd0Zun+n29VEBR5O8mGRft29TVZ3rtt8FNk1ntCtaaMa+v/ZfTPJyd3gxtwzv3cxJbgU+BfyY4b7WjWlHYUjuqqodwOeAh5J8ZvTOml0n9vqtnCHM2Pk2s4eUO4BzwDenO878knwc+AHw5ar6zeh9A3qtP2TaUTgLbB25fUu3r3eq6mz3+QLwJLPLv/NJNgN0ny9Mb8IFLTRjb1/7qjpfVZeq6n+A7/D/S+3ezJxkPbNB+H5V/bDbPbjXej7TjsILwPYk25JcC+wBjkx5pg9Jcn2SG+a2gc8CJ5iddW/3sL3AU9OZ8IoWmvEIsCfJhiTbgO3A81OY70PmfrA6n2f2tYaezJwkwHeB16rqWyN3De61nte0z3QC9zF79vbnwFenPc8CM97G7NnjnwIn5+YEfhc4BrwOHAU2TnnOx5ldbr/P7HHrg1eaEfhq97qfAj7Xo5n/EXgFeJnZH6jNPZv5LmYPDV4GXuo+7uv7a73UD69olNSY9uGDpJ4xCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkxv8CPXPrL2wncRIAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97ba1d6e80>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADFNJREFUeJzt3U+onfWdx/H3Z2KM1Dpgxk6IMYwRsokDk5ZLHBgpDjKNlYHYjaSLIQtpZuF0WphZxHZRN0JnoJ2dhZRKw9AxI23FLGREQ0FmU43FahInNfUPJhOTdixUZpFq+p3FfTI9v5jrvbnnPvd5jn2/4HKe8zvPuefrkbx5nueckFQVknTRHww9gKRxMQqSGkZBUsMoSGoYBUkNoyCp0VsUktyV5ESSk0n29fU6klZW+vieQpI1wM+AvwJOAc8Dn6+q4yv+YpJWVF9HCjuAk1X1WlX9BjgI7OrptSStoKt6+r2bgLcm7p8Cblto56uzrq7h2p5GkQTwLr/6ZVV9YrH9+orCopLsBfYCXMPHuC13DjWK9Hvhmfr+m0vZr6/Th9PA5on7N3Vr/6+q9lfVXFXNrWVdT2NIulJ9ReF5YGuSLUmuBnYDh3p6LUkrqJfTh6p6P8nfAU8Ba4BHqupYH68laWX1dk2hqp4Enuzr90vqh99olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqXDXNk5O8AbwLXADer6q5JOuBfwduBt4A7q2qX003pqTVshJHCn9ZVduraq67vw84XFVbgcPdfUkzoo/Th13AgW77AHBPD68hqSfTRqGAZ5K8kGRvt7ahqs50228DG6Z8DUmraKprCsDtVXU6yR8DTyf5r8kHq6qS1OWe2EVkL8A1fGzKMSStlKmOFKrqdHd7Dngc2AGcTbIRoLs9t8Bz91fVXFXNrWXdNGNIWkHLjkKSa5Ncd3Eb+AxwFDgE7Ol22wM8Me2QklbPNKcPG4DHk1z8Pf9WVf+R5HngsST3AW8C904/pqTVsuwoVNVrwJ9dZv1/gDunGUrScPxGo6SGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRR69tR/vzj0CNIVMQo9MgiaRUZBUsMo9OTiUcLOG7cPPIl0ZYyCpIZRkNQwCj3xtEGzyij0zE8gNGuMgqSGUZDUMAo989qCZo1RkNQwCj3xAqNmlVGQ1DAKPfJ6gmaRUZDUMAqSGkahB15k1CwzCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlHoiV9x1qwyCj3xC0yaVUZBUsMorDCPEDTrFo1CkkeSnEtydGJtfZKnk7za3V4/8dgDSU4mOZFkZ1+Dj5FB0EfBUo4UvgvcdcnaPuBwVW0FDnf3SbIN2A3c2j3n4SRrVmxaSb1bNApV9SzwziXLu4AD3fYB4J6J9YNVdb6qXgdOAjtWaFZJq2C51xQ2VNWZbvttYEO3vQl4a2K/U93a7wU/htRHwdQXGquqgLrS5yXZm+RIkiPvcX7aMSStkOVG4WySjQDd7blu/TSweWK/m7q1D6iq/VU1V1Vza1m3zDHGx6MFzbrlRuEQsKfb3gM8MbG+O8m6JFuArcBz0404u/w0QrPoqsV2SPIocAdwQ5JTwNeArwOPJbkPeBO4F6CqjiV5DDgOvA/cX1UXeppdUg8WjUJVfX6Bh+5cYP+HgIemGUrScPxGo6SGURiI1xs0VkZBUsMoDMCjBI2ZUeiB31XQLDMKPfOoQLPGKPRk543bFzxi8EhCY2YUemYANGuMwoA8tdAYGQVJDaMwMI8WNDZGQVLDKIyARwsaE6MwED+V0FgZBUkNozCgyaMFTyE0FkZBUsMoDMyjBY2NURiByb8nYRg0NKMwIn4ioTEwCpIaRmFkdt643VMIDcooSGoYhZHyaEFDMQoj5CcRGpJRGCnDoKEYhREzDBrCov+WpIa1UBj8ToP64pHCjDACWi1GYYb49yS0GozCjLn070kYB600ozCjPGpQX4zCDDMM6oNRmHGXhsE4aFpG4SPg0n+30jhoGkbhI+TSjy2Ng5Zj0S8vJXkE+GvgXFX9abf2IPAF4Bfdbl+pqie7xx4A7gMuAH9fVU/1MLcW4PcZNK2lHCl8F7jrMuv/UlXbu5+LQdgG7AZu7Z7zcJI1KzWspP4tGoWqehZ4Z4m/bxdwsKrOV9XrwElgxxTzSVpl01xT+GKSl5I8kuT6bm0T8NbEPqe6NUkzYrlR+BZwC7AdOAN840p/QZK9SY4kOfIe55c5hqSVtqwoVNXZqrpQVb8Fvs3vThFOA5sndr2pW7vc79hfVXNVNbeWdcsZQ1IPlhWFJBsn7n4OONptHwJ2J1mXZAuwFXhuuhElraalfCT5KHAHcEOSU8DXgDuSbAcKeAP4W4CqOpbkMeA48D5wf1Vd6Gd0SX1IVQ09A3+Y9XVb7hx6DOkj7Zn6/gtVNbfYfn6jUVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpsWgUkmxO8qMkx5McS/Klbn19kqeTvNrdXj/xnAeSnExyIsnOPv8DJK2spRwpvA/8Q1VtA/4cuD/JNmAfcLiqtgKHu/t0j+0GbgXuAh5OsqaP4SWtvEWjUFVnquon3fa7wCvAJmAXcKDb7QBwT7e9CzhYVeer6nXgJLBjpQeX1I8ruqaQ5Gbgk8CPgQ1VdaZ76G1gQ7e9CXhr4mmnujVJM2DJUUjyceAHwJer6teTj1VVAXUlL5xkb5IjSY68x/kreaqkHi0pCknWMh+E71XVD7vls0k2do9vBM5166eBzRNPv6lba1TV/qqaq6q5taxb7vySVthSPn0I8B3glar65sRDh4A93fYe4ImJ9d1J1iXZAmwFnlu5kSX16aol7PMXwN8ALyd5sVv7CvB14LEk9wFvAvcCVNWxJI8Bx5n/5OL+qrqw4pNL6sWiUaiq/wSywMN3LvCch4CHpphL0kD8RqOkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDVSVUPPQJJfAP8L/HLoWa7QDTjzapi1mcc6759U1ScW22kUUQBIcqSq5oae40o48+qYtZlnbd5LefogqWEUJDXGFIX9Qw+wDM68OmZt5lmbtzGaawqSxmFMRwqSRmDwKCS5K8mJJCeT7Bt6noUkeSPJy0leTHKkW1uf5Okkr3a31w884yNJziU5OrG24IxJHuje9xNJdo5o5geTnO7e6xeT3D2ymTcn+VGS40mOJflStz7q93rJqmqwH2AN8HPgFuBq4KfAtiFn+pBZ3wBuuGTtn4F93fY+4J8GnvHTwKeAo4vNCGzr3u91wJbu/8Oakcz8IPCPl9l3LDNvBD7VbV8H/KybbdTv9VJ/hj5S2AGcrKrXquo3wEFg18AzXYldwIFu+wBwz4CzUFXPAu9csrzQjLuAg1V1vqpeB04y//9jVS0w80LGMvOZqvpJt/0u8AqwiZG/10s1dBQ2AW9N3D/VrY1RAc8keSHJ3m5tQ1Wd6bbfBjYMM9qHWmjGsb/3X0zyUnd6cfEwfHQzJ7kZ+CTwY2b3vW4MHYVZcntVbQc+C9yf5NOTD9b8ceKoP8qZhRk732L+lHI7cAb4xrDjXF6SjwM/AL5cVb+efGyG3usPGDoKp4HNE/dv6tZGp6pOd7fngMeZP/w7m2QjQHd7brgJF7TQjKN976vqbFVdqKrfAt/md4fao5k5yVrmg/C9qvphtzxz7/XlDB2F54GtSbYkuRrYDRwaeKYPSHJtkusubgOfAY4yP+uebrc9wBPDTPihFprxELA7ybokW4CtwHMDzPcBF/9gdT7H/HsNI5k5SYDvAK9U1TcnHpq59/qyhr7SCdzN/NXbnwNfHXqeBWa8hfmrxz8Fjl2cE/gj4DDwKvAMsH7gOR9l/nD7PebPW+/7sBmBr3bv+wngsyOa+V+Bl4GXmP8DtXFkM9/O/KnBS8CL3c/dY3+vl/rjNxolNYY+fZA0MkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNT4P4HDWoZYTor9AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97ba656c88>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADR9JREFUeJzt3U+InPd9x/H3p7K8xo4LVp0KWRa1AmpBPlQJi1yoCSluIscXORejHBpBDerBDQmkB7k51FAMaWnSS0lAISZqSa2aJMY6hBhLBEwhjS0HxZbkKlb8B0uWpaYxxPSg2Mq3h302md96Vzv7Z3aekd8vWGbmmZmdr0bMm9/zzLCTqkKSZv3OuAeQ1C9GQVLDKEhqGAVJDaMgqWEUJDVGFoUkdyc5neRMkv2jehxJqyuj+JxCknXAT4GPA2eBZ4FPV9WpVX8wSatqVCuFncCZqnq5qn4FHAJ2j+ixJK2ia0b0ezcDrw9cPgvcsdCNr81UXccNIxpFEsDbvPXzqvrgYrcbVRQWlWQfsA/gOq7njtw1rlGk94Uj9e3XhrndqHYfzgFbBi7f2m37jao6UFXTVTW9nqkRjSFpqUYVhWeBbUm2JrkW2AMcHtFjSVpFI9l9qKp3k/w18CSwDnikqk6O4rEkra6RHVOoqu8B3xvV75c0Gn6iUVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpcc1K7pzkVeBt4DLwblVNJ9kA/AdwG/AqcF9VvbWyMSWtldVYKfxZVe2oqunu8n7gaFVtA452lyVNiFHsPuwGDnbnDwL3juAxJI3ISqNQwJEkzyXZ123bWFXnu/NvAhtX+BiS1tCKjikAd1bVuSS/DzyV5L8Hr6yqSlLz3bGLyD6A67h+hWNIWi0rWilU1bnu9CLwOLATuJBkE0B3enGB+x6oqumqml7P1ErGkLSKlh2FJDckuXH2PPAJ4ARwGNjb3Wwv8MRKh5S0dlay+7AReDzJ7O/596r6fpJngceS3A+8Bty38jElrZVlR6GqXgb+eJ7t/wvctZKhJI2Pn2iU1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYhRF48o3jPPnG8XGPIS2LURghw6BJZBRW2dwQGAZNGqOwigyArgZGQVLDKKwBVxCaJEZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jMIa2HXLjnGPIA3NKEhqGAVJDaMgqWEURszjCZo0i0YhySNJLiY5MbBtQ5KnkrzUnd40cN2DSc4kOZ1k16gG75uF/uSaf4pNk2aYlcI3gbvnbNsPHK2qbcDR7jJJtgN7gNu7+3w1ybpVm1bSyC0ahap6GvjFnM27gYPd+YPAvQPbD1XVpap6BTgD7FylWXvtSrsJrhY0SZZ7TGFjVZ3vzr8JbOzObwZeH7jd2W6bpAmx4gONVVVALfV+SfYlOZbk2DtcWukYklbJcqNwIckmgO70Yrf9HLBl4Ha3dtveo6oOVNV0VU2vZ2qZY0wedyXUd8uNwmFgb3d+L/DEwPY9SaaSbAW2Ac+sbMSri29Rqu+GeUvyUeCHwB8lOZvkfuBLwMeTvAT8eXeZqjoJPAacAr4PPFBVl0c1fN94sFFXg2sWu0FVfXqBq+5a4PYPAw+vZKir1ZNvHHeloN7zE42SGkZhlbkS0KRbdPdBS7frlh2/OYZgJDRpXCmMyK5bdswbBA84qu+MgqSGUVhj7k6o74yCpIZRkNQwCpIaRkFSwyhIahgFSQ2jsEJ+GElXG6OwQn7uQFcbo9ATT75x3FWHesEo9IQrDvWFUegZVwsaN6MgqeHfUxgzVwbqG1cKPWQoNE5GoacMg8bFKPSYb1NqHIzCmPlWpPrGKPTAYmFwtaC1ZBR6whWD+sIoTIhJWS1MypxamFHokYX+LPysSXjBueKZfH54qYdmX1jzRWDutnG8CAe/E3O+GQ3DZEtVjXsGfjcb6o7M+32173vDrA7W4kU47Cpl7rdj+aW6/XGkvv1cVU0vdjt3H3pumBfUWu1WLDbLfBEYjIQmg1GYAH0Iw+wMc2eZexxkvttdaVdD/WMUJsTsi2+xA5Fr8cIbnGE5j2kc+s0oTKBhPuy0liuHYVcyg7sShqG/PNA4oZbyolrLA32Dc3mgsV+GPdDoW5LvAwsFZBQv1rnHDwzC5HGlMOHW+hjCUs19e3LwvMFYW6v2lmSSR5JcTHJiYNtDSc4lOd793DNw3YNJziQ5nWTX8v8JGsaw+/TjMrhyGJy1zzO/3w2z+/BN4F+Af52z/Z+r6p8GNyTZDuwBbgduAY4k+cOqurwKs+oK5r4jIC3XolGoqqeT3Dbk79sNHKqqS8ArSc4AO4EfLntCLVnfPhfgqmCyrORA42eTfAY4Bnyhqt4CNgP/NXCbs902jcF8cXB/XotZbhS+Bvw9UN3pl4G/XMovSLIP2AdwHdcvcwwNY75PIUoLWdaHl6rqQlVdrqpfA19nZhcB4BywZeCmt3bb5vsdB6pquqqm1zO1nDEkjcCyopBk08DFTwGz70wcBvYkmUqyFdgGPLOyESWtpUV3H5I8CnwMuDnJWeDvgI8l2cHM7sOrwF8BVNXJJI8Bp4B3gQd850GaLH54SXqf8O8pSFoWoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlHQWPTlT8XpvYyCxqJvf0dSv+WXwWhNzY2Afxquf1wpaGz8mvp+Mgoai7lfCmMc+sPdB62phXYX3I3oD1cKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSY9EoJNmS5AdJTiU5meRz3fYNSZ5K8lJ3etPAfR5McibJ6SS7RvkPkLS6hlkpvAt8oaq2A38CPJBkO7AfOFpV24Cj3WW66/YAtwN3A19Nsm4Uw0tafYtGoarOV9WPu/NvAy8Cm4HdwMHuZgeBe7vzu4FDVXWpql4BzgA7V3twSaOxpGMKSW4DPgz8CNhYVee7q94ENnbnNwOvD9ztbLdN0gQYOgpJPgB8B/h8Vf1y8LqqKqCW8sBJ9iU5luTYO1xayl0ljdBQUUiynpkgfKuqvtttvpBkU3f9JuBit/0csGXg7rd22xpVdaCqpqtqej1Ty51f0iob5t2HAN8AXqyqrwxcdRjY253fCzwxsH1PkqkkW4FtwDOrN7KkURrmG6L+FPgL4IUks9/t9bfAl4DHktwPvAbcB1BVJ5M8Bpxi5p2LB6rq8qpPLmkkFo1CVf0nkAWuvmuB+zwMPLyCuSSNiZ9olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkRqpq3DOQ5H+A/wN+Pu5ZluhmnHktTNrMfZ33D6rqg4vdqBdRAEhyrKqmxz3HUjjz2pi0mSdt3rncfZDUMAqSGn2KwoFxD7AMzrw2Jm3mSZu30ZtjCpL6oU8rBUk9MPYoJLk7yekkZ5LsH/c8C0nyapIXkhxPcqzbtiHJU0le6k5vGvOMjyS5mOTEwLYFZ0zyYPe8n06yq0czP5TkXPdcH09yT89m3pLkB0lOJTmZ5HPd9l4/10OrqrH9AOuAnwEfAq4FfgJsH+dMV5j1VeDmOdv+Edjfnd8P/MOYZ/wo8BHgxGIzAtu753sK2Nr9P6zrycwPAX8zz237MvMm4CPd+RuBn3az9fq5HvZn3CuFncCZqnq5qn4FHAJ2j3mmpdgNHOzOHwTuHeMsVNXTwC/mbF5oxt3Aoaq6VFWvAGeY+f9YUwvMvJC+zHy+qn7cnX8beBHYTM+f62GNOwqbgdcHLp/ttvVRAUeSPJdkX7dtY1Wd786/CWwcz2hXtNCMfX/uP5vk+W73YnYZ3ruZk9wGfBj4EZP7XDfGHYVJcmdV7QA+CTyQ5KODV9bMOrHXb+VMwoydrzGzS7kDOA98ebzjzC/JB4DvAJ+vql8OXjdBz/V7jDsK54AtA5dv7bb1TlWd604vAo8zs/y7kGQTQHd6cXwTLmihGXv73FfVhaq6XFW/Br7Ob5favZk5yXpmgvCtqvput3ninuv5jDsKzwLbkmxNci2wBzg85pneI8kNSW6cPQ98AjjBzKx7u5vtBZ4Yz4RXtNCMh4E9SaaSbAW2Ac+MYb73mH1hdT7FzHMNPZk5SYBvAC9W1VcGrpq453pe4z7SCdzDzNHbnwFfHPc8C8z4IWaOHv8EODk7J/B7wFHgJeAIsGHMcz7KzHL7HWb2W++/0ozAF7vn/TTwyR7N/G/AC8DzzLygNvVs5juZ2TV4Hjje/dzT9+d62B8/0SipMe7dB0k9YxQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSY3/B/Xz3Pae2i1/AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c18124e0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADBxJREFUeJzt3UGMlPd9h/HnW8BrxXElE6cIA6qxxAUfSqIVrlQrcoUaiC84F4scKg6W6IFGidQccHOIL5bSSklvjkQUK6hKTVESyxysWjaKZPUSG0fEBhzijY0FBENTR4rVAzHk18O+28wfs95ld96dGfp8pNW+8593dn5+LR6977uDnapCkub8yagHkDRejIKkhlGQ1DAKkhpGQVLDKEhq9BaFJLuSnEkyk+RAX+8jabjSx+cUkqwCfgn8DXAeeBX4UlWdHvqbSRqqvs4UtgMzVfV2Vf0eOAzs7um9JA3R6p5+7gbg3MDj88AD8+18W6bqdu7oaRRJAB/w299U1acX2q+vKCwoyT5gH8DtfIIHsmNUo0j/L7xUP3x3Mfv1dflwAdg08Hhjt/Z/qupgVU1X1fQapnoaQ9LN6isKrwJbkmxOchuwBzja03tJGqJeLh+q6mqSvwdeAFYBT1fVqT7eS9Jw9XZPoaqeB57v6+dL6oefaJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaqxezouTnAU+AK4BV6tqOsla4N+Be4GzwKNV9dvljSlppQzjTOGvq2pbVU13jw8Ax6pqC3CseyxpQvRx+bAbONRtHwIe6eE9JPVkuVEo4KUkryXZ162tq6qL3fZ7wLplvoekFbSsewrAg1V1IcmfAS8m+cXgk1VVSepGL+wisg/gdj6xzDEkDcuyzhSq6kL3/TLwLLAduJRkPUD3/fI8rz1YVdNVNb2GqeWMIWmIlhyFJHckuXNuG/g8cBI4CuztdtsLPLfcISWtnOVcPqwDnk0y93P+rar+I8mrwJEkjwHvAo8uf0xJK2XJUaiqt4G/uMH6fwM7ljOUpNHxE42SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCj154dcnRj2CtCRGQVLDKEhqGAVJjQWjkOTpJJeTnBxYW5vkxSRvdd/vGnju8SQzSc4k2dnX4OPM+wmaZIs5U/g+sOu6tQPAsaraAhzrHpNkK7AHuL97zVNJVg1tWkm9WzAKVfUy8P51y7uBQ932IeCRgfXDVXWlqt4BZoDtQ5pV0gpY6j2FdVV1sdt+D1jXbW8Azg3sd75bkzQhln2jsaoKqJt9XZJ9SY4nOf4hV5Y7xljy3oIm0VKjcCnJeoDu++Vu/QKwaWC/jd3aR1TVwaqarqrpNUwtcQxJw7bUKBwF9nbbe4HnBtb3JJlKshnYAryyvBElraTVC+2Q5BngIeDuJOeBbwDfBI4keQx4F3gUoKpOJTkCnAauAvur6lpPs0vqwYJRqKovzfPUjnn2fxJ4cjlDTbqd92zzfoImlp9o7Jlx0KQxCj3Zec+2UY8gLYlRkNQwCpIaRkFSwyj0aO6+gjcbNUmMgqSGUZDUMAo981eTmjRGYYV4X0GTwihIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGIUV4sedNSmMQs/8eLMmjVGQ1DAKkhpGoUdzlw7eT9AkMQqSGkZBUsMoSGoYhZ54P0GTyihIahiFHviBJU0yo9AjLx00iYyCpIZRGDJvMGrSGQVJDaPQA88SNMmMwhD5WwfdChaMQpKnk1xOcnJg7YkkF5Kc6L4eHnju8SQzSc4k2dnX4ONo5z3bPEvQxFvMmcL3gV03WP+XqtrWfT0PkGQrsAe4v3vNU0lWDWtYSf1bMApV9TLw/iJ/3m7gcFVdqap3gBlg+zLmmxheOuhWsZx7Cl9O8np3eXFXt7YBODewz/lu7ZZmEHQrWWoUvgPcB2wDLgLfutkfkGRfkuNJjn/IlSWOMR68l6BbyZKiUFWXqupaVf0B+C5/vES4AGwa2HVjt3ajn3GwqqaranoNU0sZQ1IPlhSFJOsHHn4RmPvNxFFgT5KpJJuBLcAryxtR0kpavdAOSZ4BHgLuTnIe+AbwUJJtQAFngb8DqKpTSY4Ap4GrwP6qutbP6JL6kKoa9Qz8adbWA9kx6jGkW9pL9cPXqmp6of38RKOkhlGQ1DAKkhpGQVLDKIwZPx2pUTMKY2bnPdsMg0bKKIwpw6BRMQpjzDBoFIzCGBr8y1Uv/PqEcdCKMgpj6vq/dWkctFKMwhib+yvZ1585SH0yChPC/16DVopRmCBzZw2eLahPRmECedagPhkFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaC0YhyaYkP0lyOsmpJF/p1tcmeTHJW933uwZe83iSmSRnkuzs8x9A0nAt5kzhKvAPVbUV+Etgf5KtwAHgWFVtAY51j+me2wPcD+wCnkqyqo/hJQ3fglGoqotV9bNu+wPgTWADsBs41O12CHik294NHK6qK1X1DjADbB/24JL6cVP3FJLcC3wG+Cmwrqoudk+9B6zrtjcA5wZedr5bkzQBFh2FJJ8EfgR8tap+N/hcVRVQN/PGSfYlOZ7k+IdcuZmXSurRoqKQZA2zQfhBVf24W76UZH33/Hrgcrd+Adg08PKN3Vqjqg5W1XRVTa9haqnzSxqyxfz2IcD3gDer6tsDTx0F9nbbe4HnBtb3JJlKshnYArwyvJEl9Wn1Ivb5K+BvgTeSzP0/0P8R+CZwJMljwLvAowBVdSrJEeA0s7+52F9V14Y+uaReLBiFqvpPIPM8vWOe1zwJPLmMuSSNiJ9olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkRqpq1DOQ5L+A/wF+M+pZbtLdOPNKmLSZx3XeP6+qTy+001hEASDJ8aqaHvUcN8OZV8akzTxp817PywdJDaMgqTFOUTg46gGWwJlXxqTNPGnzNsbmnoKk8TBOZwqSxsDIo5BkV5IzSWaSHBj1PPNJcjbJG0lOJDnera1N8mKSt7rvd414xqeTXE5ycmBt3hmTPN4d9zNJdo7RzE8kudAd6xNJHh6zmTcl+UmS00lOJflKtz7Wx3rRqmpkX8Aq4FfAfcBtwM+BraOc6WNmPQvcfd3aPwMHuu0DwD+NeMbPAZ8FTi40I7C1O95TwObu38OqMZn5CeBrN9h3XGZeD3y2274T+GU321gf68V+jfpMYTswU1VvV9XvgcPA7hHPdDN2A4e67UPAIyOchap6GXj/uuX5ZtwNHK6qK1X1DjDD7L+PFTXPzPMZl5kvVtXPuu0PgDeBDYz5sV6sUUdhA3Bu4PH5bm0cFfBSkteS7OvW1lXVxW77PWDdaEb7WPPNOO7H/stJXu8uL+ZOw8du5iT3Ap8BfsrkHuvGqKMwSR6sqm3AF4D9ST43+GTNnieO9a9yJmHGzneYvaTcBlwEvjXacW4sySeBHwFfrarfDT43Qcf6I0YdhQvApoHHG7u1sVNVF7rvl4FnmT39u5RkPUD3/fLoJpzXfDOO7bGvqktVda2q/gB8lz+eao/NzEnWMBuEH1TVj7vliTvWNzLqKLwKbEmyOcltwB7g6Ihn+ogkdyS5c24b+DxwktlZ93a77QWeG82EH2u+GY8Ce5JMJdkMbAFeGcF8HzH3B6vzRWaPNYzJzEkCfA94s6q+PfDUxB3rGxr1nU7gYWbv3v4K+Pqo55lnxvuYvXv8c+DU3JzAp4BjwFvAS8DaEc/5DLOn2x8ye9362MfNCHy9O+5ngC+M0cz/CrwBvM7sH6j1Yzbzg8xeGrwOnOi+Hh73Y73YLz/RKKkx6ssHSWPGKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGv8LPz0wxu65WswAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1b944e0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADiFJREFUeJzt3U2sXGd9x/Hvr8Yx4qUSaahlHKsxkjdhUYOuQqUiRBWVhGwcNpFZtF5EchcpAokunLKATSRaCboDKYgIq6KkES+KF6hRYiGhSi2JQQbipCaGJIqNE5eCRNSFScK/i3tumef6ju/LzJk5c+/3I43mzHPOzPzn3Ht+5zkvcyZVhSSt+IN5FyBpWAwFSQ1DQVLDUJDUMBQkNQwFSY3eQiHJnUnOJ7mQ5ERf7yNputLHeQpJdgE/Bf4SuAg8BXysqp6Z+ptJmqq+egq3AReq6udV9VvgYeBIT+8laYre1NPr7gdeGnl8EXj/uIlvyJ56M2/tqRRJAK/y619W1TvXm66vUFhXkuPAcYA38xben9vnVYq0IzxR33hxI9P1tflwCTgw8vjmru3/VdWDVbVUVUu72dNTGZI2q69QeAo4lORgkhuAo8Cpnt5L0hT1svlQVa8n+VvgMWAX8FBVnevjvSRNV2/7FKrqO8B3+np9Sf3wjEZJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ13jTJk5O8ALwKvAG8XlVLSW4E/hW4BXgBuKeqfj1ZmZJmZRo9hb+oqsNVtdQ9PgGcrqpDwOnusaQF0cfmwxHgZDd8Eri7h/eQ1JNJQ6GAJ5L8IMnxrm1vVV3uhl8G9k74HpJmaKJ9CsAHqupSkj8GHk/yX6Mjq6qS1FpP7ELkOMCbecuEZUialol6ClV1qbu/AnwbuA14Jck+gO7+ypjnPlhVS1W1tJs9k5QhaYq2HApJ3prk7SvDwIeBp4FTwLFusmPAo5MWKWl2Jtl82At8O8nK6/xLVf1bkqeAR5LcC7wI3DN5mZJmZcuhUFU/B/50jfb/AW6fpChJ8+MZjZIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEo9OSxX5zlsV+cnXcZ0qatGwpJHkpyJcnTI203Jnk8yXPd/TtGxt2f5EKS80nu6KtwSf3YSE/hq8Cdq9pOAKer6hBwuntMkluBo8B7uud8McmuqVUrqXfrhkJVfQ/41armI8DJbvgkcPdI+8NVdbWqngcuALdNqVZJM7DVfQp7q+pyN/wysLcb3g+8NDLdxa5tx3K/ghbNxDsaq6qA2uzzkhxPcibJmde4OmkZkqZkq6HwSpJ9AN39la79EnBgZLqbu7ZrVNWDVbVUVUu72bPFMrSTrPS67H31a6uhcAo41g0fAx4daT+aZE+Sg8Ah4MnJSpSW3fGuw829+vGm9SZI8nXgQ8BNSS4CnwE+BzyS5F7gReAegKo6l+QR4BngdeC+qnqjp9ol9WDdUKiqj40ZdfuY6R8AHpikqO3msV+cde2mheEZjT0xBGbPfQ3TYSho2zCIp8NQmBHXYloUhoIWjgHbL0NBC8fNhH4ZCpIahoK2JTcxts5Q0LbkJsbWGQo9Wv2P6dpLi8BQkNQwFCQ1DIWeuW07bG7SXctQ0CCtXA27z4XW6zOszVCYAXsLW+e8mz1DQYMz6zW3wdMyFDQ4XmFpvta9yIqmw3/wzXF+zY89Be1IXg1rPENBO5ZHHdZmKGjHGQ0DewvXMhS0o9g7WJ+hIKlhKEhqGAqSGoaCpIahMAPu3BomjzyszVCYEYNh/rbyN9iJfzdDQQttrYV2ra9crz43wV7CeIaC5mJa10pY6zqY17s2pmGwPkNhhnZiV3Scaa6t11roV+4nCYSd+vcyFDQX01zgxi3sk/YQdupmhqEwAzvxH2tWrrcZMjrfd+pafyu8nsKM3PGuw/5jdqY9Hzby+xoG88bZU9DMTbNbvtbrGACTMRRmxF5Cvza6GaH1GQozstbecE3Hyjx1Hk/HuqGQ5KEkV5I8PdL22SSXkpztbneNjLs/yYUk55Pc0Vfhi8q11u9NY+FdOS9hXCA4vzdvIz2FrwJ3rtH+T1V1uLt9ByDJrcBR4D3dc76YZNe0il10/oMum8XhyPXGabx1jz5U1feS3LLB1zsCPFxVV4Hnk1wAbgP+Y8sValvp64KpbjJMzySHJD+e5K+BM8CnqurXwH7gP0emudi1SUC79u7jjMZpvu5OtdUdjV8C3g0cBi4Dn9/sCyQ5nuRMkjOvcXWLZWiRTbp27/u3JneqLYVCVb1SVW9U1e+AL7O8iQBwCTgwMunNXdtar/FgVS1V1dJu9mylDC2w0c2IrfzQq7/b0J8thUKSfSMPPwqsHJk4BRxNsifJQeAQ8ORkJWo7WWvtvpWfiRu3GWJQTG7dfQpJvg58CLgpyUXgM8CHkhwGCngB+BuAqjqX5BHgGeB14L6qeqOf0rWIpr3QGgjTl6qadw38YW6s9+f2eZcxUzu1+7vyuXfq55+nJ+obP6iqpfWm84zGOdlpZ9/tlM+5HdhTGIDtutb024rDYk9hgWzHr1WP+zyjOxq322feLryewkCMBsMir003sqBv5WiDZseewoAs+kKy0TW/Jx0Nm6EwQIu4wGy25r5OcdbkDIWBWbSjEvNe6y9672qIDIUBWqRg2Oql1eYdJhrPUBi4IS840/iRlZVwMCSGw6MPAzXuCsVD6y6vd47FWuP8xaZhs6ewIIa48KxsOlzvJKVx4ybZ7FC/DIUFMoRgWOuHW68XDNM+yrAdT/QaGjcftGWrz0zsM7RGex5DCMftzJ6Crvuz7aut/qryrBdQA6F/9hR2uHFr+818mckFdXsxFHa41dvo48Jgo19iGr1WwlCPmOj6/Or0DjSrHXUGw7D41WkB135VefU5AqsX1rUeT3Ji0spreMRgcdhT2GE2c+LQtBZqewnDsNGegqGgLVl9rcXrna8wyoCYH0NBg7DW7zsYDPPhPgUNwnr7LDQ8hoJmZjOHNjU/hoJmyuszDp+hIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpMa6oZDkQJLvJnkmybkkn+jab0zyeJLnuvt3jDzn/iQXkpxPckefH0DSdG2kp/A68KmquhX4M+C+JLcCJ4DTVXUION09pht3FHgPcCfwxSS7+ihe0vStGwpVdbmqftgNvwo8C+wHjgAnu8lOAnd3w0eAh6vqalU9D1wAbpt24ZL6sal9CkluAd4LfB/YW1WXu1EvA3u74f3ASyNPu9i1SVoAGw6FJG8Dvgl8sqp+Mzquli/0uKmLPSY5nuRMkjOvcXUzT5XUow2FQpLdLAfC16rqW13zK0n2deP3AVe69kvAgZGn39y1Narqwapaqqql3ezZav2SpmwjRx8CfAV4tqq+MDLqFHCsGz4GPDrSfjTJniQHgUPAk9MrWVKfNvJbkn8O/BXwkyQrV9v8e+BzwCNJ7gVeBO4BqKpzSR4BnmH5yMV9VfXG1CuX1It1Q6Gq/h3ImNFr/lhDVT0APDBBXZLmxDMaJTUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1EhVzbsGkvw38L/AL+ddyybdhDXPwqLVPNR6/6Sq3rneRIMIBYAkZ6pqad51bIY1z8ai1bxo9a7m5oOkhqEgqTGkUHhw3gVsgTXPxqLVvGj1NgazT0HSMAyppyBpAOYeCknuTHI+yYUkJ+ZdzzhJXkjykyRnk5zp2m5M8niS57r7d8y5xoeSXEny9Ejb2BqT3N/N9/NJ7hhQzZ9Ncqmb12eT3DWwmg8k+W6SZ5KcS/KJrn3Q83rDqmpuN2AX8DPg3cANwI+AW+dZ03VqfQG4aVXbPwInuuETwD/MucYPAu8Dnl6vRuDWbn7vAQ52f4ddA6n5s8DfrTHtUGreB7yvG3478NOutkHP643e5t1TuA24UFU/r6rfAg8DR+Zc02YcAU52wyeBu+dYC1X1PeBXq5rH1XgEeLiqrlbV88AFlv8eMzWm5nGGUvPlqvphN/wq8Cywn4HP642adyjsB14aeXyxaxuiAp5I8oMkx7u2vVV1uRt+Gdg7n9Kua1yNQ5/3H0/y427zYqUbPriak9wCvBf4Pos7rxvzDoVF8oGqOgx8BLgvyQdHR9ZyP3HQh3IWocbOl1jepDwMXAY+P99y1pbkbcA3gU9W1W9Gxy3QvL7GvEPhEnBg5PHNXdvgVNWl7v4K8G2Wu3+vJNkH0N1fmV+FY42rcbDzvqpeqao3qup3wJf5fVd7MDUn2c1yIHytqr7VNS/cvF7LvEPhKeBQkoNJbgCOAqfmXNM1krw1ydtXhoEPA0+zXOuxbrJjwKPzqfC6xtV4CjiaZE+Sg8Ah4Mk51HeNlQWr81GW5zUMpOYkAb4CPFtVXxgZtXDzek3z3tMJ3MXy3tufAZ+edz1janw3y3uPfwScW6kT+CPgNPAc8ARw45zr/DrL3e3XWN5uvfd6NQKf7ub7eeAjA6r5n4GfAD9meYHaN7CaP8DypsGPgbPd7a6hz+uN3jyjUVJj3psPkgbGUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSY3/A0lFy3gBqlK3AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c180f7b8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC+lJREFUeJzt3E+InPd9x/H3p7K8Jo4LVp0KWRK1DLrIhyphkQs1wUU0UnyRczHKoehgUA9qSKA9yM0hvhjSQtKbAwoxESW1KpIY62BqbBEwvcSWg2JLchVv/AdLlqWmDsT0oFjKt4d9NpmfrPWudubZmXHfL1jmmd88M/P1I/TmeWbHSlUhSQv+aNwDSJosRkFSwyhIahgFSQ2jIKlhFCQ1eotCkt1JziaZS3Kwr/eRNFrp43sKSdYAvwD+GjgHvAR8uarOjPzNJI1UX2cKO4C5qnqjqn4LHAH29PRekkbopp5edyPwzsD9c8C9i+18c2bqFm7taRRJAB/w619V1WeW2q+vKCwpyX5gP8AtfIp7s3Nco0j/LzxfP3x7Ofv1dflwHtg8cH9Tt/Z7VXWoqmaranYtMz2NIelG9RWFl4CtSbYkuRnYCxzr6b0kjVAvlw9VdSXJ3wHPAmuAJ6rqdB/vJWm0evtMoaqeAZ7p6/Ul9cNvNEpqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNW4a5slJ3gI+AK4CV6pqNsk64N+Bu4C3gIeq6tfDjSlptYziTOGvqmp7Vc129w8Cx6tqK3C8uy9pSvRx+bAHONxtHwYe7OE9JPVk2CgU8HySl5Ps79bWV9WFbvs9YP2Q7yFpFQ31mQJwX1WdT/KnwHNJ/mvwwaqqJHW9J3YR2Q9wC58acgxJozLUmUJVne9uLwFPATuAi0k2AHS3lxZ57qGqmq2q2bXMDDOGpBFacRSS3JrktoVt4AvAKeAYsK/bbR/w9LBDSlo9w1w+rAeeSrLwOv9WVf+R5CXgaJKHgbeBh4YfU9JqWXEUquoN4M+vs/4/wM5hhpI0Pn6jUVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNozBiz757ctwjSENZMgpJnkhyKcmpgbV1SZ5L8np3e/vAY48kmUtyNsmuvgaX1I/lnCl8H9h9zdpB4HhVbQWOd/dJsg3YC9zTPefxJGtGNu2E8yxBnwRLRqGqXgDev2Z5D3C42z4MPDiwfqSqLlfVm8AcsGNEs06FXXduH/cI0lBW+pnC+qq60G2/B6zvtjcC7wzsd65bkzQlhv6gsaoKqBt9XpL9SU4kOfEhl4cdQ9KIrDQKF5NsAOhuL3Xr54HNA/tt6tY+oqoOVdVsVc2uZWaFY0gatZVG4Riwr9veBzw9sL43yUySLcBW4MXhRpwuftioaXfTUjskeRK4H7gjyTngG8A3gaNJHgbeBh4CqKrTSY4CZ4ArwIGqutrT7JJ6sGQUqurLizy0c5H9HwMeG2YoSePjNxp74CWEpplRkNQwCpIaRmGE/DajPgmMQk/8XEHTyihIahiFEfMSQtPOKEhqGIUeeLagaWYUJDWMgqSGUZDUMAo98rsKmkZGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYhR75v1BrGhkFSQ2jIKlhFCQ1jEIPnn33pJ8naGoZBUkNo9ADzxI0zYyCpIZRkNQwCpIaRkFSwyhIahgFSY0lo5DkiSSXkpwaWHs0yfkkJ7ufBwYeeyTJXJKzSXb1NbikfiznTOH7wO7rrP9LVW3vfp4BSLIN2Avc0z3n8SRrRjWspP4tGYWqegF4f5mvtwc4UlWXq+pNYA7YMcR8klbZMJ8pfCXJK93lxe3d2kbgnYF9znVrkqbESqPwHeBuYDtwAfjWjb5Akv1JTiQ58SGXVziGpFFbURSq6mJVXa2q3wHf5Q+XCOeBzQO7burWrvcah6pqtqpm1zKzkjEk9WBFUUiyYeDul4CF30wcA/YmmUmyBdgKvDjciJJW001L7ZDkSeB+4I4k54BvAPcn2Q4U8BbwtwBVdTrJUeAMcAU4UFVX+xldUh9SVeOegT/Ouro3O8c9hvSJ9nz98OWqml1qP7/RKKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwChqZZ989ybPvnhz3GBrSkv/Eu7Rcu+7cDvD7MCzc13QxCho54zDdvHxQb66Ng6aDUVCvBsNgHKaDUVDvdt253UuIKWIUtGoMw3QwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpLRiHJ5iQ/SXImyekkX+3W1yV5Lsnr3e3tA895JMlckrNJdvX5HyBptJZzpnAF+Puq2gb8BXAgyTbgIHC8qrYCx7v7dI/tBe4BdgOPJ1nTx/CSRm/JKFTVhar6Wbf9AfAasBHYAxzudjsMPNht7wGOVNXlqnoTmAN2jHpwSf24oc8UktwFfBb4KbC+qi50D70HrO+2NwLvDDztXLcmaQosOwpJPg38CPhaVf1m8LGqKqBu5I2T7E9yIsmJD7l8I0+V1KNlRSHJWuaD8IOq+nG3fDHJhu7xDcClbv08sHng6Zu6tUZVHaqq2aqaXcvMSueXNGLL+e1DgO8Br1XVtwceOgbs67b3AU8PrO9NMpNkC7AVeHF0I0vq03L+4da/BP4GeDXJwr+n9Y/AN4GjSR4G3gYeAqiq00mOAmeY/83Fgaq6OvLJJfViyShU1X8CWeThnYs85zHgsSHmkjQmfqNRUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaqapxz0CS/wb+F/jVuGe5QXfgzKth2mae1Hn/rKo+s9ROExEFgCQnqmp23HPcCGdeHdM287TNey0vHyQ1jIKkxiRF4dC4B1gBZ14d0zbztM3bmJjPFCRNhkk6U5A0AcYehSS7k5xNMpfk4LjnWUySt5K8muRkkhPd2rokzyV5vbu9fcwzPpHkUpJTA2uLzpjkke64n02ya4JmfjTJ+e5Yn0zywITNvDnJT5KcSXI6yVe79Yk+1stWVWP7AdYAvwTuBm4Gfg5sG+dMHzPrW8Ad16z9M3Cw2z4I/NOYZ/w88Dng1FIzAtu64z0DbOn+HNZMyMyPAv9wnX0nZeYNwOe67duAX3SzTfSxXu7PuM8UdgBzVfVGVf0WOALsGfNMN2IPcLjbPgw8OMZZqKoXgPevWV5sxj3Akaq6XFVvAnPM/3msqkVmXsykzHyhqn7WbX8AvAZsZMKP9XKNOwobgXcG7p/r1iZRAc8neTnJ/m5tfVVd6LbfA9aPZ7SPtdiMk37sv5Lkle7yYuE0fOJmTnIX8Fngp0zvsW6MOwrT5L6q2g58ETiQ5PODD9b8eeJE/ypnGmbsfIf5S8rtwAXgW+Md5/qSfBr4EfC1qvrN4GNTdKw/YtxROA9sHri/qVubOFV1vru9BDzF/OnfxSQbALrbS+ObcFGLzTixx76qLlbV1ar6HfBd/nCqPTEzJ1nLfBB+UFU/7pan7lhfz7ij8BKwNcmWJDcDe4FjY57pI5LcmuS2hW3gC8Ap5mfd1+22D3h6PBN+rMVmPAbsTTKTZAuwFXhxDPN9xMJfrM6XmD/WMCEzJwnwPeC1qvr2wENTd6yva9yfdAIPMP/p7S+Br497nkVmvJv5T49/DpxemBP4E+A48DrwPLBuzHM+yfzp9ofMX7c+/HEzAl/vjvtZ4IsTNPO/Aq8CrzD/F2rDhM18H/OXBq8AJ7ufByb9WC/3x280SmqM+/JB0oQxCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkxv8BlkARfWhk+SUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1907f28>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADm1JREFUeJzt3V+oHOd5x/HvU1k+xo4LVp0KRRa1ArqRA1XCQS7UBBfT2DEFOTdGuSiCmqoXTppAeyEnFzEUQ1pIeueAQkxESa2KJMa6MDW2CJhCiS0HxZbkKlb8B0uWpaQJxPRCsZWnF2dOu+/R2bP/ZnZmjr4fOOzsO7N7Ho3O/PZ9353ZjcxEkpb9XtsFSOoWQ0FSwVCQVDAUJBUMBUkFQ0FSobFQiIj7IuJMRJyNiANN/R5J9YomzlOIiA3Az4A/B84BLwGfz8zTtf8ySbVqqqewGzibmW9k5m+Bw8Cehn6XpBpd19DzbgXeGbh/Drhz2MbXx0LewE0NlSIJ4H1+/cvM/Oio7ZoKhZEiYj+wH+AGbuTOuKetUqRrwvP5/bfH2a6p4cN5YNvA/duqtv+TmQczczEzFzey0FAZkibVVCi8BOyIiO0RcT2wFzja0O+SVKNGhg+Z+WFEfAF4FtgAPJGZp5r4XZLq1dicQmY+AzzT1PNLaoZnNEoqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlw3SwPjoi3gPeBK8CHmbkYEZuAfwNuB94CHszMX89WpqR5qaOn8GeZuSszF6v7B4BjmbkDOFbdl9QTTQwf9gCHquVDwAMN/A5JDZk1FBJ4PiJejoj9VdvmzLxQLb8HbJ7xd0iao5nmFIC7MvN8RPwh8FxE/NfgyszMiMjVHliFyH6AG7hxxjIk1WWmnkJmnq9uLwFPAbuBixGxBaC6vTTksQczczEzFzeyMEsZkmo0dShExE0RcfPyMvAZ4CRwFNhXbbYPeHrWIiXNzyzDh83AUxGx/Dz/mpn/HhEvAUci4iHgbeDB2cuUNC9Th0JmvgH88Srt/w3cM0tRktrjGY2SCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKlgKEzp2XdPtF2C1AhDQVLBUJiBvQWtR4bCDO792K62S5BqZyhMyUDQemUoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhkJNPJFJ64WhIKlgKEgqGAqSCoZCTTztub+cDyoZCpIKhoKuafYSrmYo6JrmsO9qhoKuafYUrmYoNMA/tP4Y7Cn4/7ZkZChExBMRcSkiTg60bYqI5yLi9er2loF1j0TE2Yg4ExH3NlV4l9kl7Sf/35aM01P4LnDfirYDwLHM3AEcq+4TETuBvcAd1WMej4gNtVXbE77i9IthUBoZCpn5AvCrFc17gEPV8iHggYH2w5l5OTPfBM4Cu2uqtVcMBvXVtHMKmzPzQrX8HrC5Wt4KvDOw3bmq7ZphGKjvZp5ozMwEctLHRcT+iDgeEcc/4PKsZUiqybShcDEitgBUt5eq9vPAtoHtbqvarpKZBzNzMTMXN7IwZRmS6jZtKBwF9lXL+4CnB9r3RsRCRGwHdgAvzlZifzh00Hpw3agNIuJJ4G7g1og4B3wN+DpwJCIeAt4GHgTIzFMRcQQ4DXwIPJyZVxqqvdOc0VZfjQyFzPz8kFX3DNn+MeCxWYpaD55994TBUIPl3tc4+3Kwp+a+n55nNGrdMRBmYyioFyaZr3FuZzaGQoP845zNyuHAs++ecJ/OgaGgzrr3Y7uKocCkwwIDZDqGQo0cyzZnsJcweDvswHeid3qGgnpj+SBfHkosWxkMK3sYmoyh0DC7sPVZ2VNYbd2w9RqfoaBeG9YjMBimZyjUzG7rfKy1nx0+zMZQUG954DfDUKiZ3db6efDPl6FQM/+A58sQrp+hoF6Z9MIoTc5QUO/YG2uWoaBeWA4CewHNMxTUC562PD+Gwhz46taMtfar+3x6hkIDfEWr3/L1DoPDCPdzMwyFOfGVa3orr4YcdgHUypBwn0/HUJgj/0gnt3KfjdNDsAcxG0NBvTPqA1odWszGUGiIf5TNWevtSff77AwF9dawXoJmYyg0aOXnC/oqNplpPmrNycbZGQrqnZUfxzZo1KcyaTRDoWH2DqYz7YHsJzHNzlCYA4OhXivPWRjngPf/YHyGgjppmnMR/LKYehgKWhcm+SJarc1QUOeMesVf7cAfdk2EITE5Q0G9N+xtyMEvj9H4DAV1yrRzAl5GXR9DQZ0y6QTjOL0BewqTMRQa5CuU+shQUK+M87ajPYPZGArqvVGXUmsy143aICKeAP4CuJSZn6jaHgX+GvhFtdlXMvOZat0jwEPAFeBvM/PZBurWOjPswB7n8miDoF7j9BS+C9y3Svs/Z+au6mc5EHYCe4E7qsc8HhEb6iq2b9a6cOdaNsnXxk9ypanhUI+RPYXMfCEibh/z+fYAhzPzMvBmRJwFdgP/OXWFWldWBsLK4FzrxCTNxyxzCl+MiFci4omIuKVq2wq8M7DNuartmuUfdGnw1X5UIIyaVLQX1oyRPYUhvgX8A5DV7TeAv5rkCSJiP7Af4AZunLIM9d20w4HBXobBW6+pegqZeTEzr2Tm74BvszREADgPbBvY9LaqbbXnOJiZi5m5uJGFacpQz9T5ym4gNGeqUIiILQN3PwecrJaPAnsjYiEitgM7gBdnK1HrRR0HsG8/Nm+ctySfBO4Gbo2Ic8DXgLsjYhdLw4e3gL8ByMxTEXEEOA18CDycmVeaKV3XopWf5Gww1C8ys+0a+P3YlHfGPW2XoR4YNgQxHEZ7Pr//cmYujtpu2olGaaQmvpdhtXM/DIR6GQpqRFNvFzq52DyvfVDt1jpwV/tuyEkYCM1zTkFzMWpi0B5A85xTUKes9f2P6haHD+oMA6MbDAXN1VpXOvo9kN3gnIJa5dfJz8+4cwr2FNSKta6AtIfQLica1ai1rlUY9tVvapc9Bc3Nyt6BQ4dusqeguRn369wMhnYZCmqUB3j/OHyQVDAUJBUMBUkFQ0GNWO1qSN9u7AcnGjWTwasfR10W7aRjPxgKPdXWpcbjnIXowd9vDh96qssHnkOFfjMU1oHlg7DJg3Ha5zUc+sdQWAeGXXK82gG51rphRn0bk2cnri9eOr2OzPKqvNbFScPWjfO1buqOcS+dNhTWMT8UVYP8PIVr3CSBMBgGzgHIUFinJnnV9+1EDTIU1rFxD/C1PjdR1x5PXlrnPNg1KXsKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKowMhYjYFhE/iojTEXEqIr5UtW+KiOci4vXq9paBxzwSEWcj4kxE3NvkP0BSvcbpKXwI/F1m7gT+BHg4InYCB4BjmbkDOFbdp1q3F7gDuA94PCI2NFG8pPqNDIXMvJCZP6mW3wdeA7YCe4BD1WaHgAeq5T3A4cy8nJlvAmeB3XUXLqkZE80pRMTtwCeBHwObM/NCteo9YHO1vBV4Z+Bh56o2ST0wdihExEeAHwBfzszfDK7LpU9qmejTWiJif0Qcj4jjH3B5kodKatBYoRARG1kKhO9l5g+r5osRsaVavwW4VLWfB7YNPPy2qq2QmQczczEzFzeyMG39kmo2zrsPAXwHeC0zvzmw6iiwr1reBzw90L43IhYiYjuwA3ixvpIlNWmcz1P4U+AvgVcjYvkjer4CfB04EhEPAW8DDwJk5qmIOAKcZumdi4cz80rtlUtqxMhQyMz/AGLI6lU/bTUzHwMem6EuSS3xjEZJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVIjPbroGI+AXwP8Av265lQrdizfPQt5q7Wu8fZeZHR23UiVAAiIjjmbnYdh2TsOb56FvNfat3JYcPkgqGgqRCl0LhYNsFTMGa56NvNfet3kJn5hQkdUOXegqSOqD1UIiI+yLiTEScjYgDbdczTES8FRGvRsSJiDhetW2KiOci4vXq9paWa3wiIi5FxMmBtqE1RsQj1X4/ExH3dqjmRyPifLWvT0TE/R2reVtE/CgiTkfEqYj4UtXe6X09tsxs7QfYAPwc+DhwPfBTYGebNa1R61vArSva/gk4UC0fAP6x5Ro/DXwKODmqRmBntb8XgO3V/8OGjtT8KPD3q2zblZq3AJ+qlm8GflbV1ul9Pe5P2z2F3cDZzHwjM38LHAb2tFzTJPYAh6rlQ8ADLdZCZr4A/GpF87Aa9wCHM/NyZr4JnGXp/2OuhtQ8TFdqvpCZP6mW3wdeA7bS8X09rrZDYSvwzsD9c1VbFyXwfES8HBH7q7bNmXmhWn4P2NxOaWsaVmPX9/0XI+KVanix3A3vXM0RcTvwSeDH9HdfF9oOhT65KzN3AZ8FHo6ITw+uzKV+YqffyulDjZVvsTSk3AVcAL7Rbjmri4iPAD8AvpyZvxlc16N9fZW2Q+E8sG3g/m1VW+dk5vnq9hLwFEvdv4sRsQWgur3UXoVDDauxs/s+My9m5pXM/B3wbf6/q92ZmiNiI0uB8L3M/GHV3Lt9vZq2Q+ElYEdEbI+I64G9wNGWa7pKRNwUETcvLwOfAU6yVOu+arN9wNPtVLimYTUeBfZGxEJEbAd2AC+2UN9Vlg+syudY2tfQkZojIoDvAK9l5jcHVvVuX6+q7ZlO4H6WZm9/Dny17XqG1PhxlmaPfwqcWq4T+APgGPA68DywqeU6n2Spu/0BS+PWh9aqEfhqtd/PAJ/tUM3/ArwKvMLSAbWlYzXfxdLQ4BXgRPVzf9f39bg/ntEoqdD28EFSxxgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCp8L803N+4MA6sSQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c19ece80>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADCJJREFUeJzt3U+IXfd5h/HnW1keE8cFq06FLItaBhGQF1XCIBdqQoqbyPFGzsYoi6KFQV24IYF2ITeLemNIC0l3DijERJTUqklirIWJsUXAFEpsOSiOJFfxxH+wZFlq6kBMF4qtvF3Mmeb+ZI3n371zznWfDwz33N89d+7rY/Rwzp2rUaoKSVrwB30PIGlYjIKkhlGQ1DAKkhpGQVLDKEhqTCwKSe5OcibJXJKDk3odSeOVSXxOIckG4BfA54CzwAvAl6rq9NhfTNJYTepMYTcwV1WvVtVvgSPA3gm9lqQxumZC33cr8ObI/bPAHYvtfG1m6jqun9AokgDe5de/qqpPLLXfpKKwpCQHgAMA1/Ex7shdfY0i/b/wbH3/jeXsN6nLh3PAtpH7t3Rr/6eqDlXVbFXNbmRmQmNIWqlJReEFYEeS7UmuBfYBRyf0WpLGaCKXD1X1fpK/AZ4GNgCPVtWpSbyWpPGa2HsKVfUU8NSkvr+kyfATjZIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjWvW8uQkrwPvApeB96tqNskm4N+AW4HXgfuq6tdrG1PSehnHmcJfVNWuqprt7h8EjlXVDuBYd1/SlJjE5cNe4HC3fRi4dwKvIWlC1hqFAp5N8mKSA93a5qo6322/DWxe42tIWkdrek8BuLOqziX5Y+CZJP85+mBVVZK62hO7iBwAuI6PrXEMSeOypjOFqjrX3V4EngB2AxeSbAHobi8u8txDVTVbVbMbmVnLGJLGaNVRSHJ9khsWtoHPAyeBo8D+brf9wJNrHVLS+lnL5cNm4IkkC9/nX6vqR0leAB5Pcj/wBnDf2seUtF5WHYWqehX406us/zdw11qGktQfP9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNozBGT791ou8RpDUzCpIaRmHMPFvQtDMKkhpLRiHJo0kuJjk5srYpyTNJXulubxx57MEkc0nOJNkzqcElTcZyzhS+C9x9xdpB4FhV7QCOdfdJshPYB9zePeeRJBvGNq2kiVsyClX1HPDOFct7gcPd9mHg3pH1I1V1qapeA+aA3WOaVdI6WO17Cpur6ny3/TawudveCrw5st/Zbk3SlFjzG41VVUCt9HlJDiQ5nuT4e1xa6xiSxmS1UbiQZAtAd3uxWz8HbBvZ75Zu7QOq6lBVzVbV7EZmVjmGpHFbbRSOAvu77f3AkyPr+5LMJNkO7ACeX9uIktbTcn4k+RjwH8Ank5xNcj/wdeBzSV4B/rK7T1WdAh4HTgM/Ah6oqsuTGn6o/ACTptk1S+1QVV9a5KG7Ftn/YeDhtQz1UfD0WyfYc/OuvseQVsxPNI7RlRHwjEHTyChIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGYcz8rIKmnVFYB4ZB08QoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyiMmR9U0rQzCuvA39WoaWIUJDWMgqSGURijq72f4KWDpo1RmCCDoGlkFCQ1lvwXorRyniFomnmmIKlhFMbMswRNO6MgqWEUxsSPN+ujwihIahgFSQ2jMEa+yaiPAqMwJgZBHxVGQVLDKEhqLBmFJI8muZjk5MjaQ0nOJTnRfd0z8tiDSeaSnEmyZ1KDS5qM5ZwpfBe4+yrr/1xVu7qvpwCS7AT2Abd3z3kkyYZxDStp8paMQlU9B7yzzO+3FzhSVZeq6jVgDti9hvkkrbO1vKfw5SQvdZcXN3ZrW4E3R/Y5261JmhKrjcK3gNuAXcB54Bsr/QZJDiQ5nuT4e1xa5RiSxm1VUaiqC1V1uap+B3yb318inAO2jex6S7d2te9xqKpmq2p2IzOrGUPSBKwqCkm2jNz9IrDwk4mjwL4kM0m2AzuA59c2oqT1tORvXkryGPBZ4KYkZ4F/AD6bZBdQwOvAXwNU1akkjwOngfeBB6rq8mRGlzQJqaq+Z+APs6nuyF19jyF9pD1b33+xqmaX2s9PNPbg6bdO+PsXNFhGoQcLf3nKMGiIjEJPRsNgHDQkRqFHo3/d2jBoKIxCzwyDhsYoDIBh0JAYhYHwNzdpKIzCgBgGDYFRGJg9N+/yEkK9MgoDtBAG46A+GIWB8gNO6otRGDDDoD4YhYHbc/Mu32fQujIKU8L3GbRejMIUWThrAC8pNDlGYUr5mQZNilGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaiwZhSTbkvw4yekkp5J8pVvflOSZJK90tzeOPOfBJHNJziTZM8n/AEnjtZwzhfeBv62qncCfAQ8k2QkcBI5V1Q7gWHef7rF9wO3A3cAjSTZMYnhJ47dkFKrqfFX9tNt+F3gZ2ArsBQ53ux0G7u229wJHqupSVb0GzAG7xz24pMlY0XsKSW4FPgX8BNhcVee7h94GNnfbW4E3R552tluTNAWWHYUkHwd+AHy1qn4z+lhVFVAreeEkB5IcT3L8PS6t5KmSJmhZUUiykfkgfK+qftgtX0iypXt8C3CxWz8HbBt5+i3dWqOqDlXVbFXNbmRmtfNLGrPl/PQhwHeAl6vqmyMPHQX2d9v7gSdH1vclmUmyHdgBPD++kSVN0jXL2OfPgb8Cfp5k4V81/Xvg68DjSe4H3gDuA6iqU0keB04z/5OLB6rq8tgnlzQRS0ahqv4dyCIP37XIcx4GHl7DXJJ64icaJTWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpkarqewaS/BfwP8Cv+p5lhW7CmdfDtM081Hn/pKo+sdROg4gCQJLjVTXb9xwr4czrY9pmnrZ5r+Tlg6SGUZDUGFIUDvU9wCo48/qYtpmnbd7GYN5TkDQMQzpTkDQAvUchyd1JziSZS3Kw73kWk+T1JD9PciLJ8W5tU5JnkrzS3d7Y84yPJrmY5OTI2qIzJnmwO+5nkuwZ0MwPJTnXHesTSe4Z2Mzbkvw4yekkp5J8pVsf9LFetqrq7QvYAPwSuA24FvgZsLPPmT5k1teBm65Y+yfgYLd9EPjHnmf8DPBp4ORSMwI7u+M9A2zv/j9sGMjMDwF/d5V9hzLzFuDT3fYNwC+62QZ9rJf71feZwm5grqperarfAkeAvT3PtBJ7gcPd9mHg3h5noaqeA965YnmxGfcCR6rqUlW9Bswx//9jXS0y82KGMvP5qvppt/0u8DKwlYEf6+XqOwpbgTdH7p/t1oaogGeTvJjkQLe2uarOd9tvA5v7Ge1DLTbj0I/9l5O81F1eLJyGD27mJLcCnwJ+wvQe60bfUZgmd1bVLuALwANJPjP6YM2fJw76RznTMGPnW8xfUu4CzgPf6Hecq0vyceAHwFer6jejj03Rsf6AvqNwDtg2cv+Wbm1wqupcd3sReIL5078LSbYAdLcX+5twUYvNONhjX1UXqupyVf0O+Da/P9UezMxJNjIfhO9V1Q+75ak71lfTdxReAHYk2Z7kWmAfcLTnmT4gyfVJbljYBj4PnGR+1v3dbvuBJ/uZ8EMtNuNRYF+SmSTbgR3A8z3M9wELf7A6X2T+WMNAZk4S4DvAy1X1zZGHpu5YX1Xf73QC9zD/7u0vga/1Pc8iM97G/LvHPwNOLcwJ/BFwDHgFeBbY1POcjzF/uv0e89et93/YjMDXuuN+BvjCgGb+F+DnwEvM/4HaMrCZ72T+0uAl4ET3dc/Qj/Vyv/xEo6RG35cPkgbGKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGv8LQ4g3Odo3peMAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1935f98>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADWpJREFUeJzt3V2oXWedx/Hvb9I0onagHZ0Q0zCNEIR6MVEOdWCKIB1N7U3qjcSLIReF3HREh5mLdLzxpuAIOncKlRbD4LRTfKG5kJY2CGVAbKPEtmknNtpKk6bNOAqWuYi1/ufirKP7OT0n52W/rLXP+X5gs9d+1tp7//dz9vrt51lrn3NSVUjSkj/ruwBJw2IoSGoYCpIahoKkhqEgqWEoSGpMLRSS3J7kXJLzSY5P63kkTVam8T2FJDuAnwEfBy4ATwOfqarnJ/5kkiZqWiOFW4DzVfWLqvod8BBweErPJWmCrpnS4+4FXhm5fQH4yGobX5td9Q7eNaVSJAG8wW9+VVXvXWu7aYXCmpIcA44BvIN38pHc1lcp0rbwRH37l+vZblrTh4vAvpHbN3Ztf1RV91XVQlUt7GTXlMqQtFHTCoWngQNJ9ie5FjgCnJzSc0maoKlMH6rq90n+AXgM2AE8UFVnp/FckiZrascUqur7wPen9fiSpsNvNEpqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlxzTh3TvIy8AbwFvD7qlpIcgPwn8BNwMvAp6vqN+OVKWlWJjFS+FhVHayqhe72ceBUVR0ATnW3Jc2JaUwfDgMnuuUTwJ1TeA5JUzJuKBTwRJIfJznWte2uqkvd8mvA7jGfQ9IMjXVMAbi1qi4m+Uvg8ST/PbqyqipJrXTHLkSOAbyDd45ZhqRJGWukUFUXu+vLwPeAW4DXk+wB6K4vr3Lf+6pqoaoWdrJrnDIkTdCmQyHJu5Jct7QMfAJ4DjgJHO02Owo8Mm6RkmZnnOnDbuB7SZYe5z+q6tEkTwMPJ7kL+CXw6fHLlDQrmw6FqvoF8NcrtP8vcNs4RUnqj99olNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCbssVfP9F2CNBZDYYIMBG0FhsIEHXrfwb5LkMZmKEyQIwVtBYaCpIahIKlhKEhqrBkKSR5IcjnJcyNtNyR5PMmL3fX1I+vuSXI+ybkkh6ZVuKTpWM9I4ZvA7cvajgOnquoAcKq7TZKbgSPAB7v7fC3JjolVO2CjBxk94Kh5tmYoVNWTwK+XNR8GTnTLJ4A7R9ofqqorVfUScB64ZUK1SpqBzR5T2F1Vl7rl14Dd3fJe4JWR7S50bVue31HQVjH2gcaqKqA2er8kx5KcTnL6Ta6MW4akCdlsKLyeZA9Ad325a78I7BvZ7sau7W2q6r6qWqiqhZ3s2mQZkiZts6FwEjjaLR8FHhlpP5JkV5L9wAHgqfFKlDRL6zkl+SDwQ+ADSS4kuQv4EvDxJC8Cf9fdpqrOAg8DzwOPAndX1VvTKn7IPAOheXXNWhtU1WdWWXXbKtvfC9w7TlFbxWOvnvEApOaO32iU1DAUpsxphOaNoaC5YcDOhqEwA76ZJ8PjM7NhKMyAb2bNkzXPPkh9GR1hGayz40hBW4pTtfEZCjPgG3U27OfJMBQmaPkQ1yHvbC31t+EwHkNhipbenIbDxm12x7avx2coaMsxGMZjKMyAw9mNsb/6ZShocDw20y+/p6DB8VhMvxwpSGoYChO20qebn3iaJ04fpsgw0DxypDAlBsJ47L/+GApT4Bt6PPZfvwyFKfA8u+aZoTBhBoLmnaEwYf5SjuadoTBhhsFw+LPYHENBUsNQkNQwFCbI4aq2AkNBUsNQmKBD7zv4xws4ctB8MhSmxGDQvDIUpsiv6/bL/t8cQ0FSw1CQ1DAUJDUMhRnwYKPmiaEwRYbB5thv/TIUZsQ3+toee/UMj716xrMGPVszFJI8kORykudG2r6Y5GKSM93ljpF19yQ5n+RckkPTKnweLH9zGwxXN/rFL/VnPSOFbwK3r9D+b1V1sLt8HyDJzcAR4IPdfb6WZMekipU0fWuGQlU9Cfx6nY93GHioqq5U1UvAeeCWMeqTNGPjHFP4bJJnuunF9V3bXuCVkW0udG3blsNhzZvNhsLXgfcDB4FLwFc2+gBJjiU5neT0m1zZZBnzwWDQPNlUKFTV61X1VlX9AfgGf5oiXAT2jWx6Y9e20mPcV1ULVbWwk12bKWMuebBRQ7epUEiyZ+Tmp4ClMxMngSNJdiXZDxwAnhqvxK1hdLRgMGjI1nNK8kHgh8AHklxIchfw5STPJnkG+BjwjwBVdRZ4GHgeeBS4u6remlr1c8Zg0DxY839JVtVnVmi+/yrb3wvcO05R2j5Gw9FjL8PgNxpnbPloYTuOGJZe8/LXvh37YogMhR74ibhyANgvw2Ao9GQ7H19Yaec3EIbDUOiRU4k/2e6vf0gMhYFxx1DfDIWebdffDFzpdW/HfhiiNU9JajYOve/gthglrPYaDYThcKQwQNthfj06UjAQhsWRwoBsp51jNPT8a0vDYihoptz5h8/pg2ZiO0yJtgpDQTNnQAyb0wdN1dV+v2Fp2SnFsDhS0FRsZId31DAsjhS0ps18oq/n9xs86zBMhoLWbb3hsN5PfgNhmAyFbWjpE3r0k3ojQ/jlfxjF4f/Wkqrquwb+PDfUR3Jb32VsWUPaaR0d9OeJ+vaPq2phre0cKWwD436ar3X/0fXu9PPPUNgmlu+4y3fy5dOJJVfb2Ue3Nwy2DqcP29BKxxS09a13+uD3FLYhP911NYaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKmxZigk2ZfkB0meT3I2yee69huSPJ7kxe76+pH73JPkfJJzSQ5N8wVImqz1jBR+D/xTVd0M/A1wd5KbgePAqao6AJzqbtOtOwJ8ELgd+FqSHdMoXtLkrRkKVXWpqn7SLb8BvADsBQ4DJ7rNTgB3dsuHgYeq6kpVvQScB26ZdOGSpmNDxxSS3AR8CPgRsLuqLnWrXgN2d8t7gVdG7naha5M0B9YdCkneDXwH+HxV/XZ0XS3+occN/bHHJMeSnE5y+k2ubOSukqZoXaGQZCeLgfCtqvpu1/x6kj3d+j3A5a79IrBv5O43dm2NqrqvqhaqamEnuzZbv6QJW8/ZhwD3Ay9U1VdHVp0EjnbLR4FHRtqPJNmVZD9wAHhqciVLmqb1/N+HvwX+Hng2ydI/C/gX4EvAw0nuAn4JfBqgqs4meRh4nsUzF3dX1VsTr1zSVKwZClX1X0BWWb3iP2uoqnuBe8eoS1JP/EajpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGqmqvmsgyf8A/wf8qu9aNug9WPMszFvNQ633r6rqvWttNIhQAEhyuqoW+q5jI6x5Nuat5nmrdzmnD5IahoKkxpBC4b6+C9gEa56Neat53uptDOaYgqRhGNJIQdIA9B4KSW5Pci7J+STH+65nNUleTvJskjNJTndtNyR5PMmL3fX1Pdf4QJLLSZ4baVu1xiT3dP1+LsmhAdX8xSQXu74+k+SOgdW8L8kPkjyf5GySz3Xtg+7rdauq3i7ADuDnwPuBa4GfAjf3WdNVan0ZeM+yti8Dx7vl48C/9lzjR4EPA8+tVSNwc9ffu4D93c9hx0Bq/iLwzytsO5Sa9wAf7pavA37W1Tbovl7vpe+Rwi3A+ar6RVX9DngIONxzTRtxGDjRLZ8A7uyxFqrqSeDXy5pXq/Ew8FBVXamql4DzLP48ZmqVmlczlJovVdVPuuU3gBeAvQy8r9er71DYC7wycvtC1zZEBTyR5MdJjnVtu6vqUrf8GrC7n9KuarUah973n03yTDe9WBqGD67mJDcBHwJ+xPz2daPvUJgnt1bVQeCTwN1JPjq6shbHiYM+lTMPNXa+zuKU8iBwCfhKv+WsLMm7ge8An6+q346um6O+fpu+Q+EisG/k9o1d2+BU1cXu+jLwPRaHf68n2QPQXV/ur8JVrVbjYPu+ql6vqreq6g/AN/jTUHswNSfZyWIgfKuqvts1z11fr6TvUHgaOJBkf5JrgSPAyZ5repsk70py3dIy8AngORZrPdptdhR4pJ8Kr2q1Gk8CR5LsSrIfOAA81UN9b7O0Y3U+xWJfw0BqThLgfuCFqvrqyKq56+sV9X2kE7iDxaO3Pwe+0Hc9q9T4fhaPHv8UOLtUJ/AXwCngReAJ4Iae63yQxeH2myzOW++6Wo3AF7p+Pwd8ckA1/zvwLPAMizvUnoHVfCuLU4NngDPd5Y6h9/V6L36jUVKj7+mDpIExFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUuP/AXHo+xx/McWlAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1a57ef0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC/ZJREFUeJzt20GMlPd9h/HnW8BrxXElE6cIA6qxRA/4EBKtcKVakSvU4PiCc7HIoeJgiRxolEjtATeH+GIprZr0UiUSUazQKjVFSSxziGoZFMnqJTaOiA24xBsbCzYYmjpSrB6IIb8e9qWZP2a9y+68OzP0+Uireec/7+z8eBGP3nlnSFUhSdf8wagHkDRejIKkhlGQ1DAKkhpGQVLDKEhq9BaFJA8nOZNkJsn+vl5H0nClj+8pJFkF/Bz4C+A88DLw+ao6PfQXkzRUfZ0pbAdmqurNqvotcAjY1dNrSRqi1T393g3AuYH754EH5tv5tkzV7dzR0yiSAN7j17+qqo8vtF9fUVhQkr3AXoDb+QgPZMeoRpH+Xzha3397Mfv19fZhFtg0cH9jt/Z/qupAVU1X1fQapnoaQ9LN6isKLwNbkmxOchuwGzjS02tJGqJe3j5U1ZUkfwU8D6wCnq6qU328lqTh6u2aQlX9CPhRX79fUj/8RqOkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUmP1cp6c5CzwHnAVuFJV00nWAv8G3AucBR6rql8vb0xJK2UYZwp/XlXbqmq6u78fOFZVW4Bj3X1JE6KPtw+7gIPd9kHg0R5eQ1JPlhuFAo4meSXJ3m5tXVVd6LbfAdYt8zUkraBlXVMAHqyq2SR/BLyQ5D8HH6yqSlI3emIXkb0At/ORZY4haViWdaZQVbPd7SXgWWA7cDHJeoDu9tI8zz1QVdNVNb2GqeWMIWmIlhyFJHckufPaNvAZ4CRwBNjT7bYHeG65Q0paOct5+7AOeDbJtd/zr1X170leBg4neRx4G3hs+WNKWilLjkJVvQl84gbr/w3sWM5QkkbHbzRKahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaPQk+d/eWLUI0hLYhR6ZBg0iRaMQpKnk1xKcnJgbW2SF5K80d3eNfDYE0lmkpxJsrOvwSX1YzFnCt8FHr5ubT9wrKq2AMe6+yTZCuwG7u+e880kq4Y27YS4doaw855tI55EunkLRqGqXgTevW55F3Cw2z4IPDqwfqiqLlfVW8AMsH1Is0paAUu9prCuqi502+8A67rtDcC5gf3Od2uSJsSyLzRWVQF1s89LsjfJ8STH3+fycseQNCRLjcLFJOsButtL3fossGlgv43d2gdU1YGqmq6q6TVMLXEMScO21CgcAfZ023uA5wbWdyeZSrIZ2AK8tLwRJ5cfSWoSrV5ohyTPAA8Bdyc5D3wV+BpwOMnjwNvAYwBVdSrJYeA0cAXYV1VXe5pdUg8WjEJVfX6eh3bMs/9TwFPLGWrS7bxnm2cJmlh+o7EnfkdBk8ooSGoYhZ75NkKTxihIahgFSQ2jIKlhFCQ1jMIK8GKjJolR6JHfVdAkMgqSGkZBUsMoSGoYhRXixUZNCqMgqWEUeuYnEJo0RkFSwyisIK8raBIYBUkNo9Azzw40aYyCpIZR6JFnCZpERkFSwyisIL+zoElgFFaIQdCkMAqSGkahJ4MXGT1L0CQxCpIaRqFnniVo0hgFSQ2jIKlhFCQ1jEKPvJ6gSWQUevD8L08YBE0soyCpYRSGzLMETTqjMEQGQbeCBaOQ5Okkl5KcHFh7MslskhPdzyMDjz2RZCbJmSQ7+xp83BgE3SpWL2Kf7wL/BPzzdev/WFX/MLiQZCuwG7gfuAc4muRPqurqEGYdS9f+j4NB0K1iwTOFqnoReHeRv28XcKiqLlfVW8AMsH0Z842twRgYBN1KlnNN4YtJXu3eXtzVrW0Azg3sc75bu+UYAt2qlhqFbwH3AduAC8DXb/YXJNmb5HiS4+9zeYljSBq2JUWhqi5W1dWq+h3wbX7/FmEW2DSw68Zu7Ua/40BVTVfV9BqmljKGpB4sKQpJ1g/c/Rxw7ZOJI8DuJFNJNgNbgJeWN6KklbTgpw9JngEeAu5Och74KvBQkm1AAWeBLwBU1akkh4HTwBVg3638yYN0K0pVjXoG/jBr64HsGPUY0i3taH3/laqaXmg/v9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNRYMApJNiX5cZLTSU4l+VK3vjbJC0ne6G7vGnjOE0lmkpxJsrPPP4Ck4VrMmcIV4K+raivwp8C+JFuB/cCxqtoCHOvu0z22G7gfeBj4ZpJVfQwvafgWjEJVXaiqn3bb7wGvAxuAXcDBbreDwKPd9i7gUFVdrqq3gBlg+7AHl9SPm7qmkORe4JPAT4B1VXWhe+gdYF23vQE4N/C0892apAmw6Cgk+SjwA+DLVfWbwceqqoC6mRdOsjfJ8STH3+fyzTxVUo8WFYUka5gLwveq6ofd8sUk67vH1wOXuvVZYNPA0zd2a42qOlBV01U1vYappc4vacgW8+lDgO8Ar1fVNwYeOgLs6bb3AM8NrO9OMpVkM7AFeGl4I0vq0+pF7PNnwF8CryU50a39LfA14HCSx4G3gccAqupUksPAaeY+udhXVVeHPrmkXiwYhar6DyDzPLxjnuc8BTy1jLkkjYjfaJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpEaqatQzkOS/gP8BfjXqWW7S3TjzSpi0mcd13j+uqo8vtNNYRAEgyfGqmh71HDfDmVfGpM08afNez7cPkhpGQVJjnKJwYNQDLIEzr4xJm3nS5m2MzTUFSeNhnM4UJI2BkUchycNJziSZSbJ/1PPMJ8nZJK8lOZHkeLe2NskLSd7obu8a8YxPJ7mU5OTA2rwzJnmiO+5nkuwco5mfTDLbHesTSR4Zs5k3JflxktNJTiX5Urc+1sd60apqZD/AKuAXwH3AbcDPgK2jnOlDZj0L3H3d2t8D+7vt/cDfjXjGTwOfAk4uNCOwtTveU8Dm7u9h1ZjM/CTwNzfYd1xmXg98qtu+E/h5N9tYH+vF/oz6TGE7MFNVb1bVb4FDwK4Rz3QzdgEHu+2DwKMjnIWqehF497rl+WbcBRyqqstV9RYww9zfx4qaZ+b5jMvMF6rqp932e8DrwAbG/Fgv1qijsAE4N3D/fLc2jgo4muSVJHu7tXVVdaHbfgdYN5rRPtR8M477sf9ikle7txfXTsPHbuYk9wKfBH7C5B7rxqijMEkerKptwGeBfUk+PfhgzZ0njvVHOZMwY+dbzL2l3AZcAL4+2nFuLMlHgR8AX66q3ww+NkHH+gNGHYVZYNPA/Y3d2tipqtnu9hLwLHOnfxeTrAfobi+NbsJ5zTfj2B77qrpYVVer6nfAt/n9qfbYzJxkDXNB+F5V/bBbnrhjfSOjjsLLwJYkm5PcBuwGjox4pg9IckeSO69tA58BTjI3655utz3Ac6OZ8EPNN+MRYHeSqSSbgS3ASyOY7wOu/cPqfI65Yw1jMnOSAN8BXq+qbww8NHHH+oZGfaUTeIS5q7e/AL4y6nnmmfE+5q4e/ww4dW1O4GPAMeAN4CiwdsRzPsPc6fb7zL1vffzDZgS+0h33M8Bnx2jmfwFeA15l7h/U+jGb+UHm3hq8Cpzofh4Z92O92B+/0SipMeq3D5LGjFGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDX+F1j/GtgZmdOhAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c191dfd0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADlVJREFUeJzt3V+oHOd5x/HvU1k+Jo4LVpMKWRa1DCIgF6qEg1yoCQQ3kWMKcm6MfFF0IaIbN01KeyEnN74RpIGkdw4o2ESU1KpJYqwLY2OLgCmE2HJQbEmuYsV/sGRZSupATC8UW3l6ceY0+x7tnv03szN79P3AYWffnT376NXO77zvzOxsZCaStOxP2i5AUrcYCpIKhoKkgqEgqWAoSCoYCpIKjYVCRNwTEWci4mxEHGjqdSTVK5o4TyEi1gG/BD4PnANeAh7IzNO1v5ikWjU1UtgJnM3MNzLz98ARYHdDryWpRtc19Hs3A+/03D8H3Dlo5etjIW/gxoZKkQTwAb/9TWZ+cth6TYXCUBGxH9gPcAMf4864u61SpGvC8/nDt0dZr6npw3lgS8/9W6u2/5eZhzJzMTMX17PQUBmSxtVUKLwEbIuIrRFxPbAHONrQa0mqUSPTh8z8KCL+AXgWWAc8lpmnmngtSfVqbJ9CZj4NPN3U75fUDM9olFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUuG6aZ4cEW8BHwBXgI8yczEiNgD/CdwGvAXcn5m/na5MSbNSx0jhc5m5IzMXq/sHgGOZuQ04Vt2XNCeamD7sBg5Xy4eB+xp4DUkNmTYUEng+Il6OiP1V28bMvFAtvwdsnPI1JM3QVPsUgLsy83xE/DnwXET8d++DmZkRkf2eWIXIfoAb+NiUZUiqy1Qjhcw8X91eAp4EdgIXI2ITQHV7acBzD2XmYmYurmdhmjIk1WjiUIiIGyPipuVl4AvASeAosLdabS/w1LRFSpqdaaYPG4EnI2L59/xHZj4TES8BT0TEPuBt4P7py5Q0KxOHQma+AfxVn/b/Ae6epihJ7fGMRkkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVBo0LPvnmi7BGlshoKkwtBQiIjHIuJSRJzsadsQEc9FxOvV7c09jz0UEWcj4kxE7GqqcEnNGGWk8H3gnhVtB4BjmbkNOFbdJyK2A3uAO6rnPBIR62qrdo4sTx2cQmjeDA2FzHwBeH9F827gcLV8GLivp/1IZl7OzDeBs8DOmmqVNAOT7lPYmJkXquX3gI3V8mbgnZ71zlVt1xRHB5pnU+9ozMwEctznRcT+iDgeEcc/5PK0ZUiqyaShcDEiNgFUt5eq9vPAlp71bq3arpKZhzJzMTMX17MwYRmS6jZpKBwF9lbLe4Gnetr3RMRCRGwFtgEvTleipFka5ZDk48BPgU9FxLmI2Ad8E/h8RLwO/G11n8w8BTwBnAaeAR7MzCtNFd9Vu27Z0XYJ0sSuG7ZCZj4w4KG7B6x/EDg4TVHSqJ5994QhXDPPaNTc8lyQZhgKmksGQXMMhYb0Dml9A9djtX589t0T9nNNDAXNFTf85hkKmjsGQ7MMBa0pBsb0DIUGeaisXqP058p1DInxGQoz4ptzNnr72T6fjKHQMEcLs7Prlh1Ffy8vGw7jMRRmxHCYzigb9qB17PvxGAoz4l+r6UyyP2GZfT8eQ6FhviHrMezkJKcK9TEUZsg37HRWGy0s9+3KdZw6jM9QUOcZprNlKKjTxgkEP/9QD0OhYf0OkWkyo2zw9vH0DIUZ8q9Y81aOFuzz8RkKkgqGwgwsD2kd2jbLa1jUw1CYAd+gs2cQT85QmIGV5+RrNJOetrzrlh1XPddgHp2hMAO+IevlUYhmGQpaM0a53LsBPZyh0DDfhPUbtOH3mzZofIZCwxzGzla//vYEsvEYCjPgG3F87jdoj6GgThplg+8NjlEDwunFcIaCOqnfxjtoGuC+hHoZCuqcUS6mMi5PZhqdoaCZWP6g0qT7ClaOBlYueyiyPoaCZm6SDXTYN0wP+52OEEZnKKhxdf6VXh4xuJE357q2C5D66Xch1kH7BQyIejlSUKOamsuv3KfgPoP6GApqzKDzCMb5yz7O6MBgqIehoMYsf2S835e+Dttx2LvuaiHi1KF+Q/cpRMRjwN8BlzLzL6u2h4EvA7+uVvt6Zj5dPfYQsA+4AvxjZj7bQN2aQ8M+lzDsOf2+28HRQf1GGSl8H7inT/u/ZeaO6mc5ELYDe4A7quc8EhHr6ipW8nyE5g0Nhcx8AXh/xN+3GziSmZcz803gLLBzivp0jeudaozy1XBOJ6Y3zT6Fr0TEKxHxWETcXLVtBt7pWedc1aZrSN1HAwZNFwyAZkwaCt8Fbgd2ABeAb4/7CyJif0Qcj4jjH3J5wjLUJU1858LKQHD60LyJQiEzL2bmlcz8A/A9/jhFOA9s6Vn11qqt3+84lJmLmbm4noVJyphLa/VNO+xTjXVYeXhy0lOetbqJQiEiNvXc/RJwslo+CuyJiIWI2ApsA16crsS1Zy2+abs2lF+LfTwrQ0MhIh4Hfgp8KiLORcQ+4FsR8WpEvAJ8DvgngMw8BTwBnAaeAR7MzCuNVT/H1vqbtsmQGPS18/1ef633cxOGnqeQmQ/0aX50lfUPAgenKUrzp82Nb2UAeE3G6XhG44z1nuG3lv6KDdr4mvg3Ln9S0k9LNsNPSbZkrV9CbNBRiDo34knOkNRwjhRadK28gZu4FJqB0BxDQY3qHRGt5ZHRWuL0QbVZ7Zubei3vC3CfQDcZCpq53umEpy13j9MHtarf9RbULkNBrXNfQ7c4fVDrHCl0iyMFtW6cy7OpeY4UOm4e99D3Hl0YxFORu8uRQsd1eYNZudGPci2FYad5d/nfe61wpKCx9Y5eVguGYQyAbnKkoIlMMvc3BOaDIwWNbNwgMATmk6GgvqY5CmAYzDdD4Rq3cuOf9iPdBsL8MxSuMaN8TdukDIS1wVBY42Z5MtA8nlOhqxkKa9zKjyivdv7ANBu1ZyKuHZGZbdfAn8aGvDPubruMa0q/fQla257PH76cmYvD1nOkcI0yBDSIJy9JKhgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgpDQyEitkTETyLidEScioivVu0bIuK5iHi9ur255zkPRcTZiDgTEbua/AdIqtcoI4WPgH/OzO3AXwMPRsR24ABwLDO3Aceq+1SP7QHuAO4BHomIdU0UL6l+Q0MhMy9k5s+r5Q+A14DNwG7gcLXaYeC+ank3cCQzL2fmm8BZYGfdhUtqxlj7FCLiNuDTwM+AjZl5oXroPWBjtbwZeKfnaeeqNklzYORQiIiPAz8CvpaZv+t9LJcu9DjWxR4jYn9EHI+I4x9yeZynSmrQSKEQEetZCoQfZOaPq+aLEbGpenwTcKlqPw9s6Xn6rVVbITMPZeZiZi6uZ2HS+iXVbJSjDwE8CryWmd/peegosLda3gs81dO+JyIWImIrsA14sb6SJTVplKs5/w3w98CrEbF8XfCvA98EnoiIfcDbwP0AmXkqIp4ATrN05OLBzLxSe+WSGjE0FDLzv4AY8HDfL2vIzIPAwSnqktQSz2iUVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSITKz7RqIiF8D/wv8pu1axvQJrHkW5q3mrtb7F5n5yWErdSIUACLieGYutl3HOKx5Nuat5nmrdyWnD5IKhoKkQpdC4VDbBUzAmmdj3mqet3oLndmnIKkbujRSkNQBrYdCRNwTEWci4mxEHGi7nkEi4q2IeDUiTkTE8aptQ0Q8FxGvV7c3t1zjYxFxKSJO9rQNrDEiHqr6/UxE7OpQzQ9HxPmqr09ExL0dq3lLRPwkIk5HxKmI+GrV3um+HllmtvYDrAN+BdwOXA/8AtjeZk2r1PoW8IkVbd8CDlTLB4B/bbnGzwKfAU4OqxHYXvX3ArC1+n9Y15GaHwb+pc+6Xal5E/CZavkm4JdVbZ3u61F/2h4p7ATOZuYbmfl74Aiwu+WaxrEbOFwtHwbua7EWMvMF4P0VzYNq3A0cyczLmfkmcJal/4+ZGlDzIF2p+UJm/rxa/gB4DdhMx/t6VG2HwmbgnZ7756q2Lkrg+Yh4OSL2V20bM/NCtfwesLGd0lY1qMau9/1XIuKVanqxPAzvXM0RcRvwaeBnzG9fF9oOhXlyV2buAL4IPBgRn+19MJfGiZ0+lDMPNVa+y9KUcgdwAfh2u+X0FxEfB34EfC0zf9f72Bz19VXaDoXzwJae+7dWbZ2Tmeer20vAkywN/y5GxCaA6vZSexUONKjGzvZ9Zl7MzCuZ+Qfge/xxqN2ZmiNiPUuB8IPM/HHVPHd93U/bofASsC0itkbE9cAe4GjLNV0lIm6MiJuWl4EvACdZqnVvtdpe4Kl2KlzVoBqPAnsiYiEitgLbgBdbqO8qyxtW5Uss9TV0pOaICOBR4LXM/E7PQ3PX1321vacTuJelvbe/Ar7Rdj0Darydpb3HvwBOLdcJ/BlwDHgdeB7Y0HKdj7M03P6QpXnrvtVqBL5R9fsZ4IsdqvnfgVeBV1jaoDZ1rOa7WJoavAKcqH7u7Xpfj/rjGY2SCm1PHyR1jKEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIK/wcQNaX69xz9RQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1c54358>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADGtJREFUeJzt3E+InPd9x/H3p7K8Jo4LVp0KWRa1DCIgH6qERS7UhBQ3keOLnItRDkUHg3pwQwLtQW4O9cWQFpLeHFCIiSipVZPEWAcTY4uAKZTYclBsSa7ijf9gKbLU1IGYHhRb+fawj5L5ybve1e48O8/I7xcs+8xvntn5esy+eZ5nZpWqQpIu+aNJDyBpWIyCpIZRkNQwCpIaRkFSwyhIavQWhSR3JzmVZC7J/r6eR9J4pY/PKSRZB/wc+BxwGngB+FJVnRz7k0kaq76OFHYCc1X1WlX9FjgE7O7puSSN0TU9/dzNwFsjt08Ddyy287WZqeu4vqdRJAG8y69/VVWfWGq/vqKwpCT7gH0A1/Ex7shdkxpF+kh4tr7/5nL26+v04QywZeT2Ld3a71XVgaqararZ9cz0NIakK9VXFF4AtiXZmuRaYA9wuKfnkjRGvZw+VNX7Sf4OeBpYBzxaVSf6eC5J49XbNYWqegp4qq+fL6kffqJRUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlxzWoenOQN4F3gIvB+Vc0m2QD8B3Ar8AZwX1X9enVjSlor4zhS+Kuq2lFVs93t/cCRqtoGHOluS5oSfZw+7AYOdtsHgXt7eA5JPVltFAp4NsmLSfZ1axur6my3/TawcZXPIWkNreqaAnBnVZ1J8qfAM0n+e/TOqqoktdADu4jsA7iOj61yDEnjsqojhao6030/DzwB7ATOJdkE0H0/v8hjD1TVbFXNrmdmNWNMhad/eWzSI0jLsuIoJLk+yQ2XtoHPA8eBw8Debre9wJOrHXLaGQRNk9WcPmwEnkhy6ef8e1X9KMkLwONJ7gfeBO5b/ZiS1sqKo1BVrwF/vsD6/wJ3rWaoq4lHCZo2fqKxZ7tu3jHpEaQrYhQkNYzCGvGIQdPCKEhqGAVJDaMgqWEUJDWMgqSGUeiZH17StDEKa8C3IzVNjEKPPErQNDIKkhpGoSceJWhaGQVJDaMgqWEUJDWMQk98G1LTyiisAS86apoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jsAb8yLOmiVHomUHQtDEKPVno7x38GwhNA6MgqWEU1ohHCZoWRkFSwyhIahgFSQ2j0LPLryV4bUFDt2QUkjya5HyS4yNrG5I8k+TV7vuNI/c9mGQuyakku/oaXFI/lnOk8F3g7svW9gNHqmobcKS7TZLtwB7g9u4xjyRZN7ZpJfVuyShU1XPAO5ct7wYOdtsHgXtH1g9V1YWqeh2YA3aOadapNvrJRk8hNGQrvaawsarOdttvAxu77c3AWyP7ne7WJE2JVV9orKoC6kofl2RfkqNJjr7HhdWOIWlMVhqFc0k2AXTfz3frZ4AtI/vd0q19QFUdqKrZqppdz8wKx5gunkJoGqw0CoeBvd32XuDJkfU9SWaSbAW2Ac+vbsTp5F9Halot5y3Jx4D/Aj6Z5HSS+4GvA59L8irw191tquoE8DhwEvgR8EBVXexr+Gnn0YKG6JqldqiqLy1y112L7P8w8PBqhrpa7Lp5x5K/+E//8phHFRoUP9HYs8t/4Q2Ahs4oSGoYhQHw2oKGxChMgKcQGjKjMBAeLWgojMKEeLSgoTIKA+LRgobAKEyQRwsaIqMwYZeHwaMFTZpRGADDoCExCgPhqYSGwigMyK6bd/w+Dh4taFKMwoAZBk2CURgg/zEWTZJRGCjDoEkxCpIaRmHAPFrQJBiFgfMdCa21Jf85Ng3D5WHwcw3qi1GYMsZBffP0YUqNxsHTCo2TUZhil1+INA4aB6Mw5Rb6YyrjoNUwCleBha4rGAetlBcarxKLvW05jjB4MfOjxShcZcb9gSeD8NFjFK5i/kJrJbymIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqbFkFJI8muR8kuMjaw8lOZPkWPd1z8h9DyaZS3Iqya6+BpfUj+UcKXwXuHuB9X+tqh3d11MASbYDe4Dbu8c8kmTduIaV1L8lo1BVzwHvLPPn7QYOVdWFqnodmAN2rmI+SWtsNdcUvpzkpe704sZubTPw1sg+p7s1SVNipVH4FnAbsAM4C3zjSn9Akn1JjiY5+h4XVjiGpHFbURSq6lxVXayq3wHf5g+nCGeALSO73tKtLfQzDlTVbFXNrmdmJWNI6sGKopBk08jNLwKX3pk4DOxJMpNkK7ANeH51I0paS0v+IytJHgM+C9yU5DTwT8Bnk+wACngD+FuAqjqR5HHgJPA+8EBVXexndEl9SFVNegb+OBvqjtw16TGkq9qz9f0Xq2p2qf38RKOkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUmPJKCTZkuTHSU4mOZHkK936hiTPJHm1+37jyGMeTDKX5FSSXX3+B0gar+UcKbwP/H1VbQf+AnggyXZgP3CkqrYBR7rbdPftAW4H7gYeSbKuj+Eljd+SUaiqs1X10277XeAVYDOwGzjY7XYQuLfb3g0cqqoLVfU6MAfsHPfgkvpxRdcUktwKfAr4CbCxqs52d70NbOy2NwNvjTzsdLcmaQosOwpJPg78APhqVf1m9L6qKqCu5ImT7EtyNMnR97hwJQ+V1KNlRSHJeuaD8L2q+mG3fC7Jpu7+TcD5bv0MsGXk4bd0a42qOlBVs1U1u56Zlc4vacyW8+5DgO8Ar1TVN0fuOgzs7bb3Ak+OrO9JMpNkK7ANeH58I0vq0zXL2Ocvgb8BXk5yrFv7R+DrwONJ7gfeBO4DqKoTSR4HTjL/zsUDVXVx7JNL6sWSUaiq/wSyyN13LfKYh4GHVzGXpAnxE42SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNRIVU16BpL8D/B/wK8mPcsVuglnXgvTNvNQ5/2zqvrEUjsNIgoASY5W1eyk57gSzrw2pm3maZv3cp4+SGoYBUmNIUXhwKQHWAFnXhvTNvO0zdsYzDUFScMwpCMFSQMw8SgkuTvJqSRzSfZPep7FJHkjyctJjiU52q1tSPJMkle77zdOeMZHk5xPcnxkbdEZkzzYve6nkuwa0MwPJTnTvdbHktwzsJm3JPlxkpNJTiT5Src+6Nd62apqYl/AOuAXwG3AtcDPgO2TnOlDZn0DuOmytX8B9nfb+4F/nvCMnwE+DRxfakZge/d6zwBbu/8P6wYy80PAPyyw71Bm3gR8utu+Afh5N9ugX+vlfk36SGEnMFdVr1XVb4FDwO4Jz3QldgMHu+2DwL0TnIWqeg5457LlxWbcDRyqqgtV9Towx/z/jzW1yMyLGcrMZ6vqp932u8ArwGYG/lov16SjsBl4a+T26W5tiAp4NsmLSfZ1axur6my3/TawcTKjfajFZhz6a//lJC91pxeXDsMHN3OSW4FPAT9hel/rxqSjME3urKodwBeAB5J8ZvTOmj9OHPRbOdMwY+dbzJ9S7gDOAt+Y7DgLS/Jx4AfAV6vqN6P3TdFr/QGTjsIZYMvI7Vu6tcGpqjPd9/PAE8wf/p1Lsgmg+35+chMuarEZB/vaV9W5qrpYVb8Dvs0fDrUHM3OS9cwH4XtV9cNueepe64VMOgovANuSbE1yLbAHODzhmT4gyfVJbri0DXweOM78rHu73fYCT05mwg+12IyHgT1JZpJsBbYBz09gvg+49IvV+SLzrzUMZOYkAb4DvFJV3xy5a+pe6wVN+koncA/zV29/AXxt0vMsMuNtzF89/hlw4tKcwJ8AR4BXgWeBDROe8zHmD7ffY/689f4PmxH4Wve6nwK+MKCZ/w14GXiJ+V+oTQOb+U7mTw1eAo51X/cM/bVe7pefaJTUmPTpg6SBMQqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpMb/A970YB8SfLKJAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1a09fd0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADOtJREFUeJzt3U+IXfd5h/HnW1mWieOCVadClkUtg1qQF1XCIBdqQoqbyPFGzsYoi6KFQV24IYF2ITeLemNIS5NuSgIKMVFLatUkMdYixNgiYAolthwUW5KrWPEfLFmWmjoQ04ViK28Xc9Tcn6TRjGbun3Pk5wPDnPu79859c819cs49d0apKiTpgt+Z9QCS+sUoSGoYBUkNoyCpYRQkNYyCpMbEopDk3iTHk5xIsmdSjyNpvDKJzykkWQX8DPg0cBJ4Afh8VR0b+4NJGqtJ7SlsA05U1WtV9WtgP7BjQo8laYyum9DP3QC8NXL5JHDXQje+PmvqBm6c0CiSAN7jl7+oqo8tdrtJRWFRSXYDuwFu4CPclXtmNYr0ofBsfffNpdxuUocPp4CNI5dv69b+X1Xtraq5qppbzZoJjSHpak0qCi8Am5NsSnI9sBM4MKHHkjRGEzl8qKoPkvwV8DSwCnisqo5O4rEkjdfE3lOoqh8AP5jUz5c0GX6iUVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpcd1K7pzkDeA94DzwQVXNJVkL/DtwO/AG8EBV/XJlY0qalnHsKfxZVW2tqrnu8h7gYFVtBg52lyUNxCQOH3YA+7rtfcD9E3gMSROy0igU8GySF5Ps7tbWVdXpbvsdYN0KH0PSFK3oPQXg7qo6leT3gWeS/NfolVVVSepyd+wishvgBj6ywjEkjcuK9hSq6lT3/SzwJLANOJNkPUD3/ewC991bVXNVNbeaNSsZQ9IYLTsKSW5MctOFbeAzwBHgALCru9ku4KmVDilpelZy+LAOeDLJhZ/zb1X1wyQvAE8keRB4E3hg5WNKmpZlR6GqXgP++DLr/wPcs5KhJM2On2icgqffPjzrEaQlMwpTsP3WrbMeQVoyoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jMEF+klFDZBQkNYzChFzYS3BvQUNjFCbAEGjIjIKkhlGQ1DAKY+ahg4bOKEyBodCQGAVJDaMgqWEUJDWMwhj53oGuBUZBUsMoSGoYhTHyT7nrWmAUJDWMwhS4B6EhMQpjZgA0dEZhAkbDsP3WrZ6q1KAYhQm4OALuPWhIjMIEGQMNkVGYsKffPuzhgwbFKEzQaAwMg4bCKIzZlV78hkFDYBSmzDCo74yCpMaiUUjyWJKzSY6MrK1N8kySV7vvN49c93CSE0mOJ9k+qcH7yjMOGrql7Cl8G7j3orU9wMGq2gwc7C6TZAuwE7izu8/Xk6wa27SSJm7RKFTVc8C7Fy3vAPZ12/uA+0fW91fVuap6HTgBbBvTrJKmYLnvKayrqtPd9jvAum57A/DWyO1OdmuSBmLFbzRWVQF1tfdLsjvJoSSH3ufcSsfolcXeV/AMhPpsuVE4k2Q9QPf9bLd+Ctg4crvburVLVNXeqpqrqrnVrFnmGJLGbblROADs6rZ3AU+NrO9MsibJJmAz8PzKRhwm9xY0VEs5Jfk48J/AHyU5meRB4CvAp5O8Cvx5d5mqOgo8ARwDfgg8VFXnJzV833l6UkN03WI3qKrPL3DVPQvc/lHg0ZUMJWl2/ETjhLm3oKExClOy/datlwTC9xXUR0Zhxvx7C+obozBGC724PYTQkBiFMVrKi99AqO+MwpQttDfhIYT6wihM2eXecLzAMKgPjIKkhlGYkYX2GNxb0KwZhR4yDJolozBj7jGob4yCpIZR6An3FtQXRqFHDIP6wCj0jGHQrBmFgTAMmhajIKlhFHrIj0Frlhb9c2yajdEwXOmftPe3LjVu7ikMwJVe+O49aNyMwkBc6bcrpXEyCgOz0ClL/6ybxsUoXGMuhMFAaLky/09BztbvZm3dlcv+MxJawEpf9B6KfPg8W999sarmFrudZx8G6sKLerlx8CyGFuLhw8CN48VsEDTKKFwDfFFrnDx8uEZc6Replnrd6CHF9lu38vTbhycenGk8hq6OewrXsCt9tuHi60ZfnBd/XynPhAyLZx80Ve4ZzM5Szz64p6CpGf0MxeiHrdyT6BejoKm50qGM+sMoaKoMQP959mHCPIa+lM9Hv7mnIKlhFCbM/1fU0CwahSSPJTmb5MjI2iNJTiU53H3dN3Ldw0lOJDmeZPukBh8Kf6VZQ7OU9xS+Dfwz8C8Xrf9TVf3j6EKSLcBO4E7gVuDZJH9YVefHMOsguaegoVl0T6GqngPeXeLP2wHsr6pzVfU6cALYtoL5JE3ZSt5T+EKSl7rDi5u7tQ3AWyO3OdmtSRqI5UbhG8AdwFbgNPDVq/0BSXYnOZTk0PucW+YYksZtWVGoqjNVdb6qfgN8k98eIpwCNo7c9LZu7XI/Y29VzVXV3GrWLGcMSROwrCgkWT9y8XPAhTMTB4CdSdYk2QRsBp5f2YiSpmnRsw9JHgc+BdyS5CTwd8CnkmwFCngD+EuAqjqa5AngGPAB8NCH+cyDNET+6rT0IeGvTktaFqMgqWEUJDWMgqSGf09BM3HxX45WfxgFzYQh6C8PHyQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqLBqFJBuT/CjJsSRHk3yxW1+b5Jkkr3bfbx65z8NJTiQ5nmT7JP8HSBqvpewpfAD8dVVtAf4EeCjJFmAPcLCqNgMHu8t01+0E7gTuBb6eZNUkhpc0fotGoapOV9VPuu33gFeADcAOYF93s33A/d32DmB/VZ2rqteBE8C2cQ8uaTKu6j2FJLcDHwd+DKyrqtPdVe8A67rtDcBbI3c72a1JGoAlRyHJR4HvAV+qql+NXldVBdTVPHCS3UkOJTn0Pueu5q6SJmhJUUiymvkgfKeqvt8tn0myvrt+PXC2Wz8FbBy5+23dWqOq9lbVXFXNrWbNcueXNGZLOfsQ4FvAK1X1tZGrDgC7uu1dwFMj6zuTrEmyCdgMPD++kSVN0nVLuM2fAn8BvJzkcLf2t8BXgCeSPAi8CTwAUFVHkzwBHGP+zMVDVXV+7JNLmohFo1BV/wFkgavvWeA+jwKPrmAuSTPiJxolNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKmRqpr1DCT5b+B/gV/MepardAvOPA1Dm7mv8/5BVX1ssRv1IgoASQ5V1dys57gazjwdQ5t5aPNezMMHSQ2jIKnRpyjsnfUAy+DM0zG0mYc2b6M37ylI6oc+7SlI6oGZRyHJvUmOJzmRZM+s51lIkjeSvJzkcJJD3draJM8kebX7fvOMZ3wsydkkR0bWFpwxycPd8348yfYezfxIklPdc304yX09m3ljkh8lOZbkaJIvduu9fq6XrKpm9gWsAn4O3AFcD/wU2DLLma4w6xvALRet/QOwp9veA/z9jGf8JPAJ4MhiMwJbuud7DbCp+++wqiczPwL8zWVu25eZ1wOf6LZvAn7Wzdbr53qpX7PeU9gGnKiq16rq18B+YMeMZ7oaO4B93fY+4P4ZzkJVPQe8e9HyQjPuAPZX1bmqeh04wfx/j6laYOaF9GXm01X1k277PeAVYAM9f66XatZR2AC8NXL5ZLfWRwU8m+TFJLu7tXVVdbrbfgdYN5vRrmihGfv+3H8hyUvd4cWF3fDezZzkduDjwI8Z7nPdmHUUhuTuqtoKfBZ4KMknR6+s+f3EXp/KGcKMnW8wf0i5FTgNfHW241xeko8C3wO+VFW/Gr1uQM/1JWYdhVPAxpHLt3VrvVNVp7rvZ4Enmd/9O5NkPUD3/ezsJlzQQjP29rmvqjNVdb6qfgN8k9/uavdm5iSrmQ/Cd6rq+93y4J7ry5l1FF4ANifZlOR6YCdwYMYzXSLJjUluurANfAY4wvysu7qb7QKems2EV7TQjAeAnUnWJNkEbAaen8F8l7jwwup8jvnnGnoyc5IA3wJeqaqvjVw1uOf6smb9TidwH/Pv3v4c+PKs51lgxjuYf/f4p8DRC3MCvwccBF4FngXWznjOx5nf3X6f+ePWB680I/Dl7nk/Dny2RzP/K/Ay8BLzL6j1PZv5buYPDV4CDndf9/X9uV7ql59olNSY9eGDpJ4xCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkxv8B+S21TXGAIa8AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1cb5f60>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADGVJREFUeJzt3U+onfWdx/H3Z2KM1Dpgxk6IMYwRQiEuJi2XODBSOjhtrJvYjaSLIQshs3BKCzOLOF2MG6Ez0M7OQkqlYeiYkbZiFlLRUJCBoRpLapM4qal/MDEm07FQmUWq6XcW98n0/GKu9+be89znOc77BZfznN95zj1fj+TN8zznRFNVSNIlfzD0AJLGxShIahgFSQ2jIKlhFCQ1jIKkRm9RSHJ3kpNJTiXZ19frSJqu9PE9hSRrgF8AnwNOAy8AX6qqE1N/MUlT1deRwg7gVFW9WlW/BQ4Cu3p6LUlTdE1Pv3cT8ObE/dPAHQvtfG3W1XVc39MokgDe5de/qqpPLLZfX1FYVJK9wF6A6/gYd+SuoUaR/l94tr7/xlL26+v04QyweeL+Ld3a/6mq/VU1V1Vza1nX0xiSrlZfUXgB2JpkS5Jrgd3AoZ5eS9IU9XL6UFXvJ/kb4GlgDfBoVR3v47UkTVdv1xSq6ingqb5+v6R++I1GSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqTGNSt5cpLXgXeBi8D7VTWXZD3wb8CtwOvAfVX165WNKWm1TONI4S+qantVzXX39wGHq2orcLi7L2lG9HH6sAs40G0fAO7t4TUk9WSlUSjg2SQvJtnbrW2oqrPd9tvAhhW+hqRVtKJrCsCdVXUmyR8DzyT5z8kHq6qS1JWe2EVkL8B1fGyFY0ialhUdKVTVme72PPAEsAM4l2QjQHd7foHn7q+quaqaW8u6lYwhaYqWHYUk1ye54dI28HngGHAI2NPttgd4cqVDSlo9Kzl92AA8keTS7/nXqvpRkheAx5PcD7wB3LfyMWfT028dBWDnzdsHnkRaumVHoapeBf70Cuv/Ddy1kqEkDcdvNEpqGAVJDaMgqWEUenLpIqM0a4xCT/zEQbPKKEhqGAVJDaMgqWEUeuKFRs0qoyCpYRR64FGCZplR6JkfTWrWGAVJDaPQA48ONMuMQg+8pqBZZhSmzCBo1hkFSQ2j0COvLWgWGQVJDaMgqWEUpsxTBs06o9AjP4nQLDIKkhpGQVLDKEyZpwyadUZBUsMo9MhPIjSLjIKkhlFYJV5r0KwwCpIaRmEVebSgWWAUVoEx0CwxCpIaRqEnfhypWWUUJDWMQg88StAsWzQKSR5Ncj7JsYm19UmeSfJKd3vjxGMPJjmV5GSSnX0NLqkfSzlS+C5w92Vr+4DDVbUVONzdJ8k2YDdwe/ecR5Ksmdq0I+enDPooWDQKVfUc8M5ly7uAA932AeDeifWDVXWhql4DTgE7pjSrpFWw3GsKG6rqbLf9NrCh294EvDmx3+luTdKMWPGFxqoqoK72eUn2JjmS5Mh7XFjpGJKmZLlROJdkI0B3e75bPwNsntjvlm7tA6pqf1XNVdXcWtYtc4xx8tqCZtlyo3AI2NNt7wGenFjfnWRdki3AVuD5lY0oaTUt5SPJx4D/AD6Z5HSS+4GvA59L8grwl919quo48DhwAvgR8EBVXexr+LG6/HsKfm9Bs+SaxXaoqi8t8NBdC+z/MPDwSob6KNp583aefusoT7911Eho1PxG4xTtvHn7kv7Ae81BY2YUVtFkMAyDxsooDMgwaIyMwipb6imGNBSjMDCPFjQ2RmEgHi1orIzCCHi0oDExCgPyaEFjZBQGdikMHi1oLIzCiBgGjYFRGAFPIzQmRmEkPI3QWBiFETEMGgOjMDKTYTAOGoJRGCH/4pSGZBRGyjBoKEZhxAyDhmAURm7yb1V6nUGrwSjMCI8atFqMgqSGUZghfvNRq8EozJhL1xg8hVBfjMIMMwzqg1GYUX4iob4YhRl2+ScSxkHTsOj/IUrj9mFh8MKklsMofIQYAU2Dpw+SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIai0YhyaNJzic5NrH2UJIzSY52P/dMPPZgklNJTibZ2dfgkvqxlCOF7wJ3X2H9n6tqe/fzFECSbcBu4PbuOY8kWTOtYSX1b9EoVNVzwDtL/H27gINVdaGqXgNOATtWMJ+kVbaSawpfTvJSd3pxY7e2CXhzYp/T3ZqkGbHcKHwLuA3YDpwFvnG1vyDJ3iRHkhx5jwvLHEPStC0rClV1rqouVtXvgG/z+1OEM8DmiV1v6dau9Dv2V9VcVc2tZd1yxpDUg2VFIcnGibtfBC59MnEI2J1kXZItwFbg+ZWNKGk1LfofWUnyGPBZ4KYkp4F/AD6bZDtQwOvAXwNU1fEkjwMngPeBB6rqYj+jS+pDqmroGfjDrK87ctfQY0gfac/W91+sqrnF9vMbjZIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjUWjkGRzkh8nOZHkeJKvdOvrkzyT5JXu9saJ5zyY5FSSk0l29vkPIGm6lnKk8D7wt1W1Dfgz4IEk24B9wOGq2goc7u7TPbYbuB24G3gkyZo+hpc0fYtGoarOVtVPu+13gZeBTcAu4EC32wHg3m57F3Cwqi5U1WvAKWDHtAeX1I+ruqaQ5FbgU8BPgA1VdbZ76G1gQ7e9CXhz4mmnuzVJM2DJUUjyceAHwFer6jeTj1VVAXU1L5xkb5IjSY68x4WreaqkHi0pCknWMh+E71XVD7vlc0k2do9vBM5362eAzRNPv6Vba1TV/qqaq6q5taxb7vySpmwpnz4E+A7wclV9c+KhQ8CebnsP8OTE+u4k65JsAbYCz09vZEl9umYJ+/w58FfAz5Mc7db+Hvg68HiS+4E3gPsAqup4kseBE8x/cvFAVV2c+uSSerFoFKrq34Es8PBdCzznYeDhFcwlaSB+o1FSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhqpqqFnIMl/Af8D/GroWa7STTjzapi1mcc6759U1ScW22kUUQBIcqSq5oae42o48+qYtZlnbd7LefogqWEUJDXGFIX9Qw+wDM68OmZt5lmbtzGaawqSxmFMRwqSRmDwKCS5O8nJJKeS7Bt6noUkeT3Jz5McTXKkW1uf5Jkkr3S3Nw4846NJzic5NrG24IxJHuze95NJdo5o5oeSnOne66NJ7hnZzJuT/DjJiSTHk3ylWx/1e71kVTXYD7AG+CVwG3At8DNg25AzfcisrwM3Xbb2T8C+bnsf8I8Dz/gZ4NPAscVmBLZ17/c6YEv372HNSGZ+CPi7K+w7lpk3Ap/utm8AftHNNur3eqk/Qx8p7ABOVdWrVfVb4CCwa+CZrsYu4EC3fQC4d8BZqKrngHcuW15oxl3Awaq6UFWvAaeY//exqhaYeSFjmflsVf20234XeBnYxMjf66UaOgqbgDcn7p/u1saogGeTvJhkb7e2oarOdttvAxuGGe1DLTTj2N/7Lyd5qTu9uHQYPrqZk9wKfAr4CbP7XjeGjsIsubOqtgNfAB5I8pnJB2v+OHHUH+XMwoydbzF/SrkdOAt8Y9hxrizJx4EfAF+tqt9MPjZD7/UHDB2FM8Dmifu3dGujU1VnutvzwBPMH/6dS7IRoLs9P9yEC1poxtG+91V1rqouVtXvgG/z+0Pt0cycZC3zQfheVf2wW5659/pKho7CC8DWJFuSXAvsBg4NPNMHJLk+yQ2XtoHPA8eYn3VPt9se4MlhJvxQC814CNidZF2SLcBW4PkB5vuAS3+wOl9k/r2GkcycJMB3gJer6psTD83ce31FQ1/pBO5h/urtL4GvDT3PAjPexvzV458Bxy/NCfwRcBh4BXgWWD/wnI8xf7j9HvPnrfd/2IzA17r3/STwhRHN/C/Az4GXmP8DtXFkM9/J/KnBS8DR7ueesb/XS/3xG42SGkOfPkgaGaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGr8L6cFXapY8yQHAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9795837c88>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADLVJREFUeJzt3U2sXPV9h/HnW2OMQqiES2o5xipG8sYs6kRXplJRRIUaEzYmG+QuKi+Q3AWNEqldmGYRNpHSSkl3RHIUFKtKca0kCC9QEViRUDcBEznENnFweBE2xm5KpKAuHHB+XdzjZv7mvt85d86Y5yNdzZn/vP0YNI/OOXd0napCkq76o0kPIGlYjIKkhlGQ1DAKkhpGQVLDKEhq9BaFJPcnOZPkbJIDfb2OpPFKH99TSLIO+CXw18A54CXgb6rq9NhfTNJY9bWnsAs4W1WvV9XvgMPAnp5eS9IY3dDT824B3h65fg64e74735gNdRM39zSKJID3+c2vq+pTi92vrygsKsl+YD/ATXyCu3PfpEaRPhaerx+8tZT79XX4cB7YOnL99m7t/1XVwaqaqaqZ9WzoaQxJy9VXFF4CtifZluRGYC9wtKfXkjRGvRw+VNWHSf4eeBZYBzxRVaf6eC1J49XbOYWqegZ4pq/nl9QPv9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNS4YTUPTvIm8D5wBfiwqmaSbAT+A7gDeBN4qKp+s7oxJa2Vcewp/FVV7ayqme76AeBYVW0HjnXXJU2JPg4f9gCHuu1DwIM9vIaknqw2CgU8n+TlJPu7tU1VdaHbfhfYtMrXkLSGVnVOAbinqs4n+VPguSS/GL2xqipJzfXALiL7AW7iE6scQ9K4rGpPoarOd5eXgKeAXcDFJJsBustL8zz2YFXNVNXMejasZgxJY7TiKCS5OcktV7eBzwMngaPAvu5u+4CnVzukpLWzmsOHTcBTSa4+z79X1X8meQk4kuRh4C3godWPKWmtrDgKVfU68OdzrP8PcN9qhpI0OX6jUVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRR68Ow7J3j2nROTHkNaEaPQI8OgaWQUxswQaNoZhTEyCLoeGAVJDaMgqWEUJDWMQo92f3rnpEeQls0oSGoYhR75JSZNI6PQMw8hNG2MgqSGUZDUMAo985yCpo1R6JnnFDRtjIKkhlGQ1DAKkhpGoWeeaNS0MQprwDBomhiFNWIYNC2MgqSGUZDUMApryEMITYNFo5DkiSSXkpwcWduY5Lkkr3WXt47c9miSs0nOJNnd1+CS+rGUPYXvAfdfs3YAOFZV24Fj3XWS7AD2And1j3k8ybqxTSupd4tGoapeAN67ZnkPcKjbPgQ8OLJ+uKouV9UbwFlg15hmlbQGVnpOYVNVXei23wU2ddtbgLdH7neuW5M0JVZ9orGqCqjlPi7J/iTHkxz/gMurHUPSmKw0CheTbAboLi916+eBrSP3u71b+4iqOlhVM1U1s54NKxxj+vgbCA3dSqNwFNjXbe8Dnh5Z35tkQ5JtwHbgxdWNKGkt3bDYHZI8CdwL3JbkHPA14BvAkSQPA28BDwFU1akkR4DTwIfAI1V1pafZJfUgs6cEJuuPs7Huzn2THmMsrh4ejP7FpbkOGfyLTFprz9cPXq6qmcXu5zca18BcAfDcgobKKEhqGIUx2/3pnXPuGbi3oGlhFHrgh13TzCj0YDknEQ2IhsYorCF/46BpYBQGwL0FDYlRGAjDoKEwCmtsoUOIZ985YRw0cUZhAjy3oCEzChNiGDRURmGC5vuik4cQmiSjMACGQUNiFAbMMGgSjMJAzHeOwTBorRmFAfEcg4bAKEwJw6C1YhQGyEMJTZJRGKiFDiWMg/pkFAZuob2GocRhKHNoPIzCFFjoLzlN8gM51x+p1fQzClPi2g/etTFYyzgYg+ubUZgSz75zYsFDidE9h6UG4ur9Ri/n2x5lDK5v/rsPU2ahD/xSojF6fSV7FwZhei31330wClNquXFY7eGFMZh+S43Cov9snKbP6DG/MdByeU5hSs33PYZRSwnC1ecYfb5rL/Xx4uHDdWyhPQY/8B8/Hj4IaD/8hkBL4eHDdcwgaCWMgpZsru8w6PpjFLSouQLgnsf1yyhoQXN969EgXN880agFGYCPH/cUJDWMgqTGolFI8kSSS0lOjqw9luR8khPdzwMjtz2a5GySM0l29zW4pH4sZU/he8D9c6z/a1Xt7H6eAUiyA9gL3NU95vEk68Y1rKT+LRqFqnoBeG+Jz7cHOFxVl6vqDeAssGsV80laY6s5p/ClJK90hxe3dmtbgLdH7nOuW5M0JVYahW8DdwI7gQvAN5f7BEn2Jzme5PgHXF7hGJLGbUVRqKqLVXWlqn4PfIc/HCKcB7aO3PX2bm2u5zhYVTNVNbOeDSsZQ1IPVhSFJJtHrn4RuPqbiaPA3iQbkmwDtgMvrm5ESWtp0W80JnkSuBe4Lck54GvAvUl2AgW8CfwdQFWdSnIEOA18CDxSVVf6GV1SH/wjK9LHxFL/yIrfaJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaiwahSRbk/w4yekkp5J8uVvfmOS5JK91l7eOPObRJGeTnEmyu8//AEnjtZQ9hQ+Bf6iqHcBfAI8k2QEcAI5V1XbgWHed7ra9wF3A/cDjSdb1Mbyk8Vs0ClV1oap+2m2/D7wKbAH2AIe6ux0CHuy29wCHq+pyVb0BnAV2jXtwSf1Y1jmFJHcAnwF+AmyqqgvdTe8Cm7rtLcDbIw87161JmgJLjkKSTwI/BL5SVb8dva2qCqjlvHCS/UmOJzn+AZeX81BJPVpSFJKsZzYI36+qH3XLF5Ns7m7fDFzq1s8DW0cefnu31qiqg1U1U1Uz69mw0vkljdlSfvsQ4LvAq1X1rZGbjgL7uu19wNMj63uTbEiyDdgOvDi+kSX16YYl3Ocvgb8Ffp7kRLf2T8A3gCNJHgbeAh4CqKpTSY4Ap5n9zcUjVXVl7JNL6sWiUaiq/wIyz833zfOYrwNfX8VckibEbzRKahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVIjVTXpGUjy38D/Ar+e9CzLdBvOvBambeahzvtnVfWpxe40iCgAJDleVTOTnmM5nHltTNvM0zbvtTx8kNQwCpIaQ4rCwUkPsALOvDambeZpm7cxmHMKkoZhSHsKkgZg4lFIcn+SM0nOJjkw6Xnmk+TNJD9PciLJ8W5tY5LnkrzWXd464RmfSHIpycmRtXlnTPJo976fSbJ7QDM/luR8916fSPLAwGbemuTHSU4nOZXky936oN/rJauqif0A64BfAXcCNwI/A3ZMcqYFZn0TuO2atX8BDnTbB4B/nvCMnwM+C5xcbEZgR/d+bwC2df8f1g1k5seAf5zjvkOZeTPw2W77FuCX3WyDfq+X+jPpPYVdwNmqer2qfgccBvZMeKbl2AMc6rYPAQ9OcBaq6gXgvWuW55txD3C4qi5X1RvAWWb/f6ypeWaez1BmvlBVP+223wdeBbYw8Pd6qSYdhS3A2yPXz3VrQ1TA80leTrK/W9tUVRe67XeBTZMZbUHzzTj09/5LSV7pDi+u7oYPbuYkdwCfAX7C9L7XjUlHYZrcU1U7gS8AjyT53OiNNbufOOhf5UzDjJ1vM3tIuRO4AHxzsuPMLckngR8CX6mq347eNkXv9UdMOgrnga0j12/v1ganqs53l5eAp5jd/buYZDNAd3lpchPOa74ZB/veV9XFqrpSVb8HvsMfdrUHM3OS9cwG4ftV9aNueere67lMOgovAduTbEtyI7AXODrhmT4iyc1Jbrm6DXweOMnsrPu6u+0Dnp7MhAuab8ajwN4kG5JsA7YDL05gvo+4+sHqfJHZ9xoGMnOSAN8FXq2qb43cNHXv9ZwmfaYTeIDZs7e/Ar466XnmmfFOZs8e/ww4dXVO4E+AY8BrwPPAxgnP+SSzu9sfMHvc+vBCMwJf7d73M8AXBjTzvwE/B15h9gO1eWAz38PsocErwInu54Ghv9dL/fEbjZIakz58kDQwRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1Pg/ScrSTlbZ+JEAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97ba1cacf8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADI1JREFUeJzt3U+sXPV5h/HnW2MuCqESLqnlGKsYyRuzqBNdmUpFERVqTNiYbJCzqLxAchc0SqR2YZpF2CCllZLuiOQoKFaV4lpJEF6gIrAioW4CJnKIbeJwwx9hx9hNiRTUhQPO28U9JvMzvtx/M/ecMc9Hupozvzlz52Ws++icc8cmVYUkXfYnfQ8gaViMgqSGUZDUMAqSGkZBUsMoSGpMLApJ7k1yOslckv2Teh1J45VJfE4hyTrgl8DfAmeAF4EvVdWpsb+YpLGa1JHCTmCuql6rqt8Dh4DdE3otSWN03YS+72bgrZH7Z4A7F9r5+szUDdw4oVEkAbzLb39TVZ9abL9JRWFRSfYB+wBu4BPcmXv6GkX6WHiufvDmUvab1OnDWWDLyP1bu7UPVNWBqpqtqtn1zExoDEnLNakovAhsS7I1yfXAHuDIhF5L0hhN5PShqt5P8g/AM8A64PGqOjmJ15I0XhO7plBVTwNPT+r7S5oMP9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNS4bjVPTvIG8C5wCXi/qmaTbAD+E7gNeAN4oKp+u7oxJa2VcRwp/E1V7aiq2e7+fuBoVW0Djnb3JU2JSZw+7AYOdtsHgfsn8BqSJmS1USjguSQvJdnXrW2sqnPd9tvAxlW+hqQ1tKprCsBdVXU2yZ8Dzyb5xeiDVVVJ6mpP7CKyD+AGPrHKMSSNy6qOFKrqbHd7AXgS2AmcT7IJoLu9sMBzD1TVbFXNrmdmNWNIGqMVRyHJjUluurwNfB44ARwB9na77QWeWu2QktbOak4fNgJPJrn8ff6jqv4ryYvA4SQPAm8CD6x+TElrZcVRqKrXgL+8yvr/AvesZihJ/fETjRPyzK+P9z2CtCJGQVLDKEhqGIUJ8hRC08goSGoYhQnzaEHTxihIahgFSQ2jMGG7Pr2j7xGkZTEKkhpGYQIuX1z0KEHTyChIahiFCfEoQdPKKEhqGAVJDaMwZpcvMvpJRk0royCpYRTGaPTowAuNmlZGQVLDKEhqGIUJ8NRB08woSGoYhTHzKEHTziiMkUHQtcAoSGoYBUkNozBGfrRZ1wKjMGaGQdPOKEhqGAVJDaMgqWEUxsjPKehaYBQkNYyCpIZRkNQwChPgZxU0zRaNQpLHk1xIcmJkbUOSZ5O82t3ePPLYw0nmkpxOsmtSg0uajKUcKXwPuPeKtf3A0araBhzt7pNkO7AHuKN7zmNJ1o1t2inhbyE0zRaNQlU9D7xzxfJu4GC3fRC4f2T9UFVdrKrXgTlg55hmlbQGVnpNYWNVneu23wY2dtubgbdG9jvTrX3seZ1B02LVFxqrqoBa7vOS7EtyLMmx97i42jEGwR98XQtWGoXzSTYBdLcXuvWzwJaR/W7t1j6kqg5U1WxVza5nZoVjDM/VricYC02TlUbhCLC3294LPDWyvifJTJKtwDbghdWNOD0Wu8BoHDQNrltshyRPAHcDtyQ5A3wd+AZwOMmDwJvAAwBVdTLJYeAU8D7wUFVdmtDskiZg0ShU1ZcWeOieBfZ/FHh0NUNJ6o+faJTUMAqSGkZhjXmxUUNnFCQ1jEIPPFrQkBmFNeBfkNI0MQpr5MoweLSgoTIKa8gjBk0Do9AjjxY0REZhjXkaoaEzCgNgGDQkRqEH/vVqDZlR6IkXHTVURmFAPFrQEBiFHnkaoSEyCj3zNEJDYxQGwDBoSIzCQIyGwVMI9ckoDMiuT+/4IA6GQX0xCgN0OQ6GQX0wCgPmUYP6YBSmhGHQWln0n3hX/652xOBvLDQpRmGKjF5nuPLIwUhoXDx9mDIL/fA/8+vjH3xJq2EUptBS/p+VxkErZRSmlKcLmhSvKUyxjzqVGL1di9fUtcMoXIOW84O73HB4gfPaZxQ+5hY72liMvya99hgFXdVK/oHZhfYxFtPFKGhJVvK3OI3BdDIKWjZ/2K9t/kpSUsMoSGoYBUmNRaOQ5PEkF5KcGFl7JMnZJMe7r/tGHns4yVyS00l2TWpwSZOxlCOF7wH3XmX936pqR/f1NECS7cAe4I7uOY8lWTeuYSVN3qJRqKrngXeW+P12A4eq6mJVvQ7MATtXMZ+kNbaaawpfTvJyd3pxc7e2GXhrZJ8z3ZqkKbHSKHwbuB3YAZwDvrncb5BkX5JjSY69x8UVjiFp3FYUhao6X1WXquoPwHf44ynCWWDLyK63dmtX+x4Hqmq2qmbXM7OSMSRNwIqikGTTyN0vApd/M3EE2JNkJslWYBvwwupGlLSWFv2Yc5IngLuBW5KcAb4O3J1kB1DAG8DfA1TVySSHgVPA+8BDVXVpMqNLmoRUVd8z8KfZUHfmnr7HkK5pz9UPXqqq2cX28xONkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUmNRaOQZEuSHyc5leRkkq906xuSPJvk1e725pHnPJxkLsnpJLsm+R8gabyWcqTwPvCPVbUd+CvgoSTbgf3A0araBhzt7tM9tge4A7gXeCzJukkML2n8Fo1CVZ2rqp922+8CrwCbgd3AwW63g8D93fZu4FBVXayq14E5YOe4B5c0Gcu6ppDkNuAzwE+AjVV1rnvobWBjt70ZeGvkaWe6NUlTYMlRSPJJ4IfAV6vqd6OPVVUBtZwXTrIvybEkx97j4nKeKmmClhSFJOuZD8L3q+pH3fL5JJu6xzcBF7r1s8CWkaff2q01qupAVc1W1ex6ZlY6v6QxW8pvHwJ8F3ilqr418tARYG+3vRd4amR9T5KZJFuBbcAL4xtZ0iRdt4R9/hr4O+DnSY53a/8MfAM4nORB4E3gAYCqOpnkMHCK+d9cPFRVl8Y+uaSJWDQKVfXfQBZ4+J4FnvMo8Ogq5pLUEz/RKKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjVRV3zOQ5H+A/wN+0/csy3QLzrwWpm3moc77F1X1qcV2GkQUAJIcq6rZvudYDmdeG9M287TNeyVPHyQ1jIKkxpCicKDvAVbAmdfGtM08bfM2BnNNQdIwDOlIQdIA9B6FJPcmOZ1kLsn+vudZSJI3kvw8yfEkx7q1DUmeTfJqd3tzzzM+nuRCkhMjawvOmOTh7n0/nWTXgGZ+JMnZ7r0+nuS+gc28JcmPk5xKcjLJV7r1Qb/XS1ZVvX0B64BfAbcD1wM/A7b3OdNHzPoGcMsVa/8K7O+29wP/0vOMnwM+C5xYbEZge/d+zwBbuz+HdQOZ+RHgn66y71Bm3gR8ttu+CfhlN9ug3+ulfvV9pLATmKuq16rq98AhYHfPMy3HbuBgt30QuL/HWaiq54F3rlheaMbdwKGqulhVrwNzzP95rKkFZl7IUGY+V1U/7bbfBV4BNjPw93qp+o7CZuCtkftnurUhKuC5JC8l2detbayqc93228DGfkb7SAvNOPT3/stJXu5OLy4fhg9u5iS3AZ8BfsL0vteNvqMwTe6qqh3AF4CHknxu9MGaP04c9K9ypmHGzreZP6XcAZwDvtnvOFeX5JPAD4GvVtXvRh+bovf6Q/qOwllgy8j9W7u1wamqs93tBeBJ5g//zifZBNDdXuhvwgUtNONg3/uqOl9Vl6rqD8B3+OOh9mBmTrKe+SB8v6p+1C1P3Xt9NX1H4UVgW5KtSa4H9gBHep7pQ5LcmOSmy9vA54ETzM+6t9ttL/BUPxN+pIVmPALsSTKTZCuwDXihh/k+5PIPVueLzL/XMJCZkwT4LvBKVX1r5KGpe6+vqu8rncB9zF+9/RXwtb7nWWDG25m/evwz4OTlOYE/A44CrwLPARt6nvMJ5g+332P+vPXBj5oR+Fr3vp8GvjCgmf8d+DnwMvM/UJsGNvNdzJ8avAwc777uG/p7vdQvP9EoqdH36YOkgTEKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqTG/wPLXmzWfyAqKQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97ba653668>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADVBJREFUeJzt3U+M3OV9x/H3p8YYhVAJl9QyxipGcg5OpTrRylQqQlSoMeFickHOofIByT3QKJHag2kO4YKUVk2OieQoqG6V4lpJED5ERdiKhHoJmMgB29TB4Y+wMXZTIoX04IDz7WF/m8yzeL3rnZmd36zfL2k0v3l+v5n57rMzn32eZ3+zm6pCkub8waQLkNQvhoKkhqEgqWEoSGoYCpIahoKkxthCIckDSU4nOZNk37ieR9JoZRznKSRZA/wM+CvgLPAi8IWqOjXyJ5M0UuMaKewAzlTV61X1G+AgsGtMzyVphG4Y0+NuAt4euH0WuHuhg2/MurqJm8dUiiSA9/nlL6rqE4sdN65QWFSSvcBegJv4GHfn/kmVIl0XjtT33lrKceOaPpwDNg/cvqNr+52q2l9VM1U1s5Z1YypD0rUaVyi8CGxNsiXJjcBu4PCYnkvSCI1l+lBVHyb5W+BZYA3wZFWdHMdzSRqtsa0pVNUPgR+O6/EljYdnNEpqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlxwzB3TvIm8D5wGfiwqmaSrAf+A7gTeBN4uKp+OVyZklbKKEYKf1lV26tqpru9DzhaVVuBo91tSVNiHNOHXcCBbvsA8NAYnkPSmAwbCgUcSfJSkr1d24aqOt9tvwtsGPI5JK2godYUgHuq6lySPwaeS/LfgzurqpLUle7YhchegJv42JBlSBqVoUYKVXWuu74IPA3sAC4k2QjQXV9c4L77q2qmqmbWsm6YMiSN0LJDIcnNSW6Z2wY+C5wADgN7usP2AM8MW6SklTPM9GED8HSSucf596r6zyQvAoeSPAK8BTw8fJmSVsqyQ6GqXgf+7Art/wvcP0xRkibHMxolNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DYYSefef4pEuQhmYojIiBoNXCUBgBA0GriaEwpPmBYEBo2hkKQzAAtBoZCpIahsIQdt6+fdIlSCNnKAzB6YNWI0NBUsNQGILTB61GhsIYOK3QNDMUJDUMhTFwWqFpZiiMgdMHTTNDQVLDUJDUMBQkNQwFSQ1DYQguKGo1MhQkNQwFSQ1DYQiepDRZz75z/HcXjY6hIKlhKGhVcLQwOoaCppbTt/EwFMbEn1wrzz4fjUVDIcmTSS4mOTHQtj7Jc0le665vHdj3WJIzSU4n2Tmuwvviaj+tBl+kvmDHw9HC6C1lpPAvwAPz2vYBR6tqK3C0u02SbcBu4FPdfb6ZZM3Iqp1Cro6Pl/93Y/QWDYWqeh54b17zLuBAt30AeGig/WBVXaqqN4AzwI4R1Sp9xJVGCgbDcJa7prChqs532+8CG7rtTcDbA8ed7dqEL1ZNh6EXGquqgLrW+yXZm+RYkmMfcGnYMiSNyHJD4UKSjQDd9cWu/RyweeC4O7q2j6iq/VU1U1Uza1m3zDL6wcWuybL/R2u5oXAY2NNt7wGeGWjfnWRdki3AVuCF4UqcDr4wJ2t+/ztVW74bFjsgyVPAfcBtSc4CXwW+BhxK8gjwFvAwQFWdTHIIOAV8CDxaVZfHVHvvzL0wfUFOniG9fIuGQlV9YYFd9y9w/BPAE8MUtZo9+85xX7BjsvP27QbyCHhG4xgs9qb3hTt+9vHyGQqaelcKAEdjy2cojIkvypVjX4+WoTAhDm/Hw4AYnqEwRjtv377kD0xJfWEorAB/eq0s+3s4hsKEOVpQ3xgKkhqGwgpxbUHTwlDoCYNBfWEorCAXwDQNDIUecbSgPjAUJDUMhRXmh6XUd4aCpIahMAEuOKrPDIUecgqhSTIUJsS1BfWVoTCEYd+4i32KUpoEQ2EI4/6bgP7LOU1CZv+Xy2T9YdbX3bni34G9riwlABxZaLmO1PdeqqqZxY5zpDCkUf4kX8p0wv9krXFzpNBTg2/4pUxTHEFoMY4Uptzcm3z+9UIcNWhUHClMIUcNWg5HCquYowaNk6EwIn17I/atHk0Ppw+ryNWCYClTiqUGidOT6bTU6YOhMEJ9+eexSz3fYRRnZGp6LDUUFv2v01qdRjG9mP8YhsTqYCisQnNvzrmRy0qtL3hG5upgKKxii53j4GKkrsTfPozYNL3R5k6rHrzM3z9qc/0zTf10vXGhUYsa9ec7+rIge71xoVEjc6U38HKDwhFC/zl9GLHr4W8gzH19y/1p7yih3xYNhSRPJrmY5MRA2+NJziU53l0eHNj3WJIzSU4n2TmuwvvqevhrSnNf4/xPcg5+3Qv1wWrvm9Vg0TWFJPcCvwb+tar+tGt7HPh1Vf3zvGO3AU8BO4DbgSPAJ6vq8tWewzUFafxG9oGoqnoeeG+Jz7sLOFhVl6rqDeAMswEhaUoMs6bwxSQvd9OLW7u2TcDbA8ec7dokTYnlhsK3gLuA7cB54OvX+gBJ9iY5luTYB1xaZhmSRm1ZoVBVF6rqclX9Fvg2v58inAM2Dxx6R9d2pcfYX1UzVTWzlnXLKUPSGCwrFJJsHLj5eWDuNxOHgd1J1iXZAmwFXhiuREkradGTl5I8BdwH3JbkLPBV4L4k24EC3gT+BqCqTiY5BJwCPgQeXew3D5L6xdOcpeuEf6NR0rIYCpIahoKkhqEgqWEoSGoYClp1VvtH18fNUNCq48ezh2MoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGosGgpJNif5UZJTSU4m+VLXvj7Jc0le665vHbjPY0nOJDmdZOc4vwBJo7WUkcKHwN9V1Tbgz4FHk2wD9gFHq2orcLS7TbdvN/Ap4AHgm0nWjKN4SaO3aChU1fmq+km3/T7wKrAJ2AUc6A47ADzUbe8CDlbVpap6AzgD7Bh14ZLG45rWFJLcCXwa+DGwoarOd7veBTZ025uAtwfudrZrkzQFlhwKST4OfB/4clX9anBfVRVQ1/LESfYmOZbk2Adcupa7ShqjJYVCkrXMBsJ3q+oHXfOFJBu7/RuBi137OWDzwN3v6NoaVbW/qmaqamYt65Zbv6QRW8pvHwJ8B3i1qr4xsOswsKfb3gM8M9C+O8m6JFuArcALoytZ0jjdsIRj/gL4a+CVJMe7tn8AvgYcSvII8BbwMEBVnUxyCDjF7G8uHq2qyyOvXNJYLBoKVfVfQBbYff8C93kCeGKIuiRNiGc0SmoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqZGqmnQNJPkf4P+AX0y6lmt0G9a8Eqat5r7W+ydV9YnFDupFKAAkOVZVM5Ou41pY88qYtpqnrd75nD5IahgKkhp9CoX9ky5gGax5ZUxbzdNWb6M3awqS+qFPIwVJPTDxUEjyQJLTSc4k2TfpehaS5M0kryQ5nuRY17Y+yXNJXuuub51wjU8muZjkxEDbgjUmeazr99NJdvao5seTnOv6+niSB3tW8+YkP0pyKsnJJF/q2nvd10tWVRO7AGuAnwN3ATcCPwW2TbKmq9T6JnDbvLZ/AvZ12/uAf5xwjfcCnwFOLFYjsK3r73XAlu77sKYnNT8O/P0Vju1LzRuBz3TbtwA/62rrdV8v9TLpkcIO4ExVvV5VvwEOArsmXNO12AUc6LYPAA9NsBaq6nngvXnNC9W4CzhYVZeq6g3gDLPfjxW1QM0L6UvN56vqJ932+8CrwCZ63tdLNelQ2AS8PXD7bNfWRwUcSfJSkr1d24aqOt9tvwtsmExpV7VQjX3v+y8mebmbXswNw3tXc5I7gU8DP2Z6+7ox6VCYJvdU1Xbgc8CjSe4d3Fmz48Re/ypnGmrsfIvZKeV24Dzw9cmWc2VJPg58H/hyVf1qcN8U9fVHTDoUzgGbB27f0bX1TlWd664vAk8zO/y7kGQjQHd9cXIVLmihGnvb91V1oaouV9VvgW/z+6F2b2pOspbZQPhuVf2ga566vr6SSYfCi8DWJFuS3AjsBg5PuKaPSHJzklvmtoHPAieYrXVPd9ge4JnJVHhVC9V4GNidZF2SLcBW4IUJ1PcRc2+szueZ7WvoSc1JAnwHeLWqvjGwa+r6+oomvdIJPMjs6u3Pga9Mup4FaryL2dXjnwIn5+oE/gg4CrwGHAHWT7jOp5gdbn/A7Lz1kavVCHyl6/fTwOd6VPO/Aa8ALzP7htrYs5rvYXZq8DJwvLs82Pe+XurFMxolNSY9fZDUM4aCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhq/D/FXx32Xfp2CQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1c9ff98>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADDRJREFUeJzt3UGMnPV9h/HnW2MWhVAJl9RyjVWM5Is51IlWplJRRGU1JlxMLsg5VD4guQcaJVJ7MM0hXJDSSklvRHIUFKtKca0kCB9QEViRUC8BEzlgmzhswAg7xm5KpKAeHHB+Pey7zfyNl13v7jvzDnk+0mre+c87Oz8G+dH7vjtrp6qQpAV/NOkBJA2LUZDUMAqSGkZBUsMoSGoYBUmN3qKQ5L4kZ5LMJTnQ1+tIWlvp43MKSdYBPwf+BjgHvAR8sapOr/mLSVpTfR0p7ATmquqNqvotcBjY09NrSVpDN/T0fTcDb4/cPwfcvdjON2ambuLmnkaRBPAev/5VVX1qqf36isKSkuwH9gPcxCe4O7smNYr0B+H5+v5by9mvr9OH88CWkfu3d2v/r6oOVtVsVc2uZ6anMSRdr76i8BKwLcnWJDcCe4GjPb2WpDXUy+lDVX2Q5O+BZ4F1wBNVdaqP15K0tnq7plBVzwDP9PX9JfXDTzRKahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDVuWM2Tk5wF3gOuAB9U1WySDcB/AHcAZ4EHq+rXqxtT0risxZHCX1fVjqqa7e4fAI5V1TbgWHdf0pTo4/RhD3Co2z4EPNDDa0jqyWqjUMDzSV5Osr9b21hVF7rtd4CNq3wNSWO0qmsKwD1VdT7JnwLPJfnZ6INVVUnqWk/sIrIf4CY+scoxJK2VVR0pVNX57vYS8BSwE7iYZBNAd3tpkecerKrZqppdz8xqxpC0hlYchSQ3J7llYRv4HHASOArs63bbBzy92iE/Lp795YlJjyAtaTWnDxuBp5IsfJ9/r6r/TPIScCTJQ8BbwIOrH1PSuKw4ClX1BvAX11j/H2DXaoaSNDl+onFMPHXQtDAKY7T7z3ZMegRpSUZBUsMojIGnDpomRkFSwyj0bOEowesJmhZGQVLDKEhqGAVJDaMgqWEUeuSPIjWNjEJPDIKmlVHoiT+C1LQyCpIaRkFSwyhIahiFHi1cV/D6gqaJUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRR65O8/aBoZhTEwDpomRkFSwyiMgZ9o1DQxCpIaRqFno0cJXlvQNDAKkhpGQVLDKIyJpw6aFkZBUsMo9MwjBE0boyCpYRR6cvURwsKPJj1y0NAtGYUkTyS5lOTkyNqGJM8leb27vXXksUeSzCU5k2R3X4NL6sdyjhS+C9x31doB4FhVbQOOdfdJsh3YC9zVPefxJOvWbFpJvVsyClX1AvDuVct7gEPd9iHggZH1w1V1uareBOaAnWs068eGpxAaspVeU9hYVRe67XeAjd32ZuDtkf3OdWvCX4zSdFj1hcaqKqCu93lJ9ic5nuT4+1xe7RhTx6MFDdVKo3AxySaA7vZSt34e2DKy3+3d2odU1cGqmq2q2fXMrHCM4fIfgtG0WmkUjgL7uu19wNMj63uTzCTZCmwDXlzdiB9fHi1oiG5YaockTwL3ArclOQd8Dfg6cCTJQ8BbwIMAVXUqyRHgNPAB8HBVXelp9sHzKEHTaMkoVNUXF3lo1yL7PwY8tpqh/pA8+8sTxkOD4icax+xaAfA0QkNiFCZg9CKkRwkaGqMwIaMxMAwaEqMgqWEUBsRrCxoCozAwhkGTZhQkNYyCpIZRGBD/diYNgVGQ1DAKA+PRgibNKAyYYdAkGIWBMwwaN6MwQFd/7NkwaJyMwpQwDBoXozBQi/2KtXFQ34zCgC3225OGQX0yCgNnGDRuS/51bJo8/74FjZNHCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGktGIckTSS4lOTmy9miS80lOdF/3jzz2SJK5JGeS7O5rcEn9WM6RwneB+66x/q9VtaP7egYgyXZgL3BX95zHk6xbq2El9W/JKFTVC8C7y/x+e4DDVXW5qt4E5oCdq5hP0pit5prCl5K80p1e3NqtbQbeHtnnXLcmaUqsNArfAu4EdgAXgG9c7zdIsj/J8STH3+fyCseQtNZWFIWqulhVV6rqd8C3+f0pwnlgy8iut3dr1/oeB6tqtqpm1zOzkjEk9WBFUUiyaeTuF4CFn0wcBfYmmUmyFdgGvLi6ESWN05L/GEySJ4F7gduSnAO+BtybZAdQwFng7wCq6lSSI8Bp4APg4aq60s/okvqQqpr0DPxxNtTd2TXpMaSPtefr+y9X1exS+/mJRkkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkxpJRSLIlyY+SnE5yKsmXu/UNSZ5L8np3e+vIcx5JMpfkTJLdff4HSFpbyzlS+AD4h6raDvwl8HCS7cAB4FhVbQOOdffpHtsL3AXcBzyeZF0fw0tae0tGoaouVNVPuu33gNeAzcAe4FC32yHggW57D3C4qi5X1ZvAHLBzrQeX1I/ruqaQ5A7g08CPgY1VdaF76B1gY7e9GXh75GnnujVJU2DZUUjySeAHwFeq6jejj1VVAXU9L5xkf5LjSY6/z+XreaqkHi0rCknWMx+E71XVD7vli0k2dY9vAi516+eBLSNPv71ba1TVwaqararZ9cysdH5Ja2w5P30I8B3gtar65shDR4F93fY+4OmR9b1JZpJsBbYBL67dyJL6dMMy9vkr4G+BV5Oc6Nb+Cfg6cCTJQ8BbwIMAVXUqyRHgNPM/uXi4qq6s+eSSerFkFKrqv4As8vCuRZ7zGPDYKuaSNCF+olFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhqpqknPQJL/Bv4X+NWkZ7lOt+HM4zBtMw913j+vqk8ttdMgogCQ5HhVzU56juvhzOMxbTNP27xX8/RBUsMoSGoMKQoHJz3ACjjzeEzbzNM2b2Mw1xQkDcOQjhQkDcDEo5DkviRnkswlOTDpeRaT5GySV5OcSHK8W9uQ5Lkkr3e3t054xieSXEpycmRt0RmTPNK972eS7B7QzI8mOd+91yeS3D+wmbck+VGS00lOJflytz7o93rZqmpiX8A64BfAncCNwE+B7ZOc6SNmPQvcdtXavwAHuu0DwD9PeMbPAp8BTi41I7C9e79ngK3d/4d1A5n5UeAfr7HvUGbeBHym274F+Hk326Df6+V+TfpIYScwV1VvVNVvgcPAngnPdD32AIe67UPAAxOchap6AXj3quXFZtwDHK6qy1X1JjDH/P+PsVpk5sUMZeYLVfWTbvs94DVgMwN/r5dr0lHYDLw9cv9ctzZEBTyf5OUk+7u1jVV1odt+B9g4mdE+0mIzDv29/1KSV7rTi4XD8MHNnOQO4NPAj5ne97ox6ShMk3uqagfweeDhJJ8dfbDmjxMH/aOcaZix8y3mTyl3ABeAb0x2nGtL8kngB8BXquo3o49N0Xv9IZOOwnlgy8j927u1wamq893tJeAp5g//LibZBNDdXprchItabMbBvvdVdbGqrlTV74Bv8/tD7cHMnGQ980H4XlX9sFueuvf6WiYdhZeAbUm2JrkR2AscnfBMH5Lk5iS3LGwDnwNOMj/rvm63fcDTk5nwIy0241Fgb5KZJFuBbcCLE5jvQxb+YHW+wPx7DQOZOUmA7wCvVdU3Rx6auvf6miZ9pRO4n/mrt78AvjrpeRaZ8U7mrx7/FDi1MCfwJ8Ax4HXgeWDDhOd8kvnD7feZP2996KNmBL7ave9ngM8PaOZ/A14FXmH+D9Smgc18D/OnBq8AJ7qv+4f+Xi/3y080SmpM+vRB0sAYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFS4/8ArUk+FQLVjTUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c181ba90>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADL1JREFUeJzt3U+InPd9x/H3p7K8Jo4LVp0KWRa1DKIgH6qERS7UhBQ3keOLnItRDkUHg3pwQwLtQW4O9cWQFpLeHFCIiSipVZPEWAcTY4uAKZTYclBsSa7ijf9gKbLU1IGYHhRb+fawzzbzW2u1f2Zm5xnl/YJlnnlmZuebsfed3/PseDZVhSQt+INJDyCpX4yCpIZRkNQwCpIaRkFSwyhIaowtCknuTXImyVySg+N6HkmjlXG8TyHJBuBnwGeBs8BLwBer6vTIn0zSSI1rpbAbmKuqN6rqN8ARYO+YnkvSCF03pu+7FXhn4PpZ4K6l7nx9ZuoGbhzTKJIA3udXv6yqTyx3v3FFYVlJDgAHAG7gY9yVeyY1ivR74fn63tsrud+4Dh/OAdsGrt/W7ft/VXWoqmaranYjM2MaQ9JqjSsKLwE7kmxPcj2wDzg6pueSNEJjOXyoqg+T/C3wLLABeLyqTo3juSSN1tjOKVTVM8Az4/r+ksbDdzRKahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWuG+bBSd4C3gcuAx9W1WySTcC/A7cDbwEPVNWvhhtT0noZxUrhL6tqV1XNdtcPAseqagdwrLsuaUqM4/BhL3C42z4M3D+G55A0JsNGoYDnk7yc5EC3b3NVne+23wU2D/kcktbRUOcUgLur6lySPwaeS/JfgzdWVSWpKz2wi8gBgBv42JBjSBqVoVYKVXWuu7wIPAXsBi4k2QLQXV5c4rGHqmq2qmY3MjPMGJJGaM1RSHJjkpsWtoHPASeBo8D+7m77gaeHHVLS+hnm8GEz8FSShe/zb1X1wyQvAU8meRB4G3hg+DElrZc1R6Gq3gD+7Ar7/we4Z5ihJE2O72hcB8/+4sSkR5BWzChIahiFdbDn1l2THkFaMaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRGKNnf3HC/0JSU8cojIkx0LQyCpIaw36asxZxhaBp50pBUsMojJgfqKJpZxTGzEho2hgFSQ2jMGaeeNS0MQrrwDBomhiFEbtSADyvoGliFEbMAGjaGQVJDaMgqWEU1oH/taSmiVGQ1DAK68QTkJoWRmGdePigaWEUJDWMwjpytaBpYBQkNYzCOnO1oL5bNgpJHk9yMcnJgX2bkjyX5PXu8uaB2x5OMpfkTJI94xpc0nisZKXwHeDeRfsOAseqagdwrLtOkp3APuDO7jGPJdkwsmmngCsBTbtlo1BVLwDvLdq9FzjcbR8G7h/Yf6SqLlXVm8AcsHtEs04F34+gabfWcwqbq+p8t/0usLnb3gq8M3C/s90+SVNi6BONVVVArfZxSQ4kOZ7k+AdcGnaMqeIhhvpsrVG4kGQLQHd5sdt/Dtg2cL/bun0fUVWHqmq2qmY3MrPGMaaThxjqs7VG4Siwv9veDzw9sH9fkpkk24EdwIvDjTh9Fn7oF19K02Alv5J8AvhP4E+TnE3yIPA14LNJXgf+qrtOVZ0CngROAz8EHqqqy+Mavs+uFgQPH9Rny/7ZuKr64hI33bPE/R8FHh1mqGvRnlt3GQNNBd/RuI4GVw0LH7xiKNQ3/oHZCfE8g/rKlcKEuEJQXxmFCRo8fDASo+Nh2XA8fNA1x0Oz4RiFdbb4X1j/X0194+GDpIZRmLAr/ZpSmiSj0AMeUqhPjEIPGAD1iVHoMWOhSTAKPXC1X6EZBq03o9AThkF9YRR6xDCoD4xCzxgGTZpRmDKGQeNmFHpouffuGwaNk1HoKcOgSTEKPbbn1l3LnmMwDho1ozAFXDVoPRmFa8RqVg2DH+ziakOL+XkKU2JhtXC1H+DVfJz84H4/lESDXClcQxZ/tNtqVw4SGIVrzlJBGFwNLN52paBBRmHKDPMDPBiAwW1XChrkOYUptPjTmkb5/SRXClPuaj/Q/oFbrYUrhWvASsIwjIXVyOIVirG5NrlS0LKu9MNvEK5dRkErYgR+fxgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhrLRiHJ40kuJjk5sO+RJOeSnOi+7hu47eEkc0nOJNkzrsEljcdKVgrfAe69wv5/qapd3dczAEl2AvuAO7vHPJZkw6iGlTR+y0ahql4A3lvh99sLHKmqS1X1JjAH7B5iPknrbJhzCl9K8kp3eHFzt28r8M7Afc52+yRNibVG4ZvAHcAu4Dzw9dV+gyQHkhxPcvwDLq1xDEmjtqYoVNWFqrpcVb8FvsXvDhHOAdsG7npbt+9K3+NQVc1W1exGZtYyhqQxWFMUkmwZuPoFYOE3E0eBfUlmkmwHdgAvDjeipPW07OcpJHkC+AxwS5KzwD8Cn0myCyjgLeBvAKrqVJIngdPAh8BDVXV5PKNLGodU1aRn4A+zqe7KPZMeQ7qmPV/fe7mqZpe7n+9olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKmhj/2nU/GQVNjH91qp+MgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqTGslFIsi3Jj5KcTnIqyZe7/ZuSPJfk9e7y5oHHPJxkLsmZJHvG+T9A0mitZKXwIfB3VbUT+HPgoSQ7gYPAsaraARzrrtPdtg+4E7gXeCzJhnEML2n0lo1CVZ2vqp902+8DrwFbgb3A4e5uh4H7u+29wJGqulRVbwJzwO5RDy5pPFZ1TiHJ7cAngR8Dm6vqfHfTu8Dmbnsr8M7Aw852+yRNgRVHIcnHge8DX6mqXw/eVlUF1GqeOMmBJMeTHP+AS6t5qKQxWlEUkmxkPgjfraofdLsvJNnS3b4FuNjtPwdsG3j4bd2+RlUdqqrZqprdyMxa55c0Yiv57UOAbwOvVdU3Bm46CuzvtvcDTw/s35dkJsl2YAfw4uhGljRO163gPn8B/DXwapIT3b5/AL4GPJnkQeBt4AGAqjqV5EngNPO/uXioqi6PfHJJY7FsFKrqP4AscfM9SzzmUeDRIeaSNCG+o1FSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhqpqknPQJL/Bv4X+OWkZ1mlW3Dm9TBtM/d13j+pqk8sd6deRAEgyfGqmp30HKvhzOtj2maetnkX8/BBUsMoSGr0KQqHJj3AGjjz+pi2madt3kZvzilI6oc+rRQk9cDEo5Dk3iRnkswlOTjpeZaS5K0kryY5keR4t29TkueSvN5d3jzhGR9PcjHJyYF9S86Y5OHudT+TZE+PZn4kybnutT6R5L6ezbwtyY+SnE5yKsmXu/29fq1XrKom9gVsAH4O3AFcD/wU2DnJma4y61vALYv2/TNwsNs+CPzThGf8NPAp4ORyMwI7u9d7Btje/XPY0JOZHwH+/gr37cvMW4BPdds3AT/rZuv1a73Sr0mvFHYDc1X1RlX9BjgC7J3wTKuxFzjcbR8G7p/gLFTVC8B7i3YvNeNe4EhVXaqqN4E55v95rKslZl5KX2Y+X1U/6bbfB14DttLz13qlJh2FrcA7A9fPdvv6qIDnk7yc5EC3b3NVne+23wU2T2a0q1pqxr6/9l9K8kp3eLGwDO/dzEluBz4J/Jjpfa0bk47CNLm7qnYBnwceSvLpwRtrfp3Y61/lTMOMnW8yf0i5CzgPfH2y41xZko8D3we+UlW/Hrxtil7rj5h0FM4B2wau39bt652qOtddXgSeYn75dyHJFoDu8uLkJlzSUjP29rWvqgtVdbmqfgt8i98ttXszc5KNzAfhu1X1g2731L3WVzLpKLwE7EiyPcn1wD7g6IRn+ogkNya5aWEb+BxwkvlZ93d32w88PZkJr2qpGY8C+5LMJNkO7ABenMB8H7Hwg9X5AvOvNfRk5iQBvg28VlXfGLhp6l7rK5r0mU7gPubP3v4c+Oqk51lixjuYP3v8U+DUwpzAHwHHgNeB54FNE57zCeaX2x8wf9z64NVmBL7ave5ngM/3aOZ/BV4FXmH+B2pLz2a+m/lDg1eAE93XfX1/rVf65TsaJTUmffggqWeMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCp8X9wIKCbCyAgsgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97ba637cc0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"reshaped_pp=val_trained.reshape(7,15,242,242)\n",
"reshaped_val_y=val_y.reshape(7,15,242,242)\n",
"\n",
"i=[4,6,5,3]\n",
"j=[7,5,8,6]\n",
"for a in i:\n",
" for b in j:\n",
" plt.imshow(reshaped_val_y[a,b,:,:])\n",
" plt.show()\n",
" plt.imshow(reshaped_pp[a,b,:,:])\n",
" plt.show()\n",
" print(\"-----------------------------\")"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.5984333262319529\n",
"0.0837794854263589\n"
]
}
],
"source": [
"import scipy\n",
"print(scipy.spatial.distance.dice(val_y,val_trained))\n",
"print(scipy.spatial.distance.dice(train_y,train_trained))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x2b97c1d2a4e0>"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADJ9JREFUeJzt3U+IXfd5h/HnW1keE8cFK06FLIlaBhGQF1XCIBdqQoqbyPFGzsaoi6KFQV24IYF0ITeLehNIC0l3DijERJTUqkhirIWJsUXAFEpsOSi2JFfxxH+wFFlq6kBMF4qtvF3Mmfr+5BnNv3vn3Cs9Hxjm3N+9d+b1se7jc85cj1JVSNKcP+p7AEnjxShIahgFSQ2jIKlhFCQ1jIKkxsiikOS+JGeSzCQ5MKrvI2m4Mor3KSRZB/wS+DxwFngR+OuqOj30byZpqEZ1pLALmKmq16vq98BhYM+IvpekIbphRF93M/D2wO2zwN0LPfjGTNVN3DyiUSQBvMdvf1NVn1zscaOKwqKS7Af2A9zEx7g79/Y1inRdeK5++NZSHjeq04dzwNaB21u6tf9XVQerarqqptczNaIxJC3XqKLwIrA9ybYkNwJ7gaMj+l6Shmgkpw9V9UGSvwOeAdYBj1fVqVF8L0nDNbJrClX1NPD0qL6+pNHwHY2SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSY0bVvPkJG8C7wGXgQ+qajrJBuDfgTuAN4EHq+q3qxtT0loZxpHCX1bVzqqa7m4fAI5V1XbgWHdb0oQYxenDHuBQt30IeGAE30PSiKw2CgU8l+SlJPu7tY1Vdb7bfgfYuMrvIWkNreqaAnBPVZ1L8ifAs0n+a/DOqqokNd8Tu4jsB7iJj61yDEnDsqojhao6132+CDwJ7AIuJNkE0H2+uMBzD1bVdFVNr2dqNWNIGqIVRyHJzUlumdsGvgCcBI4C+7qH7QOeWu2QktbOak4fNgJPJpn7Ov9WVT9J8iJwJMlDwFvAg6sfU9JaWXEUqup14M/mWf8f4N7VDCWpP76jUVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpsWgUkjye5GKSkwNrG5I8m+S17vOtA/c9kmQmyZkku0c1uKTRWMqRwveB+65YOwAcq6rtwLHuNkl2AHuBu7rnPJZk3dCmlTRyi0ahqp4H3r1ieQ9wqNs+BDwwsH64qi5V1RvADLBrSLNKWgMrvaawsarOd9vvABu77c3A2wOPO9utSZoQq77QWFUF1HKfl2R/kuNJjr/PpdWOMRae+fWJvkeQVm2lUbiQZBNA9/lit34O2DrwuC3d2kdU1cGqmq6q6fVMrXCM8bL79p2GQRNvpVE4CuzrtvcBTw2s700ylWQbsB14YXUjTh7DoEm2lB9JPgH8J/CpJGeTPAR8E/h8kteAv+puU1WngCPAaeAnwMNVdXlUw48zw6BJldlLAv3642you3Nv32MMzWAQdt++s8dJpA89Vz98qaqmF3uc72gcgcEQeMSgSWMURsQjBE0qo7AGPFrQJDEKI+RphCaRURgxw6BJYxTWgNcXNEmMgiaGR1prwyiskbmjBf9ga9zd0PcA15OFwuDpxeKM6doxCj24Mg6+A/Lq5vaP+2ZtePrQo9237/zIH3T/i9hyf6w9ozAGrozDM78+4YsBj6D64unDGPG04kNGsT9GYQzN94an6ykQXojtl6cPY27u1OJ6eWekQeifUZggg3G4Fq87GITxYBQm0LV2UXK+fwaD0B+jMKHm+1HmJMZhvpkNQr+80DjBlhqGcXqRLRSucZrxemcUJtTVXvxX3tf3ofnVjmCMwfjxF7dOuGGeMqz2BbqcWYzB2lvqL271SGHCDfNHlaO+JmEIJoNRuIYsNxCj/hutjMBkMgrXqKX8/oblnOsvNTKafEbhGrfS/wtzuUcQBuHaYRSuM/O9eIdxCnE9/b8Z1zqjoKG+iK98r4SBmDxGQUO12JGIkRh/vs1ZIzffb5jS+DIKWjOGYTIYBUkNoyCpYRQkNYyCpIZRkNQwCpIai0YhyeNJLiY5ObD2aJJzSU50H/cP3PdIkpkkZ5LsHtXgkkZjKUcK3wfum2f9X6pqZ/fxNECSHcBe4K7uOY8lWTesYSWN3qJRqKrngXeX+PX2AIer6lJVvQHMALtWMZ+kNbaaawpfTvJyd3pxa7e2GXh74DFnuzVJE2KlUfgOcCewEzgPfGu5XyDJ/iTHkxx/n0srHEPSsK0oClV1oaouV9UfgO/y4SnCOWDrwEO3dGvzfY2DVTVdVdPrmVrJGJJGYEVRSLJp4OaXgLmfTBwF9iaZSrIN2A68sLoRJa2lRX+fQpIngM8BtyU5C/wj8LkkO4EC3gT+FqCqTiU5ApwGPgAerqrLoxld0ij49z5I14ml/r0PvqNRUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKmxaBSSbE3y0ySnk5xK8pVufUOSZ5O81n2+deA5jySZSXImye5R/gNIGq6lHCl8AHytqnYAfw48nGQHcAA4VlXbgWPdbbr79gJ3AfcBjyVZN4rhJQ3folGoqvNV9fNu+z3gVWAzsAc41D3sEPBAt70HOFxVl6rqDWAG2DXswSWNxrKuKSS5A/g08DNgY1Wd7+56B9jYbW8G3h542tluTdIEWHIUknwc+BHw1ar63eB9VVVALecbJ9mf5HiS4+9zaTlPlTRCS4pCkvXMBuEHVfXjbvlCkk3d/ZuAi936OWDrwNO3dGuNqjpYVdNVNb2eqZXOL2nIlvLThwDfA16tqm8P3HUU2Ndt7wOeGljfm2QqyTZgO/DC8EaWNEo3LOExfwH8DfBKkhPd2j8A3wSOJHkIeAt4EKCqTiU5Apxm9icXD1fV5aFPLmkkFo1CVf0HkAXuvneB53wD+MYq5pLUE9/RKKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjVRV3zOQ5L+B/wV+0/csy3QbzrwWJm3mcZ33T6vqk4s9aCyiAJDkeFVN9z3Hcjjz2pi0mSdt3it5+iCpYRQkNcYpCgf7HmAFnHltTNrMkzZvY2yuKUgaD+N0pCBpDPQehST3JTmTZCbJgb7nWUiSN5O8kuREkuPd2oYkzyZ5rft8a88zPp7kYpKTA2sLzpjkkW6/n0mye4xmfjTJuW5fn0hy/5jNvDXJT5OcTnIqyVe69bHe10tWVb19AOuAXwF3AjcCvwB29DnTVWZ9E7jtirV/Bg502weAf+p5xs8CnwFOLjYjsKPb31PAtu7fw7oxmflR4O/neey4zLwJ+Ey3fQvwy262sd7XS/3o+0hhFzBTVa9X1e+Bw8Cenmdajj3AoW77EPBAj7NQVc8D716xvNCMe4DDVXWpqt4AZpj997GmFph5IeMy8/mq+nm3/R7wKrCZMd/XS9V3FDYDbw/cPtutjaMCnkvyUpL93drGqjrfbb8DbOxntKtaaMZx3/dfTvJyd3oxdxg+djMnuQP4NPAzJndfN/qOwiS5p6p2Al8EHk7y2cE7a/Y4cax/lDMJM3a+w+wp5U7gPPCtfseZX5KPAz8CvlpVvxu8b4L29Uf0HYVzwNaB21u6tbFTVee6zxeBJ5k9/LuQZBNA9/lifxMuaKEZx3bfV9WFqrpcVX8AvsuHh9pjM3OS9cwG4QdV9eNueeL29Xz6jsKLwPYk25LcCOwFjvY800ckuTnJLXPbwBeAk8zOuq972D7gqX4mvKqFZjwK7E0ylWQbsB14oYf5PmLuhdX5ErP7GsZk5iQBvge8WlXfHrhr4vb1vPq+0gncz+zV218BX+97ngVmvJPZq8e/AE7NzQl8AjgGvAY8B2zoec4nmD3cfp/Z89aHrjYj8PVuv58BvjhGM/8r8ArwMrMvqE1jNvM9zJ4avAyc6D7uH/d9vdQP39EoqdH36YOkMWMUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUmN/wPxgq4WkZ5weAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b97c1bdeb70>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"reshaped_train=train_trained.reshape(7,15,242,242)\n",
"reshaped_train_y=train_y.reshape(7,15,242,242)\n",
"\n",
"i=[4,6,5,3]\n",
"j=[7,5,8,6]\n",
"for a in i:\n",
" for b in j:\n",
" plt.imshow(reshaped_train_y[a,b,:,:])\n",
" plt.show()\n",
" plt.imshow(reshaped_train[a,b,:,:])\n",
" plt.show()\n",
" print(\"-----------------------------\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## RF with min_split_value = 400"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"random_knees400=pickle.load(open(\"/home/cvh255/Cartilage/jobsubmission/random_split400\",'rb'))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"val_trained=random_knees400.predict(val_norm_x)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9798873054132515\n"
]
}
],
"source": [
"import scipy\n",
"print(scipy.spatial.distance.dice(val_y,val_trained))"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADHpJREFUeJzt3U+InPd9x/H3p7K8Jo4LVpMKWRa1DCIgH6qERS7UBIKbyPFFzsUoh6KDQRc3JKU9yM3FF0MaSHpzQCEmoqRWTRJjHYyNLQKmEGLLQbElOYo2/oOlyFJTB2J6UGzl28M+28xP2tX+m9l5Rnq/YNlnfvPMztcj9s3zPDN4U1VI0pw/G/cAkvrFKEhqGAVJDaMgqWEUJDWMgqTGyKKQ5L4kp5LMJNk/queRNFwZxecUkqwDfgV8HjgDvAJ8uapODv3JJA3VqI4UdgIzVfVmVf0BOATsHtFzSRqiG0b0czcD7w7cPgPcvdDON2aqbuLmEY0iCeADfvfbqvrkYvuNKgqLSrIP2AdwEx/j7tw7rlGk68KL9cN3lrLfqE4fzgJbBm7f3q39v6o6UFXTVTW9nqkRjSFpuUYVhVeAbUm2JrkR2AMcHtFzSRqikZw+VNVHSf4BeB5YBzxRVSdG8VyShmtk1xSq6lng2VH9fEmj4ScaJTWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaN6zmwUneBj4ALgEfVdV0kg3AfwJ3AG8DD1bV71Y3pqS1Mowjhc9V1Y6qmu5u7weOVNU24Eh3W9KEGMXpw27gYLd9EHhgBM8haURWG4UCXkzyapJ93drGqjrXbb8HbFzlc0haQ6u6pgDcU1Vnk/wl8EKSXw7eWVWVpOZ7YBeRfQA38bFVjiFpWFZ1pFBVZ7vvF4CngZ3A+SSbALrvFxZ47IGqmq6q6fVMrWYMSUO04igkuTnJLXPbwBeA48BhYG+3217gmdUOKWntrOb0YSPwdJK5n/MfVfVckleAp5I8BLwDPLj6MSWtlRVHoareBP56nvX/Ae5dzVCSxsdPNEpqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNRaNQpInklxIcnxgbUOSF5Kc7r7fOnDfI0lmkpxKsmtUg0sajaUcKXwfuO+ytf3AkaraBhzpbpNkO7AHuKt7zONJ1g1tWkkjt2gUquol4P3LlncDB7vtg8ADA+uHqupiVb0FzAA7hzSrpDWw0msKG6vqXLf9HrCx294MvDuw35luTdKEWPWFxqoqoJb7uCT7khxNcvRDLq52jDXx/G+OjXsEaeRWGoXzSTYBdN8vdOtngS0D+93erV2hqg5U1XRVTa9naoVjSBq2lUbhMLC3294LPDOwvifJVJKtwDbg5dWN2C8eLehat5S3JJ8Efgp8KsmZJA8B3wA+n+Q08HfdbarqBPAUcBJ4Dni4qi6Navi1tuu2HeMeQRq5Gxbboaq+vMBd9y6w/2PAY6sZStL4+IlGSQ2jIKlhFJbBi4y6HhgFSQ2jsERzRwm+A6FrnVGQ1DAKkhpGQVLDKCyT70DoWmcUJDWMwhL5roOuF0ZhBTyF0LXMKEhqGAVJDaOwDF5X0PXAKEhqGAVJDaOwQr4DoWuVUZDUMArL5MVGXeuMgqSGUZDUWPR/8a4reQqha5lHCpIaRkFSwyhIahiFEfHDTZpURmGEnv/NMeOgiWMUJDWMwogMvm3p0YImiVFYI4ZBk8IorCHDoElgFCQ1jMII+XFoTSKjIKlhFNaY1xXUd4tGIckTSS4kOT6w9miSs0mOdV/3D9z3SJKZJKeS7BrV4JPCUwhNmqUcKXwfuG+e9X+rqh3d17MASbYDe4C7usc8nmTdsIadVJeHwaMF9dmiUaiql4D3l/jzdgOHqupiVb0FzAA7VzHfNcswqK9Wc03hK0le604vbu3WNgPvDuxzplu77s13GmEY1EcrjcJ3gDuBHcA54FvL/QFJ9iU5muToh1xc4RiTxesLmgQrikJVna+qS1X1R+C7/OkU4SywZWDX27u1+X7Ggaqarqrp9UytZIxrgkcL6psVRSHJpoGbXwLm3pk4DOxJMpVkK7ANeHl1I0paS0t5S/JJ4KfAp5KcSfIQ8M0kryd5Dfgc8I8AVXUCeAo4CTwHPFxVl0Y2/QTy2oL6LlU17hn482you3PvuMdYU/OFwGsOGqUX64evVtX0Yvv5icYx2XXbjnk/v+BRg8bNKIyZRwfqG6PQAx4xqE+MQk94AVJ9YRR6ZKHrDNJaMgoTwDBoLRmFHlroVMI4aC0YhZ5a6F0Jw6BRMwo9Zhg0DjeMewBd3UJ/VGZu2885aNg8UpggfgpSa8EjhQm067YdV4RgGEcOV4uLRyTXD6MwoeYLA7S/2Iv9Ii/1CMMgXF+MwgRbKAxzVnNaYQiuX0Zhwg3zr1sbAoFRuKYs9yPSRkDzMQrXMH/ptRK+JSmpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqTGolFIsiXJT5KcTHIiyVe79Q1JXkhyuvt+68BjHkkyk+RUkl2j/A+QNFxLOVL4CPinqtoO/A3wcJLtwH7gSFVtA450t+nu2wPcBdwHPJ5k3SiGlzR8i0ahqs5V1c+77Q+AN4DNwG7gYLfbQeCBbns3cKiqLlbVW8AMsHPYg0sajWVdU0hyB/Bp4GfAxqo61931HrCx294MvDvwsDPdmqQJsOQoJPk48CPga1X1+8H7qqqAWs4TJ9mX5GiSox9ycTkPlTRCS4pCkvXMBuEHVfXjbvl8kk3d/ZuAC936WWDLwMNv79YaVXWgqqarano9UyudX9KQLeXdhwDfA96oqm8P3HUY2Ntt7wWeGVjfk2QqyVZgG/Dy8EaWNEpL+bNxfwv8PfB6krk/TvgvwDeAp5I8BLwDPAhQVSeSPAWcZPadi4er6tLQJ5c0EotGoar+C8gCd9+7wGMeAx5bxVySxsRPNEpqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUiNVNe4ZSPLfwP8Cvx33LMv0CZx5LUzazH2d96+q6pOL7dSLKAAkOVpV0+OeYzmceW1M2syTNu/lPH2Q1DAKkhp9isKBcQ+wAs68NiZt5kmbt9GbawqS+qFPRwqSemDsUUhyX5JTSWaS7B/3PAtJ8naS15McS3K0W9uQ5IUkp7vvt455xieSXEhyfGBtwRmTPNK97qeS7OrRzI8mOdu91seS3N+zmbck+UmSk0lOJPlqt97r13rJqmpsX8A64NfAncCNwC+A7eOc6Sqzvg184rK1bwL7u+39wL+OecbPAp8Bji82I7C9e72ngK3dv8O6nsz8KPDP8+zbl5k3AZ/ptm8BftXN1uvXeqlf4z5S2AnMVNWbVfUH4BCwe8wzLcdu4GC3fRB4YIyzUFUvAe9ftrzQjLuBQ1V1sareAmaY/fdYUwvMvJC+zHyuqn7ebX8AvAFspuev9VKNOwqbgXcHbp/p1vqogBeTvJpkX7e2sarOddvvARvHM9pVLTRj31/7ryR5rTu9mDsM793MSe4APg38jMl9rRvjjsIkuaeqdgBfBB5O8tnBO2v2OLHXb+VMwoyd7zB7SrkDOAd8a7zjzC/Jx4EfAV+rqt8P3jdBr/UVxh2Fs8CWgdu3d2u9U1Vnu+8XgKeZPfw7n2QTQPf9wvgmXNBCM/b2ta+q81V1qar+CHyXPx1q92bmJOuZDcIPqurH3fLEvdbzGXcUXgG2Jdma5EZgD3B4zDNdIcnNSW6Z2wa+ABxndta93W57gWfGM+FVLTTjYWBPkqkkW4FtwMtjmO8Kc79YnS8x+1pDT2ZOEuB7wBtV9e2BuybutZ7XuK90Avcze/X218DXxz3PAjPeyezV418AJ+bmBP4COAKcBl4ENox5zieZPdz+kNnz1oeuNiPw9e51PwV8sUcz/zvwOvAas79Qm3o28z3Mnhq8Bhzrvu7v+2u91C8/0SipMe7TB0k9YxQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSY3/A1NLa2mW+mXPAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b930322b748>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305a1e668>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADGtJREFUeJzt3U+InPd9x/H3p5K8Jo4LVpwKRRa1DKIgH6KERS7UhAbRyPFFzsUoh6KDQRc3JKU9yM2hvhjSQNKbAwoxESW1KpIY62ASbBEwhRJbDootyVG88R8sVZaaOhDTg2Ir3x72UTM/eVe72pnZeWb7fsEyz/zmmZ2vx+jN8zwzSKkqJOmqP5r0AJL6xShIahgFSQ2jIKlhFCQ1jIKkxtiikOS+JGeTzCU5OK7XkTRaGcf3FJKsA34J/BVwDngR+GJVnRn5i0kaqXEdKewC5qrq9ar6HXAE2Dum15I0QuvH9Hu3AG8P3D8H3LPYzjdlpm7mljGNIgngPX7z66r6+FL7jSsKS0pyADgAcDMf4Z7sntQo0v8Lz9X331rOfuM6fTgPbB24f0e39n+q6lBVzVbV7AZmxjSGpBs1rii8CGxPsi3JTcA+4NiYXkvSCI3l9KGqPkjyN8CPgXXAE1V1ehyvJWm0xnZNoaqeAZ4Z1++XNB5+o1FSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqbF+mCcneRN4D7gCfFBVs0k2Av8G3Am8CTxYVb8ZbkxJq2UURwqfraqdVTXb3T8IHK+q7cDx7r6kKTGO04e9wOFu+zDwwBheQ9KYDBuFAp5L8lKSA93apqq60G2/A2wa8jUkraKhrikA91bV+SR/Ajyb5BeDD1ZVJamFnthF5ADAzXxkyDEkjcpQRwpVdb67vQQ8BewCLibZDNDdXlrkuYeqaraqZjcwM8wYkkZoxVFIckuSW69uA58DTgHHgP3dbvuBp4cdUtLqGeb0YRPwVJKrv+dfq+pHSV4EjiZ5CHgLeHD4MSWtlhVHoapeBz65wPp/A7uHGUrS5PiNRkkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGURiBH//nyUmPII2MUZDUMAqSGkZBUsMoSGoYBUkNozAkP3nQWmMURmDPJ3ZOegRpZIyCpIZRGAFPIbSWGAVJDaMgqWEUJDWMwpD85EFrjVGQ1DAKQ/KTB601S0YhyRNJLiU5NbC2McmzSV7rbm8beOyRJHNJzibZM67B+8Y4aK1YzpHCd4H7rlk7CByvqu3A8e4+SXYA+4C7u+c8nmTdyKbtIa8paK1ZMgpV9Tzw7jXLe4HD3fZh4IGB9SNVdbmq3gDmgF0jmlXSKljpNYVNVXWh234H2NRtbwHeHtjvXLcmaUoMfaGxqgqoG31ekgNJTiQ58T6Xhx1jYryWoLVmpVG4mGQzQHd7qVs/D2wd2O+Obu1DqupQVc1W1ewGZlY4hqRRW2kUjgH7u+39wNMD6/uSzCTZBmwHXhhuREmraf1SOyR5EvhL4PYk54B/BL4GHE3yEPAW8CBAVZ1OchQ4A3wAPFxVV8Y0u6QxWDIKVfXFRR7avcj+jwGPDTPUtPB6gtYiv9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYzCEBb6W5f86rOmnVGQ1DAKY+DRgqaZUZDUMApDuva6gn+7s6adURgTTyE0rYyCpIZRkNQwCiPgdQStJUZhDK5GwusKmkZGQVLDKEhqGIUR8DRBa4lRGIGFriF4XUHTyiiMiJ9AaK0wCiO20JGBRwuaJkZhjDx60DQyCiN0vesIHi1oWhgFSQ2jMGLXO2XwaEHTwCiMmdcVNG2MgqSGURgDTyE0zYzCBBgG9ZlRWAVeV9A0MQoT4tGC+mrJKCR5IsmlJKcG1h5Ncj7Jye7n/oHHHkkyl+Rskj3jGnza7PnEzg8dMRgG9dFyjhS+C9y3wPo/V9XO7ucZgCQ7gH3A3d1zHk+yblTDShq/JaNQVc8D7y7z9+0FjlTV5ap6A5gDdg0x35rn0YL6ZphrCl9K8nJ3enFbt7YFeHtgn3Pdmjr+o7Tqu5VG4VvAXcBO4ALwjRv9BUkOJDmR5MT7XF7hGNPJMKjPVhSFqrpYVVeq6vfAt/nDKcJ5YOvArnd0awv9jkNVNVtVsxuYWckYU22xMBgHTdqKopBk88DdLwBXP5k4BuxLMpNkG7AdeGG4Edcuv7+gPlrOR5JPAv8B/FmSc0keAr6e5JUkLwOfBf4WoKpOA0eBM8CPgIer6srYpl8DPJVQ36SqJj0Df5yNdU92T3qMiVosBB5NaFSeq++/VFWzS+3nNxp7YqEvN4HXGbT6jELPLHZkYBi0WoxCD10vDMZB42YUemqx0wnwqEHjZRR67npxkMbBKEwJw6DVYhSmiGHQajAKU8Z/uFbjZhSm0GAYjINGbf2kB9DKDJ5KLBQGTzW0UkZhDTAAGiVPHyQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1loxCkq1JfpLkTJLTSb7crW9M8myS17rb2wae80iSuSRnk+wZ53+ApNFazpHCB8DfVdUO4M+Bh5PsAA4Cx6tqO3C8u0/32D7gbuA+4PEk68YxvKTRWzIKVXWhqn7Wbb8HvApsAfYCh7vdDgMPdNt7gSNVdbmq3gDmgF2jHlzSeNzQNYUkdwKfAn4KbKqqC91D7wCbuu0twNsDTzvXrUmaAsuOQpKPAj8AvlJVvx18rKoKqBt54SQHkpxIcuJ9Lt/IUyWN0bKikGQD80H4XlX9sFu+mGRz9/hm4FK3fh7YOvD0O7q1RlUdqqrZqprdwMxK55c0Ysv59CHAd4BXq+qbAw8dA/Z32/uBpwfW9yWZSbIN2A68MLqRJY3T+mXs8xfAXwOvJDnZrf0D8DXgaJKHgLeABwGq6nSSo8AZ5j+5eLiqrox8ckljsWQUqurfgSzy8O5FnvMY8NgQc0maEL/RKKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjVTVpGcgyX8B/wP8etKz3KDbcebVMG0z93XeP62qjy+1Uy+iAJDkRFXNTnqOG+HMq2PaZp62ea/l6YOkhlGQ1OhTFA5NeoAVcObVMW0zT9u8jd5cU5DUD306UpDUAxOPQpL7kpxNMpfk4KTnWUySN5O8kuRkkhPd2sYkzyZ5rbu9bcIzPpHkUpJTA2uLzpjkke59P5tkT49mfjTJ+e69Ppnk/p7NvDXJT5KcSXI6yZe79V6/18tWVRP7AdYBvwLuAm4Cfg7smORM15n1TeD2a9a+Dhzstg8C/zThGT8DfBo4tdSMwI7u/Z4BtnX/H9b1ZOZHgb9fYN++zLwZ+HS3fSvwy262Xr/Xy/2Z9JHCLmCuql6vqt8BR4C9E57pRuwFDnfbh4EHJjgLVfU88O41y4vNuBc4UlWXq+oNYI75/x+rapGZF9OXmS9U1c+67feAV4Et9Py9Xq5JR2EL8PbA/XPdWh8V8FySl5Ic6NY2VdWFbvsdYNNkRruuxWbs+3v/pSQvd6cXVw/DezdzkjuBTwE/ZXrf68akozBN7q2qncDngYeTfGbwwZo/Tuz1RznTMGPnW8yfUu4ELgDfmOw4C0vyUeAHwFeq6reDj03Re/0hk47CeWDrwP07urXeqarz3e0l4CnmD/8uJtkM0N1emtyEi1psxt6+91V1saquVNXvgW/zh0Pt3sycZAPzQfheVf2wW56693ohk47Ci8D2JNuS3ATsA45NeKYPSXJLkluvbgOfA04xP+v+brf9wNOTmfC6FpvxGLAvyUySbcB24IUJzPchV/9gdb7A/HsNPZk5SYDvAK9W1TcHHpq693pBk77SCdzP/NXbXwFfnfQ8i8x4F/NXj38OnL46J/Ax4DjwGvAcsHHCcz7J/OH2+8yftz50vRmBr3bv+1ng8z2a+V+AV4CXmf8DtblnM9/L/KnBy8DJ7uf+vr/Xy/3xG42SGpM+fZDUM0ZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNT4X0LVXsF02Ka5AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305a6d780>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b93059f9dd8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADHNJREFUeJzt3E+MnPV9x/H3p8YsCqESDqlljFWM5Is51IlWplJRRGU1JlxMLsg5VD4guQcaJVJ7MM0hXJDSSklvRHIUFKtKca0kCB9QEViRUC8BEzlgmzps+CNsjJ2USEE9OOB8e9hnm/nZu94/s7PzjHm/pNU885uZna8HzVvP88ywqSokac6fjHsASf1iFCQ1jIKkhlGQ1DAKkhpGQVJjZFFIcn+SM0lmkhwY1fNIWl0ZxfcUkqwDfgn8DXAWeBn4SlWdXvUnk7SqRrWnsBOYqao3q+r3wGFgz4ieS9IqumFEv3cz8O7A9bPAPQvd+cZM1U3cPKJRJAF8yG9/U1WfXex+o4rCopLsB/YD3MSnuCe7xjWK9InwQv3onaXcb1SHD+eALQPX7+jW/l9VHayq6aqaXs/UiMaQtFyjisLLwLYkW5PcCOwFjo7ouSStopEcPlTVx0n+HngOWAc8WVWnRvFcklbXyM4pVNWzwLOj+v2SRsNvNEpqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNW4Y5sFJ3gY+BC4DH1fVdJINwH8AdwJvAw9V1W+HG1PSWlmNPYW/rqodVTXdXT8AHKuqbcCx7rqkCTGKw4c9wKFu+xDw4AieQ9KIDBuFAl5I8kqS/d3axqo6322/D2wc8jkkraGhzikA91bVuSR/Bjyf5L8Hb6yqSlLzPbCLyH6Am/jUkGNIWi1D7SlU1bnu8iLwNLATuJBkE0B3eXGBxx6squmqml7P1DBjSFpFK45CkpuT3DK3DXwROAkcBfZ1d9sHPDPskJLWzjCHDxuBp5PM/Z5/r6r/TPIycCTJw8A7wEPDjylpraw4ClX1JvAX86z/D7BrmKEkjY/faJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaiwahSRPJrmY5OTA2oYkzyd5o7u8deC2R5PMJDmTZPeoBpc0GkvZU/gBcP8VaweAY1W1DTjWXSfJdmAvcHf3mCeSrFu1aSWN3KJRqKoXgQ+uWN4DHOq2DwEPDqwfrqpLVfUWMAPsXKVZJa2BlZ5T2FhV57vt94GN3fZm4N2B+53t1iRNiKFPNFZVAbXcxyXZn+R4kuMfcWnYMSStkpVG4UKSTQDd5cVu/RywZeB+d3RrV6mqg1U1XVXT65la4RiSVttKo3AU2Ndt7wOeGVjfm2QqyVZgG/DScCNKWks3LHaHJE8B9wG3JTkLfBP4FnAkycPAO8BDAFV1KskR4DTwMfBIVV0e0eySRmDRKFTVVxa4adcC938ceHyYoSSNj99olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKIzQc++dGPcI0rItGoUkTya5mOTkwNpjSc4lOdH9PDBw26NJZpKcSbJ7VINPgt237+C5904YB02Upewp/AC4f571f62qHd3PswBJtgN7gbu7xzyRZN1qDStp9BaNQlW9CHywxN+3BzhcVZeq6i1gBtg5xHwTb/ftOwAPJTQ5hjmn8NUkr3aHF7d2a5uBdwfuc7ZbE4ZBk2GlUfgucBewAzgPfHu5vyDJ/iTHkxz/iEsrHGMyzO0tSJNgRVGoqgtVdbmq/gB8jz8eIpwDtgzc9Y5ubb7fcbCqpqtqej1TKxljohgGTYoVRSHJpoGrXwbmPpk4CuxNMpVkK7ANeGm4Ea8vHkKo725Y7A5JngLuA25Lchb4JnBfkh1AAW8DfwdQVaeSHAFOAx8Dj1TV5dGMPnnmPqKU+ixVNe4Z+NNsqHuya9xjrIm5KHg4obX2Qv3olaqaXux+fqNxjfkRpfrOKIyRYVAfGYUxMwzqG6MwBp5PUJ8ZhTEZDIN7C+oTozBGhkF9ZBR6xDCoD4zCmO2+fYd7DOoVo9ATnnxUXyz6NWetnYW+2GQwtJbcU+ih+Q4pPKzQWnFPoceu3EP4JP1/E8+9d+IT8e/sI6MwQeY7IXm9vXGu13/XJDEKE27wsGKS30jXy7/jemAUJtR8JyUn7Y3leZJ+8kTjhFvozd/3k5MLzTYJMbveuadwHbjWX3Tq296DMeg/o3CdWOiTioXW1vJNeK09FmPQP0Zhgg1zeDCuQwsj0H9GYUIt93P8PpxfMAiTwShMqOW+wYYJyDB/hdoQTB6joKusxhvZGEwuo6AlWcqJzPluNw6TxyhoRXyzX7/88pKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUmPRKCTZkuSnSU4nOZXka936hiTPJ3mju7x14DGPJplJcibJ7lH+AyStrqXsKXwM/ENVbQf+EngkyXbgAHCsqrYBx7rrdLftBe4G7geeSLJuFMNLWn2LRqGqzlfVz7vtD4HXgc3AHuBQd7dDwIPd9h7gcFVdqqq3gBlg52oPLmk0lnVOIcmdwOeAnwEbq+p8d9P7wMZuezPw7sDDznZrkibAkqOQ5NPAj4GvV9XvBm+rqgJqOU+cZH+S40mOf8Sl5TxU0ggtKQpJ1jMbhB9W1U+65QtJNnW3bwIuduvngC0DD7+jW2tU1cGqmq6q6fVMrXR+SatsKZ8+BPg+8HpVfWfgpqPAvm57H/DMwPreJFNJtgLbgJdWb2RJo7SUv9H4V8DfAq8lmftrnf8EfAs4kuRh4B3gIYCqOpXkCHCa2U8uHqmqy6s+uaSRWDQKVfVfQBa4edcCj3kceHyIuSSNid9olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkRqpq3DOQ5NfA/wK/Gfcsy3QbzrwWJm3mvs7751X12cXu1IsoACQ5XlXT455jOZx5bUzazJM275U8fJDUMAqSGn2KwsFxD7ACzrw2Jm3mSZu30ZtzCpL6oU97CpJ6YOxRSHJ/kjNJZpIcGPc8C0nydpLXkpxIcrxb25Dk+SRvdJe3jnnGJ5NcTHJyYG3BGZM82r3uZ5Ls7tHMjyU5173WJ5I80LOZtyT5aZLTSU4l+Vq33uvXesmqamw/wDrgV8BdwI3AL4Dt45zpGrO+Ddx2xdq/AAe67QPAP495xi8AnwdOLjYjsL17vaeArd1/h3U9mfkx4B/nuW9fZt4EfL7bvgX4ZTdbr1/rpf6Me09hJzBTVW9W1e+Bw8CeMc+0HHuAQ932IeDBMc5CVb0IfHDF8kIz7gEOV9WlqnoLmGH2v8eaWmDmhfRl5vNV9fNu+0PgdWAzPX+tl2rcUdgMvDtw/Wy31kcFvJDklST7u7WNVXW+234f2Die0a5poRn7/tp/Ncmr3eHF3G5472ZOcifwOeBnTO5r3Rh3FCbJvVW1A/gS8EiSLwzeWLP7ib3+KGcSZux8l9lDyh3AeeDb4x1nfkk+DfwY+HpV/W7wtgl6ra8y7iicA7YMXL+jW+udqjrXXV4EnmZ29+9Ckk0A3eXF8U24oIVm7O1rX1UXqupyVf0B+B5/3NXuzcxJ1jMbhB9W1U+65Yl7recz7ii8DGxLsjXJjcBe4OiYZ7pKkpuT3DK3DXwROMnsrPu6u+0DnhnPhNe00IxHgb1JppJsBbYBL41hvqvMvbE6X2b2tYaezJwkwPeB16vqOwM3TdxrPa9xn+kEHmD27O2vgG+Me54FZryL2bPHvwBOzc0JfAY4BrwBvABsGPOcTzG7u/0Rs8etD19rRuAb3et+BvhSj2b+N+A14FVm31CbejbzvcweGrwKnOh+Huj7a73UH7/RKKkx7sMHST1jFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjf8DQMpsJFUGYfgAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305a8c438>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305b84748>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADGNJREFUeJzt3U+InPd9x/H3p7K8Jo4Pdp0KRRa1DKIgH6qERSnUhAbTyPFFzsUoh6KDQRc3JKU9yM2hvgjSQNKbAwo2ESW1KpoY62BibBEwhRJbCYotyVG88R8sWZaaOhDTg2Ir3x722WZ+8q52tTOz88zm/YJln/nNMztfj9Gb53lmVkpVIUkL/mjSA0jqF6MgqWEUJDWMgqSGUZDUMAqSGmOLQpL7kpxNMpfkwLieR9JoZRyfU0iyAfgF8NfAOeAl4EtVdWbkTyZppMZ1pLALmKuq16vqt8ARYM+YnkvSCN0wpp+7BXh74PY54DNL7XxjZuombh7TKJIA3ufXv6qqTyy337iisKwk+4H9ADfxMT6Teyc1ivQH4fn6j7dWst+4Th/OA1sHbt/Rrf2/qjpUVbNVNbuRmTGNIel6jSsKLwHbk2xLciOwFzg2pueSNEJjOX2oqg+T/C3wLLABeKKqTo/juSSN1tiuKVTVM8Az4/r5ksbDTzRKahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDVuGObBSd4E3geuAB9W1WyS24B/B+4E3gQerKpfDzempLUyiiOFz1XVzqqa7W4fAI5X1XbgeHdb0pQYx+nDHuBwt30YeGAMzyFpTIaNQgHPJ/lJkv3d2qaqutBtvwtsGvI5JK2hoa4pAPdU1fkkfwI8l+Tng3dWVSWpxR7YRWQ/wE18bMgxJI3KUEcKVXW++34JeArYBVxMshmg+35picceqqrZqprdyMwwY0gaoVVHIcnNSW5Z2AY+D5wCjgH7ut32AU8PO6SktTPM6cMm4KkkCz/n36rqh0leAo4meQh4C3hw+DElrZVVR6GqXgf+fJH1/wHuHWYoSZPjJxolNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYhRF49p2Tkx5BGhmjIKlhFCQ1jIKkhlGQ1DAKQ/Iio9YboyCpYRQkNYzCCOz+5M5JjyCNjFGQ1DAKkhpGQVLDKEhqGAVJjWWjkOSJJJeSnBpYuy3Jc0le677fOnDfI0nmkpxNsntcg0saj5UcKXwXuO+qtQPA8araDhzvbpNkB7AXuLt7zGNJNoxsWkljt2wUquoF4L2rlvcAh7vtw8ADA+tHqupyVb0BzAG7RjSrpDWw2msKm6rqQrf9LrCp294CvD2w37luTdKUGPpCY1UVUNf7uCT7k5xIcuIDLg87xkT4y1Baj1YbhYtJNgN03y916+eBrQP73dGtfURVHaqq2aqa3cjMKseQNGqrjcIxYF+3vQ94emB9b5KZJNuA7cCLw40oaS3dsNwOSZ4E/gq4Pck54J+ArwNHkzwEvAU8CFBVp5McBc4AHwIPV9WVMc0uaQyWjUJVfWmJu+5dYv+DwMFhhpo2z75z0t+U1LrhJxolNYyCpIZRGAFPHbSeGAVJDaMgqWEUJDWMgqSGUZDUMApD8p0HrTdGQVLDKEhqGAVJDaMgqWEUhuTfvqT1xihIahgFSQ2jMISFzygMnkJ4OqFpZxTGwDBomhmFEbk6BIZB08oojNjgx54Ng6aRUZDUMApDWu4Xojxa0LQxCiNkALQeGIUR8GhB64lRGDH/YRhNO6MwIoZA64VRWCOeQmhaGIUx2f3JnR85ejAMmgZGQVLDKIyZ1xo0bYzCGFzrNMFTCPWdURghjwq0HhiFEVvsAqMXHDVNjIKkhlFYIx4taFoYhQkyDOqjZaOQ5Ikkl5KcGlh7NMn5JCe7r/sH7nskyVySs0l2j2vwabTYhUjDoL5ZyZHCd4H7Fln/l6ra2X09A5BkB7AXuLt7zGNJNoxqWEnjt2wUquoF4L0V/rw9wJGqulxVbwBzwK4h5vuD4NGC+mSYawpfTvJyd3pxa7e2BXh7YJ9z3Zo6fpZBfbfaKHwbuAvYCVwAvnm9PyDJ/iQnkpz4gMurHGP98GhBfbGqKFTVxaq6UlW/A77D708RzgNbB3a9o1tb7GccqqrZqprdyMxqxphaSx0tGAb1waqikGTzwM0vAgvvTBwD9iaZSbIN2A68ONyI65OnEeqrlbwl+STwX8CfJTmX5CHgG0leSfIy8Dng7wCq6jRwFDgD/BB4uKqujG36KedblOqjG5bboaq+tMjy49fY/yBwcJihJE2On2icsMV+gUqaJKPQE/5zc+oLo9AjHjGoD4xCzyyE4dl3TnrEoIkwCj1nHLTWln33QWtv8GhhwdVh8FRD4+KRQo9d650Jjx40LkZhCnhUoLVkFKbEwlGDb11q3LymMIWW+vsePaLQKBiFdcAYaJQ8fZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUWDYKSbYm+VGSM0lOJ/lKt35bkueSvNZ9v3XgMY8kmUtyNsnucf4HSBqtlRwpfAj8fVXtAP4CeDjJDuAAcLyqtgPHu9t09+0F7gbuAx5LsmEcw0savWWjUFUXquqn3fb7wKvAFmAPcLjb7TDwQLe9BzhSVZer6g1gDtg16sEljcd1XVNIcifwKeDHwKaqutDd9S6wqdveArw98LBz3ZqkKbDiKCT5OPB94KtV9ZvB+6qqgLqeJ06yP8mJJCc+4PL1PFTSGK0oCkk2Mh+E71XVD7rli0k2d/dvBi516+eBrQMPv6Nba1TVoaqararZjcysdn5JI7aSdx8CPA68WlXfGrjrGLCv294HPD2wvjfJTJJtwHbgxdGNLGmcbljBPn8J/A3wSpKT3do/Al8HjiZ5CHgLeBCgqk4nOQqcYf6di4er6srIJ5c0FstGoar+E8gSd9+7xGMOAgeHmEvShPiJRkkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaqSqJj0DSf4b+F/gV5Oe5TrdjjOvhWmbua/z/mlVfWK5nXoRBYAkJ6pqdtJzXA9nXhvTNvO0zXs1Tx8kNYyCpEafonBo0gOsgjOvjWmbedrmbfTmmoKkfujTkYKkHph4FJLcl+RskrkkByY9z1KSvJnklSQnk5zo1m5L8lyS17rvt054xieSXEpyamBtyRmTPNK97meT7O7RzI8mOd+91ieT3N+zmbcm+VGSM0lOJ/lKt97r13rFqmpiX8AG4JfAXcCNwM+AHZOc6RqzvgncftXaN4AD3fYB4J8nPONngU8Dp5abEdjRvd4zwLbu/8OGnsz8KPAPi+zbl5k3A5/utm8BftHN1uvXeqVfkz5S2AXMVdXrVfVb4AiwZ8IzXY89wOFu+zDwwARnoapeAN67anmpGfcAR6rqclW9Acwx//9jTS0x81L6MvOFqvppt/0+8CqwhZ6/1is16ShsAd4euH2uW+ujAp5P8pMk+7u1TVV1odt+F9g0mdGuaakZ+/7afznJy93pxcJheO9mTnIn8Cngx0zva92YdBSmyT1VtRP4AvBwks8O3lnzx4m9fitnGmbsfJv5U8qdwAXgm5MdZ3FJPg58H/hqVf1m8L4peq0/YtJROA9sHbh9R7fWO1V1vvt+CXiK+cO/i0k2A3TfL01uwiUtNWNvX/uqulhVV6rqd8B3+P2hdm9mTrKR+SB8r6p+0C1P3Wu9mElH4SVge5JtSW4E9gLHJjzTRyS5OcktC9vA54FTzM+6r9ttH/D0ZCa8pqVmPAbsTTKTZBuwHXhxAvN9xMIfrM4XmX+toSczJwnwOPBqVX1r4K6pe60XNekrncD9zF+9/SXwtUnPs8SMdzF/9fhnwOmFOYE/Bo4DrwHPA7dNeM4nmT/c/oD589aHrjUj8LXudT8LfKFHM/8r8ArwMvN/oDb3bOZ7mD81eBk42X3d3/fXeqVffqJRUmPSpw+SesYoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIa/wdKyFPl58Yq0AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305a42668>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305b93e10>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADC5JREFUeJzt3E+InPd9x/H3p7IsE8cFq06FLItaBhGQD1XCIhdqQoqbyPFFzsUoh6KDQT24IYH2IDeH+mJIC0lvDijERJTUqklirIOJsUXAFEpsOSi2JFfxxn+wFFlq6kBMD4qtfHvYZ5v5yVrvandmnmfc9wuWeeY3z+x88xi/eZ5nx0lVIUmL/qDvASQNi1GQ1DAKkhpGQVLDKEhqGAVJjYlFIcndSU4nmU9yYFKfI2m8MonvKSRZB/wc+BxwBngB+FJVnRr7h0kaq0mdKewC5qvqtar6LXAY2DOhz5I0RtdM6PduAd4aeX4GuGOpna/NhrqO6yc0iiSAd/n1r6rqE8vtN6koLCvJfmA/wHV8jDtyV1+jSP8vPFvff3Ml+03q8uEssHXk+S3d2v+pqoNVNVdVc+vZMKExJF2tSUXhBWB7km1JrgX2Akcm9FmSxmgilw9V9X6SvwGeBtYBj1bVyUl8lqTxmtg9hap6CnhqUr9f0mT4jUZJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpMY1a3lzkjeAd4FLwPtVNZdkI/BvwK3AG8B9VfXrtY0paVrGcabwF1W1s6rmuucHgKNVtR042j2XNCMmcfmwBzjUbR8C7p3AZ0iakLVGoYBnk7yYZH+3tqmqznXbbwOb1vgZkqZoTfcUgDur6mySPwaeSfKfoy9WVSWpK72xi8h+gOv42BrHkDQuazpTqKqz3eMF4AlgF3A+yWaA7vHCEu89WFVzVTW3ng1rGUPSGK06CkmuT3LD4jbweeAEcATY1+22D3hyrUNKmp61XD5sAp5Isvh7/rWqfpTkBeDxJPcDbwL3rX1MSdOy6ihU1WvAn15h/b+Bu9YylKT++I1GSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGYUqe/uXxvkeQVsQoSGoYhSnybEGzwChIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGIUp8JuMmiVGQVLDKEzR7pt39j2CtCyjIKlhFCQ1jMKELd5k9NJBs8IoSGoYBUkNoyCpYRQkNYzClPitRs0KoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaiwbhSSPJrmQ5MTI2sYkzyR5tXu8ceS1B5PMJzmdZPekBpc0GSs5U/gucPdlaweAo1W1HTjaPSfJDmAvcHv3nkeSrBvbtJImbtkoVNVzwDuXLe8BDnXbh4B7R9YPV9XFqnodmAd2jWnWmeR/Mq1Zs9p7Cpuq6ly3/TawqdveArw1st+Zbk34VWfNhjXfaKyqAupq35dkf5JjSY69x8W1jiFpTFYbhfNJNgN0jxe69bPA1pH9bunWPqCqDlbVXFXNrWfDKseQNG6rjcIRYF+3vQ94cmR9b5INSbYB24Hn1zaipGlayZ8kHwP+A/hkkjNJ7ge+DnwuyavAX3bPqaqTwOPAKeBHwANVdWlSw8867zFoiK5Zboeq+tISL921xP4PAw+vZaiPqtG/RDz9y+P+ZUKD5Dcae+AZgobMKEyJZwWaFUZBUsMoTMnoJYNnDRoyoyCpYRR65A1HDZFRmILFywUjoFlgFKZo9F6C9xU0VEZhSpaKgGcPGhqj0CMvKzRERqFnhkFDYxQkNYzCAHi2oCExCpIaRmEgPFvQUBiFAfG7CxoCozAwu2/e6dmCemUUJDWMwkB5tqC+GIUB8qaj+mQUBsowqC9GYQYYBk2TURiwy/8v4aVpMAoDZxg0bUZhBhgGTZNRmBGGQdNiFGbI7pt3+lVoTZxRmEGLX4X2jEGTYBRmnGHQuBmFGTV6KWEYNE5GYcZ5j0HjZhQ+AgyDxskoSGoYBUkNoyCpYRQkNZaNQpJHk1xIcmJk7aEkZ5Mc737uGXntwSTzSU4n2T2pwSVNxkrOFL4L3H2F9X+uqp3dz1MASXYAe4Hbu/c8kmTduIaVNHnLRqGqngPeWeHv2wMcrqqLVfU6MA/sWsN8kqZsLfcUvpzkpe7y4sZubQvw1sg+Z7o1STNitVH4FnAbsBM4B3zjan9Bkv1JjiU59h4XVzmGpHFbVRSq6nxVXaqq3wHf5veXCGeBrSO73tKtXel3HKyquaqaW8+G1YwhaQJWFYUkm0eefhFY/MvEEWBvkg1JtgHbgefXNqKkabpmuR2SPAZ8FrgpyRngH4DPJtkJFPAG8NcAVXUyyePAKeB94IGqujSZ0SVNQqqq7xn4w2ysO3JX32NIH2nP1vdfrKq55fbzG42SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSY1lo5Bka5IfJzmV5GSSr3TrG5M8k+TV7vHGkfc8mGQ+yekkuyf5P0DSeK3kTOF94G+ragfwZ8ADSXYAB4CjVbUdONo9p3ttL3A7cDfwSJJ1kxhe0vgtG4WqOldVP+223wVeAbYAe4BD3W6HgHu77T3A4aq6WFWvA/PArnEPLmkyruqeQpJbgU8BPwE2VdW57qW3gU3d9hbgrZG3nenWJM2AFUchyceBHwBfrarfjL5WVQXU1Xxwkv1JjiU59h4Xr+atkiZoRVFIsp6FIHyvqn7YLZ9Psrl7fTNwoVs/C2wdefst3Vqjqg5W1VxVza1nw2rnlzRmK/nrQ4DvAK9U1TdHXjoC7Ou29wFPjqzvTbIhyTZgO/D8+EaWNEnXrGCfPwf+Cng5yfFu7e+BrwOPJ7kfeBO4D6CqTiZ5HDjFwl8uHqiqS2OfXNJELBuFqvp3IEu8fNcS73kYeHgNc0nqid9olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkRqqq7xlI8l/A/wC/6nuWq3QTzjwNszbzUOf9k6r6xHI7DSIKAEmOVdVc33NcDWeejlmbedbmvZyXD5IaRkFSY0hRONj3AKvgzNMxazPP2ryNwdxTkDQMQzpTkDQAvUchyd1JTieZT3Kg73mWkuSNJC8nOZ7kWLe2MckzSV7tHm/secZHk1xIcmJkbckZkzzYHffTSXYPaOaHkpztjvXxJPcMbOatSX6c5FSSk0m+0q0P+livWFX19gOsA34B3AZcC/wM2NHnTB8y6xvATZet/RNwoNs+APxjzzN+Bvg0cGK5GYEd3fHeAGzr/jmsG8jMDwF/d4V9hzLzZuDT3fYNwM+72QZ9rFf60/eZwi5gvqpeq6rfAoeBPT3PdDX2AIe67UPAvT3OQlU9B7xz2fJSM+4BDlfVxap6HZhn4Z/HVC0x81KGMvO5qvppt/0u8AqwhYEf65XqOwpbgLdGnp/p1oaogGeTvJhkf7e2qarOddtvA5v6Ge1DLTXj0I/9l5O81F1eLJ6GD27mJLcCnwJ+wuwe60bfUZgld1bVTuALwANJPjP6Yi2cJw76TzmzMGPnWyxcUu4EzgHf6HecK0vyceAHwFer6jejr83Qsf6AvqNwFtg68vyWbm1wqups93gBeIKF07/zSTYDdI8X+ptwSUvNONhjX1Xnq+pSVf0O+Da/P9UezMxJ1rMQhO9V1Q+75Zk71lfSdxReALYn2ZbkWmAvcKTnmT4gyfVJbljcBj4PnGBh1n3dbvuAJ/uZ8EMtNeMRYG+SDUm2AduB53uY7wMW/8XqfJGFYw0DmTlJgO8Ar1TVN0demrljfUV93+kE7mHh7u0vgK/1Pc8SM97Gwt3jnwEnF+cE/gg4CrwKPAts7HnOx1g43X6PhevW+z9sRuBr3XE/DXxhQDP/C/Ay8BIL/0JtHtjMd7JwafAScLz7uWfox3qlP36jUVKj78sHSQNjFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjf8F0fxAN1Y3fhoAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305c79630>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305cd45c0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADJRJREFUeJzt23+o3fV9x/HnazFGtBaa2YUYw0wh/8TB0hLiYFIcsmplEPuPpH9sgcqyP1zXQvdHbP+oMIRuUPefhZRKw2jNQlsxDJloKMhgq8aSahKXmvoDE2PSrkJlf6SavffH/WY7n5t7c3+dc7/fmzwfcDnf8znfc+8733iefr/nnqSqkKSLfqfvASQNi1GQ1DAKkhpGQVLDKEhqGAVJjYlFIck9SU4kOZlkz6R+jqTxyiQ+p5BkFfBz4E+BU8CLwOer6vjYf5iksZrUmcJ24GRVvV5VvwX2Azsm9LMkjdE1E/q+G4C3R+6fAm6fbedrs6au44YJjSIJ4H3e+1VVfXyu/SYVhTkl2Q3sBriO67k9d/U1inRVeK5+8NZ89pvU5cNpYOPI/Vu6tf9TVXuraltVbVvNmgmNIWmhJhWFF4HNSTYluRbYCRyc0M+SNEYTuXyoqg+T/DXwDLAKeLyqjk3iZ0kar4m9p1BVTwNPT+r7S5oMP9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNS4ZilPTvIm8D5wAfiwqrYlWQv8M3Ar8CZwf1W9t7QxJS2XcZwp/ElVba2qbd39PcChqtoMHOruS1ohJnH5sAPY123vA+6bwM+QNCFLjUIBzyV5Kcnubm1dVZ3ptt8F1i3xZ0haRkt6TwG4o6pOJ/k94Nkk/zn6YFVVkprpiV1EdgNcx/VLHEPSuCzpTKGqTne354Ange3A2STrAbrbc7M8d29VbauqbatZs5QxJI3RoqOQ5IYkN17cBj4DHAUOAru63XYBTy11SEnLZymXD+uAJ5Nc/D7fr6p/TfIicCDJA8BbwP1LH1PScll0FKrqdeAPZ1j/L+CupQwlqT9+olFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqTFnFJI8nuRckqMja2uTPJvkte72YyOPPZTkZJITSe6e1OCSJmM+ZwrfBe6ZtrYHOFRVm4FD3X2SbAF2Ard1z3ksyaqxTStp4uaMQlU9D/x62vIOYF+3vQ+4b2R9f1Wdr6o3gJPA9jHNKmkZLPY9hXVVdabbfhdY121vAN4e2e9UtyZphVjyG41VVUAt9HlJdic5nOTwB5xf6hiSxmSxUTibZD1Ad3uuWz8NbBzZ75Zu7RJVtbeqtlXVttWsWeQYksZtsVE4COzqtncBT42s70yyJskmYDPwwtJGlLScrplrhyRPAHcCNyU5BXwd+AZwIMkDwFvA/QBVdSzJAeA48CHwYFVdmNDskiZgzihU1edneeiuWfZ/BHhkKUNJ6o+faJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRWCbPvHOk7xGkeTEKy+Tum7f2PYI0L0ZhGXm2oJXAKEhqGIVl5CWEVgKjIKlhFJaZ7yto6IyCpIZR6IFnCxoyoyCpYRSW2cXfQDzzzhHPGMbAYzh+RkFSwyj0YPTzCv6fTkNjFHpiGDRURkErljGdDKPQI88Wls6Pjo+fUeiZYVgcj9XkGAVJDaMwAJ4taEiMwkB4bTx/z7xzhLtv3uoxmxCjMCCjn3bUzDw2k2cUBsYwzMyPhS8fozBgvhCmTD8GXjZMllEYoOn/0V/NYTAIy88oDNT0N9KuxjAYhH4YhYEbjcPVdDlhEPpjFFaIq+mswSD0yyisINPPGq5EBqF/18y1Q5LHgT8DzlXVH3RrDwN/Cfyy2+2rVfV099hDwAPABeBvquqZCcx9VbvcWcNKfBFdCX+GK8l8zhS+C9wzw/o/VtXW7utiELYAO4Hbuuc8lmTVuIbVpWZ6Q3IlnUUYhOGZ80yhqp5Pcus8v98OYH9VnQfeSHIS2A78+6In1LzMFoahvsiMwXDNGYXL+GKSvwAOA1+pqveADcB/jOxzqlvTMhry5cXQ5tGlFhuFbwF/B1R3+03gCwv5Bkl2A7sBruP6RY6hy5l+tjDTpcVyvShnuqQxCMO0qChU1dmL20m+DfxLd/c0sHFk11u6tZm+x15gL8BHs7YWM4dmNv0FOHp/+m8v+nj/wRgM26KikGR9VZ3p7n4OONptHwS+n+RR4GZgM/DCkqfUglzuRTfbmcKk42AIVo75/EryCeBO4KYkp4CvA3cm2crU5cObwF8BVNWxJAeA48CHwINVdWEyo2sx5vp3FTO9eBcaDAOwsqWq/zP3j2Zt3Z67+h7jqna5F74v8ivDc/WDl6pq21z7LeW3D7qCLOSFb0CubEZBC+YL/8rmv32Q1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGnNGIcnGJD9OcjzJsSRf6tbXJnk2yWvd7cdGnvNQkpNJTiS5e5J/AEnjNZ8zhQ+Br1TVFuCPgAeTbAH2AIeqajNwqLtP99hO4DbgHuCxJKsmMbyk8ZszClV1pqp+2m2/D7wKbAB2APu63fYB93XbO4D9VXW+qt4ATgLbxz24pMlY0HsKSW4FPgn8BFhXVWe6h94F1nXbG4C3R552qluTtALMOwpJPgL8EPhyVf1m9LGqKqAW8oOT7E5yOMnhDzi/kKdKmqB5RSHJaqaC8L2q+lG3fDbJ+u7x9cC5bv00sHHk6bd0a42q2ltV26pq22rWLHZ+SWM2n98+BPgO8GpVPTry0EFgV7e9C3hqZH1nkjVJNgGbgRfGN7KkSbpmHvv8MfDnwCtJjnRrXwW+ARxI8gDwFnA/QFUdS3IAOM7Uby4erKoLY59c0kTMGYWq+jcgszx81yzPeQR4ZAlzSeqJn2iU1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqRGqqrvGUjyS+C/gV/1PcsC3YQzL4eVNvNQ5/39qvr4XDsNIgoASQ5X1ba+51gIZ14eK23mlTbvdF4+SGoYBUmNIUVhb98DLIIzL4+VNvNKm7cxmPcUJA3DkM4UJA1A71FIck+SE0lOJtnT9zyzSfJmkleSHElyuFtbm+TZJK91tx/recbHk5xLcnRkbdYZkzzUHfcTSe4e0MwPJzndHesjSe4d2Mwbk/w4yfEkx5J8qVsf9LGet6rq7QtYBfwC+ARwLfAzYEufM11m1jeBm6at/QOwp9veA/x9zzN+GvgUcHSuGYEt3fFeA2zq/h5WDWTmh4G/nWHfocy8HvhUt30j8PNutkEf6/l+9X2msB04WVWvV9Vvgf3Ajp5nWogdwL5uex9wX4+zUFXPA7+etjzbjDuA/VV1vqreAE4y9fexrGaZeTZDmflMVf20234feBXYwMCP9Xz1HYUNwNsj9091a0NUwHNJXkqyu1tbV1Vnuu13gXX9jHZZs8049GP/xSQvd5cXF0/DBzdzkluBTwI/YeUe60bfUVhJ7qiqrcBngQeTfHr0wZo6Txz0r3JWwoydbzF1SbkVOAN8s99xZpbkI8APgS9X1W9GH1tBx/oSfUfhNLBx5P4t3drgVNXp7vYc8CRTp39nk6wH6G7P9TfhrGabcbDHvqrOVtWFqvof4Nv8/6n2YGZOspqpIHyvqn7ULa+4Yz2TvqPwIrA5yaYk1wI7gYM9z3SJJDckufHiNvAZ4ChTs+7qdtsFPNXPhJc124wHgZ1J1iTZBGwGXuhhvktcfGF1PsfUsYaBzJwkwHeAV6vq0ZGHVtyxnlHf73QC9zL17u0vgK/1Pc8sM36CqXePfwYcuzgn8LvAIeA14Dlgbc9zPsHU6fYHTF23PnC5GYGvdcf9BPDZAc38T8ArwMtMvaDWD2zmO5i6NHgZONJ93Tv0Yz3fLz/RKKnR9+WDpIExCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkxv8CosWS9Fw+wMEAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305d284e0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9303239518>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADClJREFUeJzt3U+MnPV9x/H3p8YsCqESLqlljFWM5Is51IlWplJRRIUaEy4mF+QcKh+Q3AONEqk9mOYQLkhppaQ3IjkKilWluFYShA+oCKxIqJeAiRximzhs+CPsGLspkYJ6cMD59rCPm/kZL7venZnnGfp+Sat55jfP7HwZy289z7OzJlWFJF32R30PIGlYjIKkhlGQ1DAKkhpGQVLDKEhqTCwKSe5LcjrJQpL9k3odSeOVSXxOIck64BfAXwNngJeAL1bVqbG/mKSxmtSRwk5goaper6rfAYeA3RN6LUljdN2Evu9m4O2R+2eAu5ba+frM1Q3cOKFRJAG8x29+XVWfWm6/SUVhWUn2AfsAbuAT3JV7+xpF+n/h+fr+WyvZb1KnD2eBLSP3b+vW/k9VHaiq+aqaX8/chMaQdK0mFYWXgG1Jtia5HtgDHJnQa0kao4mcPlTVB0n+DngWWAc8UVUnJ/FaksZrYtcUquoZ4JlJfX9Jk+EnGiU1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGtet5clJ3gTeAy4BH1TVfJINwL8DtwNvAg9W1W/WNqakaRnHkcJfVdWOqprv7u8HjlbVNuBod1/SjJjE6cNu4GC3fRB4YAKvIWlC1hqFAp5P8nKSfd3axqo6122/A2xc42tImqI1XVMA7q6qs0n+FHguyc9HH6yqSlJXe2IXkX0AN/CJNY4haVzWdKRQVWe72wvAU8BO4HySTQDd7YUlnnugquaran49c2sZQ9IYrToKSW5MctPlbeBzwAngCLC3220v8PRah5Q0PWs5fdgIPJXk8vf5t6r6jyQvAYeTPAS8BTy49jElTcuqo1BVrwN/fpX1/wbuXctQkvrjJxolNYyCpIZRkNQwCpIaRmGKnv3V8b5HkJZlFCQ1jMKUeJSgWWEUJDWMgqSGUZDUMApT4PUEzRKjIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUpmjXrTv6HkFallGQ1DAKkhpGQVLDKEhqGIUp8SKjZoVRkNQwCpIaRkFSwyhMgdcTNEuMgqSGUZDUMApT8OyvjvsvOmtmGAVJDaMgqWEUpshTCM2CZaOQ5IkkF5KcGFnbkOS5JK91tzePPPZIkoUkp5PsmtTgkiZjJUcK3wXuu2JtP3C0qrYBR7v7JNkO7AHu7J7zeJJ1Y5tW0sQtG4WqegF494rl3cDBbvsg8MDI+qGqulhVbwALwM4xzTqz/PCSZslqrylsrKpz3fY7wMZuezPw9sh+Z7o1STNizRcaq6qAutbnJdmX5FiSY+9zca1jSBqT1UbhfJJNAN3thW79LLBlZL/burUPqaoDVTVfVfPrmVvlGJLGbbVROALs7bb3Ak+PrO9JMpdkK7ANeHFtI0qapuuW2yHJk8A9wC1JzgBfA74OHE7yEPAW8CBAVZ1Mchg4BXwAPFxVlyY0u6QJWDYKVfXFJR66d4n9HwMeW8tQkvrjJxolNYyCpIZRkNQwCj3yF6Q0REZBUsMoSGoYBUkNo9AzrytoaIzCFC31K9SGQUNiFKbkakEYXTMMGgqj0DPDoKExCpIaRmEAPFrQkBgFSQ2jMBD+464aCqMgqWEUBsSjBQ2BURiYXbfu8GKjemUUBsr/fb36YhQGyNMI9ckoDNTlMHi0oGkzCgPmEYP6YBQGzguPmjajMCMMg6bFKMyA0esLxkGTZhRmhL80pWkxCjPEMGgajMKM2XXrDk8nNFFGQVLDKMwoTyU0KUZhhl15KiGNg1H4GDAMGqfr+h5A43FlGPyItFbLI4WPmcunFB41aLWMwseUYdBqGYWPMU8htBrLRiHJE0kuJDkxsvZokrNJjndf94889kiShSSnk+ya1OCSJmMlRwrfBe67yvq/VNWO7usZgCTbgT3And1zHk+yblzDSpq8ZaNQVS8A767w++0GDlXVxap6A1gAdq5hPklTtpZrCl9K8kp3enFzt7YZeHtknzPdmqQZsdoofAu4A9gBnAO+ca3fIMm+JMeSHHufi6scQ9K4rSoKVXW+qi5V1e+Bb/OHU4SzwJaRXW/r1q72PQ5U1XxVza9nbjVjSJqAVUUhyaaRu18ALv9k4giwJ8lckq3ANuDFtY0oaZqW/ZhzkieBe4BbkpwBvgbck2QHUMCbwN8CVNXJJIeBU8AHwMNVdWkyo0uahFRV3zPwx9lQd+XevseQPtaer++/XFXzy+3nJxolNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhrLRiHJliQ/SnIqyckkX+7WNyR5Lslr3e3NI895JMlCktNJdk3yP0DSeK3kSOED4O+rajvwF8DDSbYD+4GjVbUNONrdp3tsD3AncB/weJJ1kxhe0vgtG4WqOldVP+m23wNeBTYDu4GD3W4HgQe67d3Aoaq6WFVvAAvAznEPLmkyrumaQpLbgU8DPwY2VtW57qF3gI3d9mbg7ZGnnenWJM2AFUchySeBHwBfqarfjj5WVQXUtbxwkn1JjiU59j4Xr+WpkiZoRVFIsp7FIHyvqn7YLZ9Psql7fBNwoVs/C2wZefpt3Vqjqg5U1XxVza9nbrXzSxqzlfz0IcB3gFer6psjDx0B9nbbe4GnR9b3JJlLshXYBrw4vpElTdJ1K9jnL4G/AX6W5Hi39o/A14HDSR4C3gIeBKiqk0kOA6dY/MnFw1V1aeyTS5qIZaNQVf8JZImH713iOY8Bj61hLkk98RONkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUSFX1PQNJ/gv4H+DXfc9yjW7Bmadh1mYe6rx/VlWfWm6nQUQBIMmxqprve45r4czTMWszz9q8V/L0QVLDKEhqDCkKB/oeYBWceTpmbeZZm7cxmGsKkoZhSEcKkgag9ygkuS/J6SQLSfb3Pc9SkryZ5GdJjic51q1tSPJckte625t7nvGJJBeSnBhZW3LGJI907/vpJLsGNPOjSc527/XxJPcPbOYtSX6U5FSSk0m+3K0P+r1esarq7QtYB/wSuAO4HvgpsL3PmT5i1jeBW65Y+2dgf7e9H/innmf8LPAZ4MRyMwLbu/d7Dtja/TmsG8jMjwL/cJV9hzLzJuAz3fZNwC+62Qb9Xq/0q+8jhZ3AQlW9XlW/Aw4Bu3ue6VrsBg522weBB3qchap6AXj3iuWlZtwNHKqqi1X1BrDA4p/HVC0x81KGMvO5qvpJt/0e8CqwmYG/1yvVdxQ2A2+P3D/TrQ1RAc8neTnJvm5tY1Wd67bfATb2M9pHWmrGob/3X0rySnd6cfkwfHAzJ7kd+DTwY2b3vW70HYVZcndV7QA+Dzyc5LOjD9biceKgf5QzCzN2vsXiKeUO4BzwjX7HuboknwR+AHylqn47+tgMvdcf0ncUzgJbRu7f1q0NTlWd7W4vAE+xePh3PskmgO72Qn8TLmmpGQf73lfV+aq6VFW/B77NHw61BzNzkvUsBuF7VfXDbnnm3uur6TsKLwHbkmxNcj2wBzjS80wfkuTGJDdd3gY+B5xgcda93W57gaf7mfAjLTXjEWBPkrkkW4FtwIs9zPchl/9idb7A4nsNA5k5SYDvAK9W1TdHHpq59/qq+r7SCdzP4tXbXwJf7XueJWa8g8Wrxz8FTl6eE/gT4CjwGvA8sKHnOZ9k8XD7fRbPWx/6qBmBr3bv+2ng8wOa+V+BnwGvsPgXatPAZr6bxVODV4Dj3df9Q3+vV/rlJxolNfo+fZA0MEZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNT4X4zlQOpmLn4GAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305d3ff60>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305d48cc0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADFNJREFUeJzt3U+onfWdx/H3Z2KM1Dpgxk6IMYwRsokDk5ZLHBgpDjKNlYHYjaSLIQtpZuF0WphZxHZRN0JnoJ2dhZRKw9AxI23FLGREQ0FmU43FahInNfUPJhOTdixUZpFq+p3FfTI9v5jrvbnnPvd5jn2/4HKe8zvPuefrkbx5nueckFQVknTRHww9gKRxMQqSGkZBUsMoSGoYBUkNoyCp0VsUktyV5ESSk0n29fU6klZW+vieQpI1wM+AvwJOAc8Dn6+q4yv+YpJWVF9HCjuAk1X1WlX9BjgI7OrptSStoKt6+r2bgLcm7p8Cblto56uzrq7h2p5GkQTwLr/6ZVV9YrH9+orCopLsBfYCXMPHuC13DjWK9Hvhmfr+m0vZr6/Th9PA5on7N3Vr/6+q9lfVXFXNrWVdT2NIulJ9ReF5YGuSLUmuBnYDh3p6LUkrqJfTh6p6P8nfAU8Ba4BHqupYH68laWX1dk2hqp4Enuzr90vqh99olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqXDXNk5O8AbwLXADer6q5JOuBfwduBt4A7q2qX003pqTVshJHCn9ZVduraq67vw84XFVbgcPdfUkzoo/Th13AgW77AHBPD68hqSfTRqGAZ5K8kGRvt7ahqs50228DG6Z8DUmraKprCsDtVXU6yR8DTyf5r8kHq6qS1OWe2EVkL8A1fGzKMSStlKmOFKrqdHd7Dngc2AGcTbIRoLs9t8Bz91fVXFXNrWXdNGNIWkHLjkKSa5Ncd3Eb+AxwFDgE7Ol22wM8Me2QklbPNKcPG4DHk1z8Pf9WVf+R5HngsST3AW8C904/pqTVsuwoVNVrwJ9dZv1/gDunGUrScPxGo6SGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRR69tR/vzj0CNIVMQo9MgiaRUZBUsMo9OTiUcLOG7cPPIl0ZYyCpIZRkNQwCj3xtEGzyij0zE8gNGuMgqSGUZDUMAo989qCZo1RkNQwCj3xAqNmlVGQ1DAKPfJ6gmaRUZDUMAqSGkahB15k1CwzCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlHoiV9x1qwyCj3xC0yaVUZBUsMorDCPEDTrFo1CkkeSnEtydGJtfZKnk7za3V4/8dgDSU4mOZFkZ1+Dj5FB0EfBUo4UvgvcdcnaPuBwVW0FDnf3SbIN2A3c2j3n4SRrVmxaSb1bNApV9SzwziXLu4AD3fYB4J6J9YNVdb6qXgdOAjtWaFZJq2C51xQ2VNWZbvttYEO3vQl4a2K/U93a7wU/htRHwdQXGquqgLrS5yXZm+RIkiPvcX7aMSStkOVG4WySjQDd7blu/TSweWK/m7q1D6iq/VU1V1Vza1m3zDHGx6MFzbrlRuEQsKfb3gM8MbG+O8m6JFuArcBz0404u/w0QrPoqsV2SPIocAdwQ5JTwNeArwOPJbkPeBO4F6CqjiV5DDgOvA/cX1UXeppdUg8WjUJVfX6Bh+5cYP+HgIemGUrScPxGo6SGURiI1xs0VkZBUsMoDMCjBI2ZUeiB31XQLDMKPfOoQLPGKPRk543bFzxi8EhCY2YUemYANGuMwoA8tdAYGQVJDaMwMI8WNDZGQVLDKIyARwsaE6MwED+V0FgZBUkNozCgyaMFTyE0FkZBUsMoDMyjBY2NURiByb8nYRg0NKMwIn4ioTEwCpIaRmFkdt643VMIDcooSGoYhZHyaEFDMQoj5CcRGpJRGCnDoKEYhREzDBrCov+WpIa1UBj8ToP64pHCjDACWi1GYYb49yS0GozCjLn070kYB600ozCjPGpQX4zCDDMM6oNRmHGXhsE4aFpG4SPg0n+30jhoGkbhI+TSjy2Ng5Zj0S8vJXkE+GvgXFX9abf2IPAF4Bfdbl+pqie7xx4A7gMuAH9fVU/1MLcW4PcZNK2lHCl8F7jrMuv/UlXbu5+LQdgG7AZu7Z7zcJI1KzWspP4tGoWqehZ4Z4m/bxdwsKrOV9XrwElgxxTzSVpl01xT+GKSl5I8kuT6bm0T8NbEPqe6NUkzYrlR+BZwC7AdOAN840p/QZK9SY4kOfIe55c5hqSVtqwoVNXZqrpQVb8Fvs3vThFOA5sndr2pW7vc79hfVXNVNbeWdcsZQ1IPlhWFJBsn7n4OONptHwJ2J1mXZAuwFXhuuhElraalfCT5KHAHcEOSU8DXgDuSbAcKeAP4W4CqOpbkMeA48D5wf1Vd6Gd0SX1IVQ09A3+Y9XVb7hx6DOkj7Zn6/gtVNbfYfn6jUVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpsWgUkmxO8qMkx5McS/Klbn19kqeTvNrdXj/xnAeSnExyIsnOPv8DJK2spRwpvA/8Q1VtA/4cuD/JNmAfcLiqtgKHu/t0j+0GbgXuAh5OsqaP4SWtvEWjUFVnquon3fa7wCvAJmAXcKDb7QBwT7e9CzhYVeer6nXgJLBjpQeX1I8ruqaQ5Gbgk8CPgQ1VdaZ76G1gQ7e9CXhr4mmnujVJM2DJUUjyceAHwJer6teTj1VVAXUlL5xkb5IjSY68x/kreaqkHi0pCknWMh+E71XVD7vls0k2do9vBM5166eBzRNPv6lba1TV/qqaq6q5taxb7vySVthSPn0I8B3glar65sRDh4A93fYe4ImJ9d1J1iXZAmwFnlu5kSX16aol7PMXwN8ALyd5sVv7CvB14LEk9wFvAvcCVNWxJI8Bx5n/5OL+qrqw4pNL6sWiUaiq/wSywMN3LvCch4CHpphL0kD8RqOkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDVSVUPPQJJfAP8L/HLoWa7QDTjzapi1mcc6759U1ScW22kUUQBIcqSq5oae40o48+qYtZlnbd5LefogqWEUJDXGFIX9Qw+wDM68OmZt5lmbtzGaawqSxmFMRwqSRmDwKCS5K8mJJCeT7Bt6noUkeSPJy0leTHKkW1uf5Okkr3a31w884yNJziU5OrG24IxJHuje9xNJdo5o5geTnO7e6xeT3D2ymTcn+VGS40mOJflStz7q93rJqmqwH2AN8HPgFuBq4KfAtiFn+pBZ3wBuuGTtn4F93fY+4J8GnvHTwKeAo4vNCGzr3u91wJbu/8Oakcz8IPCPl9l3LDNvBD7VbV8H/KybbdTv9VJ/hj5S2AGcrKrXquo3wEFg18AzXYldwIFu+wBwz4CzUFXPAu9csrzQjLuAg1V1vqpeB04y//9jVS0w80LGMvOZqvpJt/0u8AqwiZG/10s1dBQ2AW9N3D/VrY1RAc8keSHJ3m5tQ1Wd6bbfBjYMM9qHWmjGsb/3X0zyUnd6cfEwfHQzJ7kZ+CTwY2b3vW4MHYVZcntVbQc+C9yf5NOTD9b8ceKoP8qZhRk732L+lHI7cAb4xrDjXF6SjwM/AL5cVb+efGyG3usPGDoKp4HNE/dv6tZGp6pOd7fngMeZP/w7m2QjQHd7brgJF7TQjKN976vqbFVdqKrfAt/md4fao5k5yVrmg/C9qvphtzxz7/XlDB2F54GtSbYkuRrYDRwaeKYPSHJtkusubgOfAY4yP+uebrc9wBPDTPihFprxELA7ybokW4CtwHMDzPcBF/9gdT7H/HsNI5k5SYDvAK9U1TcnHpq59/qyhr7SCdzN/NXbnwNfHXqeBWa8hfmrxz8Fjl2cE/gj4DDwKvAMsH7gOR9l/nD7PebPW+/7sBmBr3bv+wngsyOa+V+Bl4GXmP8DtXFkM9/O/KnBS8CL3c/dY3+vl/rjNxolNYY+fZA0MkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNT4P4HDWoZYTor9AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305d217f0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305d48588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADBxJREFUeJzt3UGMlPd9h/HnW8BrxXElE6cIA6qxxAUfSqIVrlQrcoUaiC84F4scKg6W6IFGidQccHOIL5bSSklvjkQUK6hKTVESyxysWjaKZPUSG0fEBhzijY0FBENTR4rVAzHk18O+28wfs95ld96dGfp8pNW+8593dn5+LR6977uDnapCkub8yagHkDRejIKkhlGQ1DAKkhpGQVLDKEhq9BaFJLuSnEkyk+RAX+8jabjSx+cUkqwCfgn8DXAeeBX4UlWdHvqbSRqqvs4UtgMzVfV2Vf0eOAzs7um9JA3R6p5+7gbg3MDj88AD8+18W6bqdu7oaRRJAB/w299U1acX2q+vKCwoyT5gH8DtfIIHsmNUo0j/L7xUP3x3Mfv1dflwAdg08Hhjt/Z/qupgVU1X1fQapnoaQ9LN6isKrwJbkmxOchuwBzja03tJGqJeLh+q6mqSvwdeAFYBT1fVqT7eS9Jw9XZPoaqeB57v6+dL6oefaJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaqxezouTnAU+AK4BV6tqOsla4N+Be4GzwKNV9dvljSlppQzjTOGvq2pbVU13jw8Ax6pqC3CseyxpQvRx+bAbONRtHwIe6eE9JPVkuVEo4KUkryXZ162tq6qL3fZ7wLplvoekFbSsewrAg1V1IcmfAS8m+cXgk1VVSepGL+wisg/gdj6xzDEkDcuyzhSq6kL3/TLwLLAduJRkPUD3/fI8rz1YVdNVNb2GqeWMIWmIlhyFJHckuXNuG/g8cBI4CuztdtsLPLfcISWtnOVcPqwDnk0y93P+rar+I8mrwJEkjwHvAo8uf0xJK2XJUaiqt4G/uMH6fwM7ljOUpNHxE42SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCj154dcnRj2CtCRGQVLDKEhqGAVJjQWjkOTpJJeTnBxYW5vkxSRvdd/vGnju8SQzSc4k2dnX4OPM+wmaZIs5U/g+sOu6tQPAsaraAhzrHpNkK7AHuL97zVNJVg1tWkm9WzAKVfUy8P51y7uBQ932IeCRgfXDVXWlqt4BZoDtQ5pV0gpY6j2FdVV1sdt+D1jXbW8Azg3sd75bkzQhln2jsaoKqJt9XZJ9SY4nOf4hV5Y7xljy3oIm0VKjcCnJeoDu++Vu/QKwaWC/jd3aR1TVwaqarqrpNUwtcQxJw7bUKBwF9nbbe4HnBtb3JJlKshnYAryyvBElraTVC+2Q5BngIeDuJOeBbwDfBI4keQx4F3gUoKpOJTkCnAauAvur6lpPs0vqwYJRqKovzfPUjnn2fxJ4cjlDTbqd92zzfoImlp9o7Jlx0KQxCj3Zec+2UY8gLYlRkNQwCpIaRkFSwyj0aO6+gjcbNUmMgqSGUZDUMAo981eTmjRGYYV4X0GTwihIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGIUV4sedNSmMQs/8eLMmjVGQ1DAKkhpGoUdzlw7eT9AkMQqSGkZBUsMoSGoYhZ54P0GTyihIahiFHviBJU0yo9AjLx00iYyCpIZRGDJvMGrSGQVJDaPQA88SNMmMwhD5WwfdChaMQpKnk1xOcnJg7YkkF5Kc6L4eHnju8SQzSc4k2dnX4ONo5z3bPEvQxFvMmcL3gV03WP+XqtrWfT0PkGQrsAe4v3vNU0lWDWtYSf1bMApV9TLw/iJ/3m7gcFVdqap3gBlg+zLmmxheOuhWsZx7Cl9O8np3eXFXt7YBODewz/lu7ZZmEHQrWWoUvgPcB2wDLgLfutkfkGRfkuNJjn/IlSWOMR68l6BbyZKiUFWXqupaVf0B+C5/vES4AGwa2HVjt3ajn3GwqqaranoNU0sZQ1IPlhSFJOsHHn4RmPvNxFFgT5KpJJuBLcAryxtR0kpavdAOSZ4BHgLuTnIe+AbwUJJtQAFngb8DqKpTSY4Ap4GrwP6qutbP6JL6kKoa9Qz8adbWA9kx6jGkW9pL9cPXqmp6of38RKOkhlGQ1DAKkhpGQVLDKIwZPx2pUTMKY2bnPdsMg0bKKIwpw6BRMQpjzDBoFIzCGBr8y1Uv/PqEcdCKMgpj6vq/dWkctFKMwhib+yvZ1585SH0yChPC/16DVopRmCBzZw2eLahPRmECedagPhkFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaC0YhyaYkP0lyOsmpJF/p1tcmeTHJW933uwZe83iSmSRnkuzs8x9A0nAt5kzhKvAPVbUV+Etgf5KtwAHgWFVtAY51j+me2wPcD+wCnkqyqo/hJQ3fglGoqotV9bNu+wPgTWADsBs41O12CHik294NHK6qK1X1DjADbB/24JL6cVP3FJLcC3wG+Cmwrqoudk+9B6zrtjcA5wZedr5bkzQBFh2FJJ8EfgR8tap+N/hcVRVQN/PGSfYlOZ7k+IdcuZmXSurRoqKQZA2zQfhBVf24W76UZH33/Hrgcrd+Adg08PKN3Vqjqg5W1XRVTa9haqnzSxqyxfz2IcD3gDer6tsDTx0F9nbbe4HnBtb3JJlKshnYArwyvJEl9Wn1Ivb5K+BvgTeSzP0/0P8R+CZwJMljwLvAowBVdSrJEeA0s7+52F9V14Y+uaReLBiFqvpPIPM8vWOe1zwJPLmMuSSNiJ9olNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkRqpq1DOQ5L+A/wF+M+pZbtLdOPNKmLSZx3XeP6+qTy+001hEASDJ8aqaHvUcN8OZV8akzTxp817PywdJDaMgqTFOUTg46gGWwJlXxqTNPGnzNsbmnoKk8TBOZwqSxsDIo5BkV5IzSWaSHBj1PPNJcjbJG0lOJDnera1N8mKSt7rvd414xqeTXE5ycmBt3hmTPN4d9zNJdo7RzE8kudAd6xNJHh6zmTcl+UmS00lOJflKtz7Wx3rRqmpkX8Aq4FfAfcBtwM+BraOc6WNmPQvcfd3aPwMHuu0DwD+NeMbPAZ8FTi40I7C1O95TwObu38OqMZn5CeBrN9h3XGZeD3y2274T+GU321gf68V+jfpMYTswU1VvV9XvgcPA7hHPdDN2A4e67UPAIyOchap6GXj/uuX5ZtwNHK6qK1X1DjDD7L+PFTXPzPMZl5kvVtXPuu0PgDeBDYz5sV6sUUdhA3Bu4PH5bm0cFfBSkteS7OvW1lXVxW77PWDdaEb7WPPNOO7H/stJXu8uL+ZOw8du5iT3Ap8BfsrkHuvGqKMwSR6sqm3AF4D9ST43+GTNnieO9a9yJmHGzneYvaTcBlwEvjXacW4sySeBHwFfrarfDT43Qcf6I0YdhQvApoHHG7u1sVNVF7rvl4FnmT39u5RkPUD3/fLoJpzXfDOO7bGvqktVda2q/gB8lz+eao/NzEnWMBuEH1TVj7vliTvWNzLqKLwKbEmyOcltwB7g6Ihn+ogkdyS5c24b+DxwktlZ93a77QWeG82EH2u+GY8Ce5JMJdkMbAFeGcF8HzH3B6vzRWaPNYzJzEkCfA94s6q+PfDUxB3rGxr1nU7gYWbv3v4K+Pqo55lnxvuYvXv8c+DU3JzAp4BjwFvAS8DaEc/5DLOn2x8ye9362MfNCHy9O+5ngC+M0cz/CrwBvM7sH6j1Yzbzg8xeGrwOnOi+Hh73Y73YLz/RKKkx6ssHSWPGKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGv8LPz0wxu65WswAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b930327aeb8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305ba1f98>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC+lJREFUeJzt3E+InPd9x/H3p7K8Jo4LVp0KWRK1DLrIhyphkQs1wUU0UnyRczHKoehgUA9qSKA9yM0hvhjSQtKbAwoxESW1KpIY62BqbBEwvcSWg2JLchVv/AdLlqWmDsT0oFjKt4d9NpmfrPWudubZmXHfL1jmmd88M/P1I/TmeWbHSlUhSQv+aNwDSJosRkFSwyhIahgFSQ2jIKlhFCQ1eotCkt1JziaZS3Kwr/eRNFrp43sKSdYAvwD+GjgHvAR8uarOjPzNJI1UX2cKO4C5qnqjqn4LHAH29PRekkbopp5edyPwzsD9c8C9i+18c2bqFm7taRRJAB/w619V1WeW2q+vKCwpyX5gP8AtfIp7s3Nco0j/LzxfP3x7Ofv1dflwHtg8cH9Tt/Z7VXWoqmaranYtMz2NIelG9RWFl4CtSbYkuRnYCxzr6b0kjVAvlw9VdSXJ3wHPAmuAJ6rqdB/vJWm0evtMoaqeAZ7p6/Ul9cNvNEpqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNW4a5slJ3gI+AK4CV6pqNsk64N+Bu4C3gIeq6tfDjSlptYziTOGvqmp7Vc129w8Cx6tqK3C8uy9pSvRx+bAHONxtHwYe7OE9JPVk2CgU8HySl5Ps79bWV9WFbvs9YP2Q7yFpFQ31mQJwX1WdT/KnwHNJ/mvwwaqqJHW9J3YR2Q9wC58acgxJozLUmUJVne9uLwFPATuAi0k2AHS3lxZ57qGqmq2q2bXMDDOGpBFacRSS3JrktoVt4AvAKeAYsK/bbR/w9LBDSlo9w1w+rAeeSrLwOv9WVf+R5CXgaJKHgbeBh4YfU9JqWXEUquoN4M+vs/4/wM5hhpI0Pn6jUVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNozBiz757ctwjSENZMgpJnkhyKcmpgbV1SZ5L8np3e/vAY48kmUtyNsmuvgaX1I/lnCl8H9h9zdpB4HhVbQWOd/dJsg3YC9zTPefxJGtGNu2E8yxBnwRLRqGqXgDev2Z5D3C42z4MPDiwfqSqLlfVm8AcsGNEs06FXXduH/cI0lBW+pnC+qq60G2/B6zvtjcC7wzsd65bkzQlhv6gsaoKqBt9XpL9SU4kOfEhl4cdQ9KIrDQKF5NsAOhuL3Xr54HNA/tt6tY+oqoOVdVsVc2uZWaFY0gatZVG4Riwr9veBzw9sL43yUySLcBW4MXhRpwuftioaXfTUjskeRK4H7gjyTngG8A3gaNJHgbeBh4CqKrTSY4CZ4ArwIGqutrT7JJ6sGQUqurLizy0c5H9HwMeG2YoSePjNxp74CWEpplRkNQwCpIaRmGE/DajPgmMQk/8XEHTyihIahiFEfMSQtPOKEhqGIUeeLagaWYUJDWMgqSGUZDUMAo98rsKmkZGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYhR75v1BrGhkFSQ2jIKlhFCQ1jEIPnn33pJ8naGoZBUkNo9ADzxI0zYyCpIZRkNQwCpIaRkFSwyhIahgFSY0lo5DkiSSXkpwaWHs0yfkkJ7ufBwYeeyTJXJKzSXb1NbikfiznTOH7wO7rrP9LVW3vfp4BSLIN2Avc0z3n8SRrRjWspP4tGYWqegF4f5mvtwc4UlWXq+pNYA7YMcR8klbZMJ8pfCXJK93lxe3d2kbgnYF9znVrkqbESqPwHeBuYDtwAfjWjb5Akv1JTiQ58SGXVziGpFFbURSq6mJVXa2q3wHf5Q+XCOeBzQO7burWrvcah6pqtqpm1zKzkjEk9WBFUUiyYeDul4CF30wcA/YmmUmyBdgKvDjciJJW001L7ZDkSeB+4I4k54BvAPcn2Q4U8BbwtwBVdTrJUeAMcAU4UFVX+xldUh9SVeOegT/Ouro3O8c9hvSJ9nz98OWqml1qP7/RKKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwChqZZ989ybPvnhz3GBrSkv/Eu7Rcu+7cDvD7MCzc13QxCho54zDdvHxQb66Ng6aDUVCvBsNgHKaDUVDvdt253UuIKWIUtGoMw3QwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpLRiHJ5iQ/SXImyekkX+3W1yV5Lsnr3e3tA895JMlckrNJdvX5HyBptJZzpnAF+Puq2gb8BXAgyTbgIHC8qrYCx7v7dI/tBe4BdgOPJ1nTx/CSRm/JKFTVhar6Wbf9AfAasBHYAxzudjsMPNht7wGOVNXlqnoTmAN2jHpwSf24oc8UktwFfBb4KbC+qi50D70HrO+2NwLvDDztXLcmaQosOwpJPg38CPhaVf1m8LGqKqBu5I2T7E9yIsmJD7l8I0+V1KNlRSHJWuaD8IOq+nG3fDHJhu7xDcClbv08sHng6Zu6tUZVHaqq2aqaXcvMSueXNGLL+e1DgO8Br1XVtwceOgbs67b3AU8PrO9NMpNkC7AVeHF0I0vq03L+4da/BP4GeDXJwr+n9Y/AN4GjSR4G3gYeAqiq00mOAmeY/83Fgaq6OvLJJfViyShU1X8CWeThnYs85zHgsSHmkjQmfqNRUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaqapxz0CS/wb+F/jVuGe5QXfgzKth2mae1Hn/rKo+s9ROExEFgCQnqmp23HPcCGdeHdM287TNey0vHyQ1jIKkxiRF4dC4B1gBZ14d0zbztM3bmJjPFCRNhkk6U5A0AcYehSS7k5xNMpfk4LjnWUySt5K8muRkkhPd2rokzyV5vbu9fcwzPpHkUpJTA2uLzpjkke64n02ya4JmfjTJ+e5Yn0zywITNvDnJT5KcSXI6yVe79Yk+1stWVWP7AdYAvwTuBm4Gfg5sG+dMHzPrW8Ad16z9M3Cw2z4I/NOYZ/w88Dng1FIzAtu64z0DbOn+HNZMyMyPAv9wnX0nZeYNwOe67duAX3SzTfSxXu7PuM8UdgBzVfVGVf0WOALsGfNMN2IPcLjbPgw8OMZZqKoXgPevWV5sxj3Akaq6XFVvAnPM/3msqkVmXsykzHyhqn7WbX8AvAZsZMKP9XKNOwobgXcG7p/r1iZRAc8neTnJ/m5tfVVd6LbfA9aPZ7SPtdiMk37sv5Lkle7yYuE0fOJmTnIX8Fngp0zvsW6MOwrT5L6q2g58ETiQ5PODD9b8eeJE/ypnGmbsfIf5S8rtwAXgW+Md5/qSfBr4EfC1qvrN4GNTdKw/YtxROA9sHri/qVubOFV1vru9BDzF/OnfxSQbALrbS+ObcFGLzTixx76qLlbV1ar6HfBd/nCqPTEzJ1nLfBB+UFU/7pan7lhfz7ij8BKwNcmWJDcDe4FjY57pI5LcmuS2hW3gC8Ap5mfd1+22D3h6PBN+rMVmPAbsTTKTZAuwFXhxDPN9xMJfrM6XmD/WMCEzJwnwPeC1qvr2wENTd6yva9yfdAIPMP/p7S+Br497nkVmvJv5T49/DpxemBP4E+A48DrwPLBuzHM+yfzp9ofMX7c+/HEzAl/vjvtZ4IsTNPO/Aq8CrzD/F2rDhM18H/OXBq8AJ7ufByb9WC/3x280SmqM+/JB0oQxCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkxv8BlkARfWhk+SUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305c4beb8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305c374e0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADCJJREFUeJzt3U+IXfd5h/HnW1keE8cFq06FLItaBhGQF1XCIBdqQoqbyPFGzsYoi6KFQV24IYF2ITeLemNIC0l3DijERJTUqklirIWJsUXAFEpsOSiOJFfxxH+wZFlq6kBMF4qtvF3Mmeb+ZI3n371zznWfDwz33N89d+7rY/Rwzp2rUaoKSVrwB30PIGlYjIKkhlGQ1DAKkhpGQVLDKEhqTCwKSe5OcibJXJKDk3odSeOVSXxOIckG4BfA54CzwAvAl6rq9NhfTNJYTepMYTcwV1WvVtVvgSPA3gm9lqQxumZC33cr8ObI/bPAHYvtfG1m6jqun9AokgDe5de/qqpPLLXfpKKwpCQHgAMA1/Ex7shdfY0i/b/wbH3/jeXsN6nLh3PAtpH7t3Rr/6eqDlXVbFXNbmRmQmNIWqlJReEFYEeS7UmuBfYBRyf0WpLGaCKXD1X1fpK/AZ4GNgCPVtWpSbyWpPGa2HsKVfUU8NSkvr+kyfATjZIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjWvW8uQkrwPvApeB96tqNskm4N+AW4HXgfuq6tdrG1PSehnHmcJfVNWuqprt7h8EjlXVDuBYd1/SlJjE5cNe4HC3fRi4dwKvIWlC1hqFAp5N8mKSA93a5qo6322/DWxe42tIWkdrek8BuLOqziX5Y+CZJP85+mBVVZK62hO7iBwAuI6PrXEMSeOypjOFqjrX3V4EngB2AxeSbAHobi8u8txDVTVbVbMbmVnLGJLGaNVRSHJ9khsWtoHPAyeBo8D+brf9wJNrHVLS+lnL5cNm4IkkC9/nX6vqR0leAB5Pcj/wBnDf2seUtF5WHYWqehX406us/zdw11qGktQfP9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNozBGT791ou8RpDUzCpIaRmHMPFvQtDMKkhpLRiHJo0kuJjk5srYpyTNJXulubxx57MEkc0nOJNkzqcElTcZyzhS+C9x9xdpB4FhV7QCOdfdJshPYB9zePeeRJBvGNq2kiVsyClX1HPDOFct7gcPd9mHg3pH1I1V1qapeA+aA3WOaVdI6WO17Cpur6ny3/TawudveCrw5st/Zbk3SlFjzG41VVUCt9HlJDiQ5nuT4e1xa6xiSxmS1UbiQZAtAd3uxWz8HbBvZ75Zu7QOq6lBVzVbV7EZmVjmGpHFbbRSOAvu77f3AkyPr+5LMJNkO7ACeX9uIktbTcn4k+RjwH8Ank5xNcj/wdeBzSV4B/rK7T1WdAh4HTgM/Ah6oqsuTGn6o/ACTptk1S+1QVV9a5KG7Ftn/YeDhtQz1UfD0WyfYc/OuvseQVsxPNI7RlRHwjEHTyChIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGYcz8rIKmnVFYB4ZB08QoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyiMmR9U0rQzCuvA39WoaWIUJDWMgqSGURijq72f4KWDpo1RmCCDoGlkFCQ1lvwXorRyniFomnmmIKlhFMbMswRNO6MgqWEUxsSPN+ujwihIahgFSQ2jMEa+yaiPAqMwJgZBHxVGQVLDKEhqLBmFJI8muZjk5MjaQ0nOJTnRfd0z8tiDSeaSnEmyZ1KDS5qM5ZwpfBe4+yrr/1xVu7qvpwCS7AT2Abd3z3kkyYZxDStp8paMQlU9B7yzzO+3FzhSVZeq6jVgDti9hvkkrbO1vKfw5SQvdZcXN3ZrW4E3R/Y5261JmhKrjcK3gNuAXcB54Bsr/QZJDiQ5nuT4e1xa5RiSxm1VUaiqC1V1uap+B3yb318inAO2jex6S7d2te9xqKpmq2p2IzOrGUPSBKwqCkm2jNz9IrDwk4mjwL4kM0m2AzuA59c2oqT1tORvXkryGPBZ4KYkZ4F/AD6bZBdQwOvAXwNU1akkjwOngfeBB6rq8mRGlzQJqaq+Z+APs6nuyF19jyF9pD1b33+xqmaX2s9PNPbg6bdO+PsXNFhGoQcLf3nKMGiIjEJPRsNgHDQkRqFHo3/d2jBoKIxCzwyDhsYoDIBh0JAYhYHwNzdpKIzCgBgGDYFRGJg9N+/yEkK9MgoDtBAG46A+GIWB8gNO6otRGDDDoD4YhYHbc/Mu32fQujIKU8L3GbRejMIUWThrAC8pNDlGYUr5mQZNilGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIaiwZhSTbkvw4yekkp5J8pVvflOSZJK90tzeOPOfBJHNJziTZM8n/AEnjtZwzhfeBv62qncCfAQ8k2QkcBI5V1Q7gWHef7rF9wO3A3cAjSTZMYnhJ47dkFKrqfFX9tNt+F3gZ2ArsBQ53ux0G7u229wJHqupSVb0GzAG7xz24pMlY0XsKSW4FPgX8BNhcVee7h94GNnfbW4E3R552tluTNAWWHYUkHwd+AHy1qn4z+lhVFVAreeEkB5IcT3L8PS6t5KmSJmhZUUiykfkgfK+qftgtX0iypXt8C3CxWz8HbBt5+i3dWqOqDlXVbFXNbmRmtfNLGrPl/PQhwHeAl6vqmyMPHQX2d9v7gSdH1vclmUmyHdgBPD++kSVN0jXL2OfPgb8Cfp5k4V81/Xvg68DjSe4H3gDuA6iqU0keB04z/5OLB6rq8tgnlzQRS0ahqv4dyCIP37XIcx4GHl7DXJJ64icaJTWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpkarqewaS/BfwP8Cv+p5lhW7CmdfDtM081Hn/pKo+sdROg4gCQJLjVTXb9xwr4czrY9pmnrZ5r+Tlg6SGUZDUGFIUDvU9wCo48/qYtpmnbd7GYN5TkDQMQzpTkDQAvUchyd1JziSZS3Kw73kWk+T1JD9PciLJ8W5tU5JnkrzS3d7Y84yPJrmY5OTI2qIzJnmwO+5nkuwZ0MwPJTnXHesTSe4Z2Mzbkvw4yekkp5J8pVsf9LFetqrq7QvYAPwSuA24FvgZsLPPmT5k1teBm65Y+yfgYLd9EPjHnmf8DPBp4ORSMwI7u+M9A2zv/j9sGMjMDwF/d5V9hzLzFuDT3fYNwC+62QZ9rJf71feZwm5grqperarfAkeAvT3PtBJ7gcPd9mHg3h5noaqeA965YnmxGfcCR6rqUlW9Bswx//9jXS0y82KGMvP5qvppt/0u8DKwlYEf6+XqOwpbgTdH7p/t1oaogGeTvJjkQLe2uarOd9tvA5v7Ge1DLTbj0I/9l5O81F1eLJyGD27mJLcCnwJ+wvQe60bfUZgmd1bVLuALwANJPjP6YM2fJw76RznTMGPnW8xfUu4CzgPf6Hecq0vyceAHwFer6jejj03Rsf6AvqNwDtg2cv+Wbm1wqupcd3sReIL5078LSbYAdLcX+5twUYvNONhjX1UXqupyVf0O+Da/P9UezMxJNjIfhO9V1Q+75ak71lfTdxReAHYk2Z7kWmAfcLTnmT4gyfVJbljYBj4PnGR+1v3dbvuBJ/uZ8EMtNuNRYF+SmSTbgR3A8z3M9wELf7A6X2T+WMNAZk4S4DvAy1X1zZGHpu5YX1Xf73QC9zD/7u0vga/1Pc8iM97G/LvHPwNOLcwJ/BFwDHgFeBbY1POcjzF/uv0e89et93/YjMDXuuN+BvjCgGb+F+DnwEvM/4HaMrCZ72T+0uAl4ET3dc/Qj/Vyv/xEo6RG35cPkgbGKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGv8LQ4g3Odo3peMAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305befc50>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305b3c518>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC/ZJREFUeJzt20GMlPd9h/HnW8BrxXElE6cIA6qxRA/4EBKtcKVakSvU4PiCc7HIoeJgiRxolEjtATeH+GIprZr0UiUSUazQKjVFSSxziGoZFMnqJTaOiA24xBsbCzYYmjpSrB6IIb8e9qWZP2a9y+68OzP0+Uireec/7+z8eBGP3nlnSFUhSdf8wagHkDRejIKkhlGQ1DAKkhpGQVLDKEhq9BaFJA8nOZNkJsn+vl5H0nClj+8pJFkF/Bz4C+A88DLw+ao6PfQXkzRUfZ0pbAdmqurNqvotcAjY1dNrSRqi1T393g3AuYH754EH5tv5tkzV7dzR0yiSAN7j17+qqo8vtF9fUVhQkr3AXoDb+QgPZMeoRpH+Xzha3397Mfv19fZhFtg0cH9jt/Z/qupAVU1X1fQapnoaQ9LN6isKLwNbkmxOchuwGzjS02tJGqJe3j5U1ZUkfwU8D6wCnq6qU328lqTh6u2aQlX9CPhRX79fUj/8RqOkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUmP1cp6c5CzwHnAVuFJV00nWAv8G3AucBR6rql8vb0xJK2UYZwp/XlXbqmq6u78fOFZVW4Bj3X1JE6KPtw+7gIPd9kHg0R5eQ1JPlhuFAo4meSXJ3m5tXVVd6LbfAdYt8zUkraBlXVMAHqyq2SR/BLyQ5D8HH6yqSlI3emIXkb0At/ORZY4haViWdaZQVbPd7SXgWWA7cDHJeoDu9tI8zz1QVdNVNb2GqeWMIWmIlhyFJHckufPaNvAZ4CRwBNjT7bYHeG65Q0paOct5+7AOeDbJtd/zr1X170leBg4neRx4G3hs+WNKWilLjkJVvQl84gbr/w3sWM5QkkbHbzRKahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaPQk+d/eWLUI0hLYhR6ZBg0iRaMQpKnk1xKcnJgbW2SF5K80d3eNfDYE0lmkpxJsrOvwSX1YzFnCt8FHr5ubT9wrKq2AMe6+yTZCuwG7u+e880kq4Y27YS4doaw855tI55EunkLRqGqXgTevW55F3Cw2z4IPDqwfqiqLlfVW8AMsH1Is0paAUu9prCuqi502+8A67rtDcC5gf3Od2uSJsSyLzRWVQF1s89LsjfJ8STH3+fycseQNCRLjcLFJOsButtL3fossGlgv43d2gdU1YGqmq6q6TVMLXEMScO21CgcAfZ023uA5wbWdyeZSrIZ2AK8tLwRJ5cfSWoSrV5ohyTPAA8Bdyc5D3wV+BpwOMnjwNvAYwBVdSrJYeA0cAXYV1VXe5pdUg8WjEJVfX6eh3bMs/9TwFPLGWrS7bxnm2cJmlh+o7EnfkdBk8ooSGoYhZ75NkKTxihIahgFSQ2jIKlhFCQ1jMIK8GKjJolR6JHfVdAkMgqSGkZBUsMoSGoYhRXixUZNCqMgqWEUeuYnEJo0RkFSwyisIK8raBIYBUkNo9Azzw40aYyCpIZR6JFnCZpERkFSwyisIL+zoElgFFaIQdCkMAqSGkahJ4MXGT1L0CQxCpIaRqFnniVo0hgFSQ2jIKlhFCQ1jEKPvJ6gSWQUevD8L08YBE0soyCpYRSGzLMETTqjMEQGQbeCBaOQ5Okkl5KcHFh7MslskhPdzyMDjz2RZCbJmSQ7+xp83BgE3SpWL2Kf7wL/BPzzdev/WFX/MLiQZCuwG7gfuAc4muRPqurqEGYdS9f+j4NB0K1iwTOFqnoReHeRv28XcKiqLlfVW8AMsH0Z842twRgYBN1KlnNN4YtJXu3eXtzVrW0Azg3sc75bu+UYAt2qlhqFbwH3AduAC8DXb/YXJNmb5HiS4+9zeYljSBq2JUWhqi5W1dWq+h3wbX7/FmEW2DSw68Zu7Ua/40BVTVfV9BqmljKGpB4sKQpJ1g/c/Rxw7ZOJI8DuJFNJNgNbgJeWN6KklbTgpw9JngEeAu5Och74KvBQkm1AAWeBLwBU1akkh4HTwBVg3638yYN0K0pVjXoG/jBr64HsGPUY0i3taH3/laqaXmg/v9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNRYMApJNiX5cZLTSU4l+VK3vjbJC0ne6G7vGnjOE0lmkpxJsrPPP4Ck4VrMmcIV4K+raivwp8C+JFuB/cCxqtoCHOvu0z22G7gfeBj4ZpJVfQwvafgWjEJVXaiqn3bb7wGvAxuAXcDBbreDwKPd9i7gUFVdrqq3gBlg+7AHl9SPm7qmkORe4JPAT4B1VXWhe+gdYF23vQE4N/C0892apAmw6Cgk+SjwA+DLVfWbwceqqoC6mRdOsjfJ8STH3+fyzTxVUo8WFYUka5gLwveq6ofd8sUk67vH1wOXuvVZYNPA0zd2a42qOlBV01U1vYappc4vacgW8+lDgO8Ar1fVNwYeOgLs6bb3AM8NrO9OMpVkM7AFeGl4I0vq0+pF7PNnwF8CryU50a39LfA14HCSx4G3gccAqupUksPAaeY+udhXVVeHPrmkXiwYhar6DyDzPLxjnuc8BTy1jLkkjYjfaJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpEaqatQzkOS/gP8BfjXqWW7S3TjzSpi0mcd13j+uqo8vtNNYRAEgyfGqmh71HDfDmVfGpM08afNez7cPkhpGQVJjnKJwYNQDLIEzr4xJm3nS5m2MzTUFSeNhnM4UJI2BkUchycNJziSZSbJ/1PPMJ8nZJK8lOZHkeLe2NskLSd7obu8a8YxPJ7mU5OTA2rwzJnmiO+5nkuwco5mfTDLbHesTSR4Zs5k3JflxktNJTiX5Urc+1sd60apqZD/AKuAXwH3AbcDPgK2jnOlDZj0L3H3d2t8D+7vt/cDfjXjGTwOfAk4uNCOwtTveU8Dm7u9h1ZjM/CTwNzfYd1xmXg98qtu+E/h5N9tYH+vF/oz6TGE7MFNVb1bVb4FDwK4Rz3QzdgEHu+2DwKMjnIWqehF497rl+WbcBRyqqstV9RYww9zfx4qaZ+b5jMvMF6rqp932e8DrwAbG/Fgv1qijsAE4N3D/fLc2jgo4muSVJHu7tXVVdaHbfgdYN5rRPtR8M477sf9ikle7txfXTsPHbuYk9wKfBH7C5B7rxqijMEkerKptwGeBfUk+PfhgzZ0njvVHOZMwY+dbzL2l3AZcAL4+2nFuLMlHgR8AX66q3ww+NkHH+gNGHYVZYNPA/Y3d2tipqtnu9hLwLHOnfxeTrAfobi+NbsJ5zTfj2B77qrpYVVer6nfAt/n9qfbYzJxkDXNB+F5V/bBbnrhjfSOjjsLLwJYkm5PcBuwGjox4pg9IckeSO69tA58BTjI3655utz3Ac6OZ8EPNN+MRYHeSqSSbgS3ASyOY7wOu/cPqfI65Yw1jMnOSAN8BXq+qbww8NHHH+oZGfaUTeIS5q7e/AL4y6nnmmfE+5q4e/ww4dW1O4GPAMeAN4CiwdsRzPsPc6fb7zL1vffzDZgS+0h33M8Bnx2jmfwFeA15l7h/U+jGb+UHm3hq8Cpzofh4Z92O92B+/0SipMeq3D5LGjFGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDX+F1j/GtgZmdOhAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305b37550>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305e01518>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADGtJREFUeJzt3E+InPd9x/H3p7K8Jo4LVp0KWRa1DCIgH6qERS7UhBQ3keOLnItRDkUHg3pwQwLtQW4O9cWQFpLeHFCIiSipVZPEWAcTY4uAKZTYclBsSa7ijf9gKbLU1IGYHhRb+fawj5L5ybve1e48O8/I7xcs+8xvntn5esy+eZ5nZpWqQpIu+aNJDyBpWIyCpIZRkNQwCpIaRkFSwyhIavQWhSR3JzmVZC7J/r6eR9J4pY/PKSRZB/wc+BxwGngB+FJVnRz7k0kaq76OFHYCc1X1WlX9FjgE7O7puSSN0TU9/dzNwFsjt08Ddyy287WZqeu4vqdRJAG8y69/VVWfWGq/vqKwpCT7gH0A1/Ex7shdkxpF+kh4tr7/5nL26+v04QywZeT2Ld3a71XVgaqararZ9cz0NIakK9VXFF4AtiXZmuRaYA9wuKfnkjRGvZw+VNX7Sf4OeBpYBzxaVSf6eC5J49XbNYWqegp4qq+fL6kffqJRUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlxzWoenOQN4F3gIvB+Vc0m2QD8B3Ar8AZwX1X9enVjSlor4zhS+Kuq2lFVs93t/cCRqtoGHOluS5oSfZw+7AYOdtsHgXt7eA5JPVltFAp4NsmLSfZ1axur6my3/TawcZXPIWkNreqaAnBnVZ1J8qfAM0n+e/TOqqoktdADu4jsA7iOj61yDEnjsqojhao6030/DzwB7ATOJdkE0H0/v8hjD1TVbFXNrmdmNWNMhad/eWzSI0jLsuIoJLk+yQ2XtoHPA8eBw8Debre9wJOrHXLaGQRNk9WcPmwEnkhy6ef8e1X9KMkLwONJ7gfeBO5b/ZiS1sqKo1BVrwF/vsD6/wJ3rWaoq4lHCZo2fqKxZ7tu3jHpEaQrYhQkNYzCGvGIQdPCKEhqGAVJDaMgqWEUJDWMgqSGUeiZH17StDEKa8C3IzVNjEKPPErQNDIKkhpGoSceJWhaGQVJDaMgqWEUJDWMQk98G1LTyiisAS86apoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jsAb8yLOmiVHomUHQtDEKPVno7x38GwhNA6MgqWEU1ohHCZoWRkFSwyhIahgFSQ2j0LPLryV4bUFDt2QUkjya5HyS4yNrG5I8k+TV7vuNI/c9mGQuyakku/oaXFI/lnOk8F3g7svW9gNHqmobcKS7TZLtwB7g9u4xjyRZN7ZpJfVuyShU1XPAO5ct7wYOdtsHgXtH1g9V1YWqeh2YA3aOadapNvrJRk8hNGQrvaawsarOdttvAxu77c3AWyP7ne7WJE2JVV9orKoC6kofl2RfkqNJjr7HhdWOIWlMVhqFc0k2AXTfz3frZ4AtI/vd0q19QFUdqKrZqppdz8wKx5gunkJoGqw0CoeBvd32XuDJkfU9SWaSbAW2Ac+vbsTp5F9Halot5y3Jx4D/Aj6Z5HSS+4GvA59L8irw191tquoE8DhwEvgR8EBVXexr+Gnn0YKG6JqldqiqLy1y112L7P8w8PBqhrpa7Lp5x5K/+E//8phHFRoUP9HYs8t/4Q2Ahs4oSGoYhQHw2oKGxChMgKcQGjKjMBAeLWgojMKEeLSgoTIKA+LRgobAKEyQRwsaIqMwYZeHwaMFTZpRGADDoCExCgPhqYSGwigMyK6bd/w+Dh4taFKMwoAZBk2CURgg/zEWTZJRGCjDoEkxCpIaRmHAPFrQJBiFgfMdCa21Jf85Ng3D5WHwcw3qi1GYMsZBffP0YUqNxsHTCo2TUZhil1+INA4aB6Mw5Rb6YyrjoNUwCleBha4rGAetlBcarxKLvW05jjB4MfOjxShcZcb9gSeD8NFjFK5i/kJrJbymIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqbFkFJI8muR8kuMjaw8lOZPkWPd1z8h9DyaZS3Iqya6+BpfUj+UcKXwXuHuB9X+tqh3d11MASbYDe4Dbu8c8kmTduIaV1L8lo1BVzwHvLPPn7QYOVdWFqnodmAN2rmI+SWtsNdcUvpzkpe704sZubTPw1sg+p7s1SVNipVH4FnAbsAM4C3zjSn9Akn1JjiY5+h4XVjiGpHFbURSq6lxVXayq3wHf5g+nCGeALSO73tKtLfQzDlTVbFXNrmdmJWNI6sGKopBk08jNLwKX3pk4DOxJMpNkK7ANeH51I0paS0v+IytJHgM+C9yU5DTwT8Bnk+wACngD+FuAqjqR5HHgJPA+8EBVXexndEl9SFVNegb+OBvqjtw16TGkq9qz9f0Xq2p2qf38RKOkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUmPJKCTZkuTHSU4mOZHkK936hiTPJHm1+37jyGMeTDKX5FSSXX3+B0gar+UcKbwP/H1VbQf+AnggyXZgP3CkqrYBR7rbdPftAW4H7gYeSbKuj+Eljd+SUaiqs1X10277XeAVYDOwGzjY7XYQuLfb3g0cqqoLVfU6MAfsHPfgkvpxRdcUktwKfAr4CbCxqs52d70NbOy2NwNvjTzsdLcmaQosOwpJPg78APhqVf1m9L6qKqCu5ImT7EtyNMnR97hwJQ+V1KNlRSHJeuaD8L2q+mG3fC7Jpu7+TcD5bv0MsGXk4bd0a42qOlBVs1U1u56Zlc4vacyW8+5DgO8Ar1TVN0fuOgzs7bb3Ak+OrO9JMpNkK7ANeH58I0vq0zXL2Ocvgb8BXk5yrFv7R+DrwONJ7gfeBO4DqKoTSR4HTjL/zsUDVXVx7JNL6sWSUaiq/wSyyN13LfKYh4GHVzGXpAnxE42SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNRIVU16BpL8D/B/wK8mPcsVuglnXgvTNvNQ5/2zqvrEUjsNIgoASY5W1eyk57gSzrw2pm3maZv3cp4+SGoYBUmNIUXhwKQHWAFnXhvTNvO0zdsYzDUFScMwpCMFSQMw8SgkuTvJqSRzSfZPep7FJHkjyctJjiU52q1tSPJMkle77zdOeMZHk5xPcnxkbdEZkzzYve6nkuwa0MwPJTnTvdbHktwzsJm3JPlxkpNJTiT5Src+6Nd62apqYl/AOuAXwG3AtcDPgO2TnOlDZn0DuOmytX8B9nfb+4F/nvCMnwE+DRxfakZge/d6zwBbu/8P6wYy80PAPyyw71Bm3gR8utu+Afh5N9ugX+vlfk36SGEnMFdVr1XVb4FDwO4Jz3QldgMHu+2DwL0TnIWqeg5457LlxWbcDRyqqgtV9Towx/z/jzW1yMyLGcrMZ6vqp932u8ArwGYG/lov16SjsBl4a+T26W5tiAp4NsmLSfZ1axur6my3/TawcTKjfajFZhz6a//lJC91pxeXDsMHN3OSW4FPAT9hel/rxqSjME3urKodwBeAB5J8ZvTOmj9OHPRbOdMwY+dbzJ9S7gDOAt+Y7DgLS/Jx4AfAV6vqN6P3TdFr/QGTjsIZYMvI7Vu6tcGpqjPd9/PAE8wf/p1Lsgmg+35+chMuarEZB/vaV9W5qrpYVb8Dvs0fDrUHM3OS9cwH4XtV9cNueepe64VMOgovANuSbE1yLbAHODzhmT4gyfVJbri0DXweOM78rHu73fYCT05mwg+12IyHgT1JZpJsBbYBz09gvg+49IvV+SLzrzUMZOYkAb4DvFJV3xy5a+pe6wVN+koncA/zV29/AXxt0vMsMuNtzF89/hlw4tKcwJ8AR4BXgWeBDROe8zHmD7ffY/689f4PmxH4Wve6nwK+MKCZ/w14GXiJ+V+oTQOb+U7mTw1eAo51X/cM/bVe7pefaJTUmPTpg6SBMQqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpMb/A970YB8SfLKJAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305e265c0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305e999e8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADGVJREFUeJzt3U+onfWdx/H3Z2KM1Dpgxk6IMYwRQiEuJi2XODBSOjhtrJvYjaSLIQshs3BKCzOLOF2MG6Ez0M7OQkqlYeiYkbZiFlLRUJCBoRpLapM4qal/MDEm07FQmUWq6XcW98n0/GKu9+be89znOc77BZfznN95zj1fj+TN8zznRFNVSNIlfzD0AJLGxShIahgFSQ2jIKlhFCQ1jIKkRm9RSHJ3kpNJTiXZ19frSJqu9PE9hSRrgF8AnwNOAy8AX6qqE1N/MUlT1deRwg7gVFW9WlW/BQ4Cu3p6LUlTdE1Pv3cT8ObE/dPAHQvtfG3W1XVc39MokgDe5de/qqpPLLZfX1FYVJK9wF6A6/gYd+SuoUaR/l94tr7/xlL26+v04QyweeL+Ld3a/6mq/VU1V1Vza1nX0xiSrlZfUXgB2JpkS5Jrgd3AoZ5eS9IU9XL6UFXvJ/kb4GlgDfBoVR3v47UkTVdv1xSq6ingqb5+v6R++I1GSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqTGNSt5cpLXgXeBi8D7VTWXZD3wb8CtwOvAfVX165WNKWm1TONI4S+qantVzXX39wGHq2orcLi7L2lG9HH6sAs40G0fAO7t4TUk9WSlUSjg2SQvJtnbrW2oqrPd9tvAhhW+hqRVtKJrCsCdVXUmyR8DzyT5z8kHq6qS1JWe2EVkL8B1fGyFY0ialhUdKVTVme72PPAEsAM4l2QjQHd7foHn7q+quaqaW8u6lYwhaYqWHYUk1ye54dI28HngGHAI2NPttgd4cqVDSlo9Kzl92AA8keTS7/nXqvpRkheAx5PcD7wB3LfyMWfT028dBWDnzdsHnkRaumVHoapeBf70Cuv/Ddy1kqEkDcdvNEpqGAVJDaMgqWEUenLpIqM0a4xCT/zEQbPKKEhqGAVJDaMgqWEUeuKFRs0qoyCpYRR64FGCZplR6JkfTWrWGAVJDaPQA48ONMuMQg+8pqBZZhSmzCBo1hkFSQ2j0COvLWgWGQVJDaMgqWEUpsxTBs06o9AjP4nQLDIKkhpGQVLDKEyZpwyadUZBUsMo9MhPIjSLjIKkhlFYJV5r0KwwCpIaRmEVebSgWWAUVoEx0CwxCpIaRqEnfhypWWUUJDWMQg88StAsWzQKSR5Ncj7JsYm19UmeSfJKd3vjxGMPJjmV5GSSnX0NLqkfSzlS+C5w92Vr+4DDVbUVONzdJ8k2YDdwe/ecR5Ksmdq0I+enDPooWDQKVfUc8M5ly7uAA932AeDeifWDVXWhql4DTgE7pjSrpFWw3GsKG6rqbLf9NrCh294EvDmx3+luTdKMWPGFxqoqoK72eUn2JjmS5Mh7XFjpGJKmZLlROJdkI0B3e75bPwNsntjvlm7tA6pqf1XNVdXcWtYtc4xx8tqCZtlyo3AI2NNt7wGenFjfnWRdki3AVuD5lY0oaTUt5SPJx4D/AD6Z5HSS+4GvA59L8grwl919quo48DhwAvgR8EBVXexr+LG6/HsKfm9Bs+SaxXaoqi8t8NBdC+z/MPDwSob6KNp583aefusoT7911Eho1PxG4xTtvHn7kv7Ae81BY2YUVtFkMAyDxsooDMgwaIyMwipb6imGNBSjMDCPFjQ2RmEgHi1orIzCCHi0oDExCgPyaEFjZBQGdikMHi1oLIzCiBgGjYFRGAFPIzQmRmEkPI3QWBiFETEMGgOjMDKTYTAOGoJRGCH/4pSGZBRGyjBoKEZhxAyDhmAURm7yb1V6nUGrwSjMCI8atFqMgqSGUZghfvNRq8EozJhL1xg8hVBfjMIMMwzqg1GYUX4iob4YhRl2+ScSxkHTsOj/IUrj9mFh8MKklsMofIQYAU2Dpw+SGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIai0YhyaNJzic5NrH2UJIzSY52P/dMPPZgklNJTibZ2dfgkvqxlCOF7wJ3X2H9n6tqe/fzFECSbcBu4PbuOY8kWTOtYSX1b9EoVNVzwDtL/H27gINVdaGqXgNOATtWMJ+kVbaSawpfTvJSd3pxY7e2CXhzYp/T3ZqkGbHcKHwLuA3YDpwFvnG1vyDJ3iRHkhx5jwvLHEPStC0rClV1rqouVtXvgG/z+1OEM8DmiV1v6dau9Dv2V9VcVc2tZd1yxpDUg2VFIcnGibtfBC59MnEI2J1kXZItwFbg+ZWNKGk1LfofWUnyGPBZ4KYkp4F/AD6bZDtQwOvAXwNU1fEkjwMngPeBB6rqYj+jS+pDqmroGfjDrK87ctfQY0gfac/W91+sqrnF9vMbjZIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjUWjkGRzkh8nOZHkeJKvdOvrkzyT5JXu9saJ5zyY5FSSk0l29vkPIGm6lnKk8D7wt1W1Dfgz4IEk24B9wOGq2goc7u7TPbYbuB24G3gkyZo+hpc0fYtGoarOVtVPu+13gZeBTcAu4EC32wHg3m57F3Cwqi5U1WvAKWDHtAeX1I+ruqaQ5FbgU8BPgA1VdbZ76G1gQ7e9CXhz4mmnuzVJM2DJUUjyceAHwFer6jeTj1VVAXU1L5xkb5IjSY68x4WreaqkHi0pCknWMh+E71XVD7vlc0k2do9vBM5362eAzRNPv6Vba1TV/qqaq6q5taxb7vySpmwpnz4E+A7wclV9c+KhQ8CebnsP8OTE+u4k65JsAbYCz09vZEl9umYJ+/w58FfAz5Mc7db+Hvg68HiS+4E3gPsAqup4kseBE8x/cvFAVV2c+uSSerFoFKrq34Es8PBdCzznYeDhFcwlaSB+o1FSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhqpqqFnIMl/Af8D/GroWa7STTjzapi1mcc6759U1ScW22kUUQBIcqSq5oae42o48+qYtZlnbd7LefogqWEUJDXGFIX9Qw+wDM68OmZt5lmbtzGaawqSxmFMRwqSRmDwKCS5O8nJJKeS7Bt6noUkeT3Jz5McTXKkW1uf5Jkkr3S3Nw4846NJzic5NrG24IxJHuze95NJdo5o5oeSnOne66NJ7hnZzJuT/DjJiSTHk3ylWx/1e71kVTXYD7AG+CVwG3At8DNg25AzfcisrwM3Xbb2T8C+bnsf8I8Dz/gZ4NPAscVmBLZ17/c6YEv372HNSGZ+CPi7K+w7lpk3Ap/utm8AftHNNur3eqk/Qx8p7ABOVdWrVfVb4CCwa+CZrsYu4EC3fQC4d8BZqKrngHcuW15oxl3Awaq6UFWvAaeY//exqhaYeSFjmflsVf20234XeBnYxMjf66UaOgqbgDcn7p/u1saogGeTvJhkb7e2oarOdttvAxuGGe1DLTTj2N/7Lyd5qTu9uHQYPrqZk9wKfAr4CbP7XjeGjsIsubOqtgNfAB5I8pnJB2v+OHHUH+XMwoydbzF/SrkdOAt8Y9hxrizJx4EfAF+tqt9MPjZD7/UHDB2FM8Dmifu3dGujU1VnutvzwBPMH/6dS7IRoLs9P9yEC1poxtG+91V1rqouVtXvgG/z+0Pt0cycZC3zQfheVf2wW5659/pKho7CC8DWJFuSXAvsBg4NPNMHJLk+yQ2XtoHPA8eYn3VPt9se4MlhJvxQC814CNidZF2SLcBW4PkB5vuAS3+wOl9k/r2GkcycJMB3gJer6psTD83ce31FQ1/pBO5h/urtL4GvDT3PAjPexvzV458Bxy/NCfwRcBh4BXgWWD/wnI8xf7j9HvPnrfd/2IzA17r3/STwhRHN/C/Az4GXmP8DtXFkM9/J/KnBS8DR7ueesb/XS/3xG42SGkOfPkgaGaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGr8L6cFXapY8yQHAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305e76390>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9300046e48>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADI1JREFUeJzt3U+sXPV5h/HnW2MuCqESLqnlGKsYyRuzqBNdmUpFERVqTNiYbJCzqLxAchc0SqR2YZpF2CCllZLuiOQoKFaV4lpJEF6gIrAioW4CJnKIbeJwwx9hx9hNiRTUhQPO28U9JvMzvtx/M/ecMc9Hupozvzlz52Ws++icc8cmVYUkXfYnfQ8gaViMgqSGUZDUMAqSGkZBUsMoSGpMLApJ7k1yOslckv2Teh1J45VJfE4hyTrgl8DfAmeAF4EvVdWpsb+YpLGa1JHCTmCuql6rqt8Dh4DdE3otSWN03YS+72bgrZH7Z4A7F9r5+szUDdw4oVEkAbzLb39TVZ9abL9JRWFRSfYB+wBu4BPcmXv6GkX6WHiufvDmUvab1OnDWWDLyP1bu7UPVNWBqpqtqtn1zExoDEnLNakovAhsS7I1yfXAHuDIhF5L0hhN5PShqt5P8g/AM8A64PGqOjmJ15I0XhO7plBVTwNPT+r7S5oMP9EoqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNS4bjVPTvIG8C5wCXi/qmaTbAD+E7gNeAN4oKp+u7oxJa2VcRwp/E1V7aiq2e7+fuBoVW0Djnb3JU2JSZw+7AYOdtsHgfsn8BqSJmS1USjguSQvJdnXrW2sqnPd9tvAxlW+hqQ1tKprCsBdVXU2yZ8Dzyb5xeiDVVVJ6mpP7CKyD+AGPrHKMSSNy6qOFKrqbHd7AXgS2AmcT7IJoLu9sMBzD1TVbFXNrmdmNWNIGqMVRyHJjUluurwNfB44ARwB9na77QWeWu2QktbOak4fNgJPJrn8ff6jqv4ryYvA4SQPAm8CD6x+TElrZcVRqKrXgL+8yvr/AvesZihJ/fETjRPyzK+P9z2CtCJGQVLDKEhqGIUJ8hRC08goSGoYhQnzaEHTxihIahgFSQ2jMGG7Pr2j7xGkZTEKkhpGYQIuX1z0KEHTyChIahiFCfEoQdPKKEhqGAVJDaMwZpcvMvpJRk0royCpYRTGaPTowAuNmlZGQVLDKEhqGIUJ8NRB08woSGoYhTHzKEHTziiMkUHQtcAoSGoYBUkNozBGfrRZ1wKjMGaGQdPOKEhqGAVJDaMgqWEUxsjPKehaYBQkNYyCpIZRkNQwChPgZxU0zRaNQpLHk1xIcmJkbUOSZ5O82t3ePPLYw0nmkpxOsmtSg0uajKUcKXwPuPeKtf3A0araBhzt7pNkO7AHuKN7zmNJ1o1t2inhbyE0zRaNQlU9D7xzxfJu4GC3fRC4f2T9UFVdrKrXgTlg55hmlbQGVnpNYWNVneu23wY2dtubgbdG9jvTrX3seZ1B02LVFxqrqoBa7vOS7EtyLMmx97i42jEGwR98XQtWGoXzSTYBdLcXuvWzwJaR/W7t1j6kqg5U1WxVza5nZoVjDM/VricYC02TlUbhCLC3294LPDWyvifJTJKtwDbghdWNOD0Wu8BoHDQNrltshyRPAHcDtyQ5A3wd+AZwOMmDwJvAAwBVdTLJYeAU8D7wUFVdmtDskiZg0ShU1ZcWeOieBfZ/FHh0NUNJ6o+faJTUMAqSGkZhjXmxUUNnFCQ1jEIPPFrQkBmFNeBfkNI0MQpr5MoweLSgoTIKa8gjBk0Do9AjjxY0REZhjXkaoaEzCgNgGDQkRqEH/vVqDZlR6IkXHTVURmFAPFrQEBiFHnkaoSEyCj3zNEJDYxQGwDBoSIzCQIyGwVMI9ckoDMiuT+/4IA6GQX0xCgN0OQ6GQX0wCgPmUYP6YBSmhGHQWln0n3hX/652xOBvLDQpRmGKjF5nuPLIwUhoXDx9mDIL/fA/8+vjH3xJq2EUptBS/p+VxkErZRSmlKcLmhSvKUyxjzqVGL1di9fUtcMoXIOW84O73HB4gfPaZxQ+5hY72liMvya99hgFXdVK/oHZhfYxFtPFKGhJVvK3OI3BdDIKWjZ/2K9t/kpSUsMoSGoYBUmNRaOQ5PEkF5KcGFl7JMnZJMe7r/tGHns4yVyS00l2TWpwSZOxlCOF7wH3XmX936pqR/f1NECS7cAe4I7uOY8lWTeuYSVN3qJRqKrngXeW+P12A4eq6mJVvQ7MATtXMZ+kNbaaawpfTvJyd3pxc7e2GXhrZJ8z3ZqkKbHSKHwbuB3YAZwDvrncb5BkX5JjSY69x8UVjiFp3FYUhao6X1WXquoPwHf44ynCWWDLyK63dmtX+x4Hqmq2qmbXM7OSMSRNwIqikGTTyN0vApd/M3EE2JNkJslWYBvwwupGlLSWFv2Yc5IngLuBW5KcAb4O3J1kB1DAG8DfA1TVySSHgVPA+8BDVXVpMqNLmoRUVd8z8KfZUHfmnr7HkK5pz9UPXqqq2cX28xONkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUmNRaOQZEuSHyc5leRkkq906xuSPJvk1e725pHnPJxkLsnpJLsm+R8gabyWcqTwPvCPVbUd+CvgoSTbgf3A0araBhzt7tM9tge4A7gXeCzJukkML2n8Fo1CVZ2rqp922+8CrwCbgd3AwW63g8D93fZu4FBVXayq14E5YOe4B5c0Gcu6ppDkNuAzwE+AjVV1rnvobWBjt70ZeGvkaWe6NUlTYMlRSPJJ4IfAV6vqd6OPVVUBtZwXTrIvybEkx97j4nKeKmmClhSFJOuZD8L3q+pH3fL5JJu6xzcBF7r1s8CWkaff2q01qupAVc1W1ex6ZlY6v6QxW8pvHwJ8F3ilqr418tARYG+3vRd4amR9T5KZJFuBbcAL4xtZ0iRdt4R9/hr4O+DnSY53a/8MfAM4nORB4E3gAYCqOpnkMHCK+d9cPFRVl8Y+uaSJWDQKVfXfQBZ4+J4FnvMo8Ogq5pLUEz/RKKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJjVRV3zOQ5H+A/wN+0/csy3QLzrwWpm3moc77F1X1qcV2GkQUAJIcq6rZvudYDmdeG9M287TNeyVPHyQ1jIKkxpCicKDvAVbAmdfGtM08bfM2BnNNQdIwDOlIQdIA9B6FJPcmOZ1kLsn+vudZSJI3kvw8yfEkx7q1DUmeTfJqd3tzzzM+nuRCkhMjawvOmOTh7n0/nWTXgGZ+JMnZ7r0+nuS+gc28JcmPk5xKcjLJV7r1Qb/XS1ZVvX0B64BfAbcD1wM/A7b3OdNHzPoGcMsVa/8K7O+29wP/0vOMnwM+C5xYbEZge/d+zwBbuz+HdQOZ+RHgn66y71Bm3gR8ttu+CfhlN9ug3+ulfvV9pLATmKuq16rq98AhYHfPMy3HbuBgt30QuL/HWaiq54F3rlheaMbdwKGqulhVrwNzzP95rKkFZl7IUGY+V1U/7bbfBV4BNjPw93qp+o7CZuCtkftnurUhKuC5JC8l2detbayqc93228DGfkb7SAvNOPT3/stJXu5OLy4fhg9u5iS3AZ8BfsL0vteNvqMwTe6qqh3AF4CHknxu9MGaP04c9K9ypmHGzreZP6XcAZwDvtnvOFeX5JPAD4GvVtXvRh+bovf6Q/qOwllgy8j9W7u1wamqs93tBeBJ5g//zifZBNDdXuhvwgUtNONg3/uqOl9Vl6rqD8B3+OOh9mBmTrKe+SB8v6p+1C1P3Xt9NX1H4UVgW5KtSa4H9gBHep7pQ5LcmOSmy9vA54ETzM+6t9ttL/BUPxN+pIVmPALsSTKTZCuwDXihh/k+5PIPVueLzL/XMJCZkwT4LvBKVX1r5KGpe6+vqu8rncB9zF+9/RXwtb7nWWDG25m/evwz4OTlOYE/A44CrwLPARt6nvMJ5g+332P+vPXBj5oR+Fr3vp8GvjCgmf8d+DnwMvM/UJsGNvNdzJ8avAwc777uG/p7vdQvP9EoqdH36YOkgTEKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqTG/wPLXmzWfyAqKQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305e14198>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305dc9b38>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADDRJREFUeJzt3UGMnPV9h/HnW2MWhVAJl9RyjVWM5Is51IlWplJRRGU1JlxMLsg5VD4guQcaJVJ7MM0hXJDSSklvRHIUFKtKca0kCB9QEViRUC8BEzlgmzhswAg7xm5KpKAeHHB+Pey7zfyNl13v7jvzDnk+0mre+c87Oz8G+dH7vjtrp6qQpAV/NOkBJA2LUZDUMAqSGkZBUsMoSGoYBUmN3qKQ5L4kZ5LMJTnQ1+tIWlvp43MKSdYBPwf+BjgHvAR8sapOr/mLSVpTfR0p7ATmquqNqvotcBjY09NrSVpDN/T0fTcDb4/cPwfcvdjON2ambuLmnkaRBPAev/5VVX1qqf36isKSkuwH9gPcxCe4O7smNYr0B+H5+v5by9mvr9OH88CWkfu3d2v/r6oOVtVsVc2uZ6anMSRdr76i8BKwLcnWJDcCe4GjPb2WpDXUy+lDVX2Q5O+BZ4F1wBNVdaqP15K0tnq7plBVzwDP9PX9JfXDTzRKahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDVuWM2Tk5wF3gOuAB9U1WySDcB/AHcAZ4EHq+rXqxtT0risxZHCX1fVjqqa7e4fAI5V1TbgWHdf0pTo4/RhD3Co2z4EPNDDa0jqyWqjUMDzSV5Osr9b21hVF7rtd4CNq3wNSWO0qmsKwD1VdT7JnwLPJfnZ6INVVUnqWk/sIrIf4CY+scoxJK2VVR0pVNX57vYS8BSwE7iYZBNAd3tpkecerKrZqppdz8xqxpC0hlYchSQ3J7llYRv4HHASOArs63bbBzy92iE/Lp795YlJjyAtaTWnDxuBp5IsfJ9/r6r/TPIScCTJQ8BbwIOrH1PSuKw4ClX1BvAX11j/H2DXaoaSNDl+onFMPHXQtDAKY7T7z3ZMegRpSUZBUsMojIGnDpomRkFSwyj0bOEowesJmhZGQVLDKEhqGAVJDaMgqWEUeuSPIjWNjEJPDIKmlVHoiT+C1LQyCpIaRkFSwyhIahiFHi1cV/D6gqaJUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRR65O8/aBoZhTEwDpomRkFSwyiMgZ9o1DQxCpIaRqFno0cJXlvQNDAKkhpGQVLDKIyJpw6aFkZBUsMo9MwjBE0boyCpYRR6cvURwsKPJj1y0NAtGYUkTyS5lOTkyNqGJM8leb27vXXksUeSzCU5k2R3X4NL6sdyjhS+C9x31doB4FhVbQOOdfdJsh3YC9zVPefxJOvWbFpJvVsyClX1AvDuVct7gEPd9iHggZH1w1V1uareBOaAnWs068eGpxAaspVeU9hYVRe67XeAjd32ZuDtkf3OdWvCX4zSdFj1hcaqKqCu93lJ9ic5nuT4+1xe7RhTx6MFDdVKo3AxySaA7vZSt34e2DKy3+3d2odU1cGqmq2q2fXMrHCM4fIfgtG0WmkUjgL7uu19wNMj63uTzCTZCmwDXlzdiB9fHi1oiG5YaockTwL3ArclOQd8Dfg6cCTJQ8BbwIMAVXUqyRHgNPAB8HBVXelp9sHzKEHTaMkoVNUXF3lo1yL7PwY8tpqh/pA8+8sTxkOD4icax+xaAfA0QkNiFCZg9CKkRwkaGqMwIaMxMAwaEqMgqWEUBsRrCxoCozAwhkGTZhQkNYyCpIZRGBD/diYNgVGQ1DAKA+PRgibNKAyYYdAkGIWBMwwaN6MwQFd/7NkwaJyMwpQwDBoXozBQi/2KtXFQ34zCgC3225OGQX0yCgNnGDRuS/51bJo8/74FjZNHCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGktGIckTSS4lOTmy9miS80lOdF/3jzz2SJK5JGeS7O5rcEn9WM6RwneB+66x/q9VtaP7egYgyXZgL3BX95zHk6xbq2El9W/JKFTVC8C7y/x+e4DDVXW5qt4E5oCdq5hP0pit5prCl5K80p1e3NqtbQbeHtnnXLcmaUqsNArfAu4EdgAXgG9c7zdIsj/J8STH3+fyCseQtNZWFIWqulhVV6rqd8C3+f0pwnlgy8iut3dr1/oeB6tqtqpm1zOzkjEk9WBFUUiyaeTuF4CFn0wcBfYmmUmyFdgGvLi6ESWN05L/GEySJ4F7gduSnAO+BtybZAdQwFng7wCq6lSSI8Bp4APg4aq60s/okvqQqpr0DPxxNtTd2TXpMaSPtefr+y9X1exS+/mJRkkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkxpJRSLIlyY+SnE5yKsmXu/UNSZ5L8np3e+vIcx5JMpfkTJLdff4HSFpbyzlS+AD4h6raDvwl8HCS7cAB4FhVbQOOdffpHtsL3AXcBzyeZF0fw0tae0tGoaouVNVPuu33gNeAzcAe4FC32yHggW57D3C4qi5X1ZvAHLBzrQeX1I/ruqaQ5A7g08CPgY1VdaF76B1gY7e9GXh75GnnujVJU2DZUUjySeAHwFeq6jejj1VVAXU9L5xkf5LjSY6/z+XreaqkHi0rCknWMx+E71XVD7vli0k2dY9vAi516+eBLSNPv71ba1TVwaqararZ9cysdH5Ja2w5P30I8B3gtar65shDR4F93fY+4OmR9b1JZpJsBbYBL67dyJL6dMMy9vkr4G+BV5Oc6Nb+Cfg6cCTJQ8BbwIMAVXUqyRHgNPM/uXi4qq6s+eSSerFkFKrqv4As8vCuRZ7zGPDYKuaSNCF+olFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhqpqknPQJL/Bv4X+NWkZ7lOt+HM4zBtMw913j+vqk8ttdMgogCQ5HhVzU56juvhzOMxbTNP27xX8/RBUsMoSGoMKQoHJz3ACjjzeEzbzNM2b2Mw1xQkDcOQjhQkDcDEo5DkviRnkswlOTDpeRaT5GySV5OcSHK8W9uQ5Lkkr3e3t054xieSXEpycmRt0RmTPNK972eS7B7QzI8mOd+91yeS3D+wmbck+VGS00lOJflytz7o93rZqmpiX8A64BfAncCNwE+B7ZOc6SNmPQvcdtXavwAHuu0DwD9PeMbPAp8BTi41I7C9e79ngK3d/4d1A5n5UeAfr7HvUGbeBHym274F+Hk326Df6+V+TfpIYScwV1VvVNVvgcPAngnPdD32AIe67UPAAxOchap6AXj3quXFZtwDHK6qy1X1JjDH/P+PsVpk5sUMZeYLVfWTbvs94DVgMwN/r5dr0lHYDLw9cv9ctzZEBTyf5OUk+7u1jVV1odt+B9g4mdE+0mIzDv29/1KSV7rTi4XD8MHNnOQO4NPAj5ne97ox6ShMk3uqagfweeDhJJ8dfbDmjxMH/aOcaZix8y3mTyl3ABeAb0x2nGtL8kngB8BXquo3o49N0Xv9IZOOwnlgy8j927u1wamq893tJeAp5g//LibZBNDdXprchItabMbBvvdVdbGqrlTV74Bv8/tD7cHMnGQ980H4XlX9sFueuvf6WiYdhZeAbUm2JrkR2AscnfBMH5Lk5iS3LGwDnwNOMj/rvm63fcDTk5nwIy0241Fgb5KZJFuBbcCLE5jvQxb+YHW+wPx7DQOZOUmA7wCvVdU3Rx6auvf6miZ9pRO4n/mrt78AvjrpeRaZ8U7mrx7/FDi1MCfwJ8Ax4HXgeWDDhOd8kvnD7feZP2996KNmBL7ave9ngM8PaOZ/A14FXmH+D9Smgc18D/OnBq8AJ7qv+4f+Xi/3y080SmpM+vRB0sAYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFS4/8ArUk+FQLVjTUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b9305da0f28>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAC4FJREFUeJzt3U+oXPd5h/HnW9mWieOF/1WosqhlUBcytEq4KIWa4GIaO97I2Rh5UbQwqAs3JNAu5GYRbwRpIenOAQWbiJJaFU2MtTA1tgiYbmIrQXEkOYpv/AdLyJJjB2JacGrl7eIeNfPaur5Xmjt35tLnA8Oc+c2ZO6+P0MM5cwc5VYUkXfQH0x5A0mwxCpIaoyCpMQqSGqMgqTEKkpqJRSHJvUlOJZlPsndS7yNpZWUS31NIsg74BfBXwGngJeDBqjq54m8maUVN6kxhBzBfVa9V1W+Bg8DOCb2XpBV01YR+7ibgrZHHp4HPLbbzNVlf13LdhEaRBPA+v/5VVd2y1H6TisKSkuwB9gBcy6f4XO6e1ijS/wvP17+/uZz9JnX5cAbYPPL41mHt/1TV/qqaq6q5q1k/oTEkXa5JReElYGuSLUmuAXYBhyf0XpJW0EQuH6rqwyR/CzwLrAOeqKoTk3gvSStrYp8pVNUzwDOT+vmSJsNvNEpqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTGKEhqjIKkxihIaoyCpMYoSGqMgqTmqnFenOQN4H3gAvBhVc0luRH4N+A24A3ggar69XhjSlotK3Gm8JdVtb2q5obHe4EjVbUVODI8lrRGTOLyYSdwYNg+ANw/gfeQNCHjRqGA55P8OMmeYW1DVZ0dtt8GNoz5HpJW0VifKQB3VtWZJH8IPJfk56NPVlUlqUu9cIjIHoBr+dSYY0haKWOdKVTVmeH+PPAUsAM4l2QjwHB/fpHX7q+quaqau5r144whaQVdcRSSXJfk+ovbwBeA48BhYPew227g6XGHlLR6xrl82AA8leTiz/nXqvqPJC8Bh5I8BLwJPDD+mJJWyxVHoapeA/7sEuvvAnePM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpGfefY1sRf/Kn/82zzx6b9hjSJd3zR9unPcKq8kxBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDVGQVKzZBSSPJHkfJLjI2s3JnkuyavD/Q0jzz2SZD7JqST3TGpwSZOxnDOF7wL3fmRtL3CkqrYCR4bHJNkG7ALuGF7zWJJ1KzatpIlbMgpV9QLw3keWdwIHhu0DwP0j6wer6oOqeh2YB3as0KySVsGVfqawoarODttvAxuG7U3AWyP7nR7WJK0RY3/QWFUF1OW+LsmeJEeTHH3n3QvjjiFphVxpFM4l2Qgw3J8f1s8Am0f2u3VY+5iq2l9Vc1U1d8tNfuwgzYorjcJhYPewvRt4emR9V5L1SbYAW4EXxxtR0mpa8n8wm+RJ4C7g5iSnga8D3wAOJXkIeBN4AKCqTiQ5BJwEPgQeriqvDaQ1ZMkoVNWDizx19yL77wP2jTOUpOnxG42SGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpWTIKSZ5Icj7J8ZG1R5OcSXJsuN038twjSeaTnEpyz6QGlzQZyzlT+C5w7yXW/7mqtg+3ZwCSbAN2AXcMr3ksybqVGlbS5C0Zhap6AXhvmT9vJ3Cwqj6oqteBeWDHGPNJWmXjfKbw5SQvD5cXNwxrm4C3RvY5PaxJWiOuNArfBm4HtgNngW9e7g9IsifJ0SRH33n3whWOIWmlXVEUqupcVV2oqt8B3+H3lwhngM0ju946rF3qZ+yvqrmqmrvlJj92kGbFFUUhycaRh18CLv5m4jCwK8n6JFuArcCL440oaTVdtdQOSZ4E7gJuTnIa+DpwV5LtQAFvAH8DUFUnkhwCTgIfAg9XldcG0hqyZBSq6sFLLD/+CfvvA/aNM5Sk6fEbjZIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKkxCpIaoyCpMQqSGqMgqTEKkhqjIKlZMgpJNif5YZKTSU4k+cqwfmOS55K8OtzfMPKaR5LMJzmV5J5J/gdIWlnLOVP4EPi7qtoG/DnwcJJtwF7gSFVtBY4Mjxme2wXcAdwLPJZk3SSGl7TyloxCVZ2tqp8M2+8DrwCbgJ3AgWG3A8D9w/ZO4GBVfVBVrwPzwI6VHlzSZFzWZwpJbgM+A/wI2FBVZ4en3gY2DNubgLdGXnZ6WJO0Biw7Ckk+DXwf+GpV/Wb0uaoqoC7njZPsSXI0ydF33r1wOS+VNEHLikKSq1kIwveq6gfD8rkkG4fnNwLnh/UzwOaRl986rDVVtb+q5qpq7pab/MhBmhXL+e1DgMeBV6rqWyNPHQZ2D9u7gadH1nclWZ9kC7AVeHHlRpY0SVctY5+/AP4a+FmSY8PaPwDfAA4leQh4E3gAoKpOJDkEnGThNxcPV5XXB9IasWQUquo/gSzy9N2LvGYfsG+MuSRNid9olNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUmNUZDUGAVJjVGQ1BgFSY1RkNQYBUlNqmraM5DkHeC/gF9Ne5bLdDPOvBrW2syzOu8fV9UtS+00E1EASHK0quamPcflcObVsdZmXmvzfpSXD5IaoyCpmaUo7J/2AFfAmVfHWpt5rc3bzMxnCpJmwyydKUiaAVOPQpJ7k5xKMp9k77TnWUySN5L8LMmxJEeHtRuTPJfk1eH+hinP+ESS80mOj6wtOmOSR4bjfirJPTM086NJzgzH+liS+2Zs5s1JfpjkZJITSb4yrM/0sV62qpraDVgH/BK4HbgG+CmwbZozfcKsbwA3f2Ttn4C9w/Ze4B+nPOPngc8Cx5eaEdg2HO/1wJbhz2HdjMz8KPD3l9h3VmbeCHx22L4e+MUw20wf6+Xepn2msAOYr6rXquq3wEFg55Rnuhw7gQPD9gHg/inOQlW9ALz3keXFZtwJHKyqD6rqdWCehT+PVbXIzIuZlZnPVtVPhu33gVeATcz4sV6uaUdhE/DWyOPTw9osKuD5JD9OsmdY21BVZ4ftt4EN0xntEy0246wf+y8neXm4vLh4Gj5zMye5DfgM8CPW7rFuph2FteTOqtoOfBF4OMnnR5+shfPEmf5VzlqYcfBtFi4ptwNngW9Od5xLS/Jp4PvAV6vqN6PPraFj/THTjsIZYPPI41uHtZlTVWeG+/PAUyyc/p1LshFguD8/vQkXtdiMM3vsq+pcVV2oqt8B3+H3p9ozM3OSq1kIwveq6gfD8po71pcy7Si8BGxNsiXJNcAu4PCUZ/qYJNcluf7iNvAF4DgLs+4edtsNPD2dCT/RYjMeBnYlWZ9kC7AVeHEK833Mxb9Ygy+xcKxhRmZOEuBx4JWq+tbIU2vuWF/StD/pBO5j4dPbXwJfm/Y8i8x4OwufHv8UOHFxTuAm4AjwKvA8cOOU53yShdPt/2HhuvWhT5oR+Npw3E8BX5yhmf8F+BnwMgt/oTbO2Mx3snBp8DJwbLjdN+vHerk3v9EoqZn25YOkGWMUJDVGQVJjFCQ1RkFSYxQkNUZBUmMUJDX/CyOR6mdhoHmsAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b93059f0eb8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-----------------------------\n"
]
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"reshaped_train=val_trained.reshape(7,15,242,242)\n",
"reshaped_train_y=val_y.reshape(7,15,242,242)\n",
"\n",
"i=[4,6,5,3]\n",
"j=[7,5,8,6]\n",
"for a in i:\n",
" for b in j:\n",
" img =Image.fromarray(reshaped_train_y[a,b,:,:])\n",
" plt.imshow(reshaped_train_y[a,b,:,:])\n",
" plt.show()\n",
" plt.imshow(reshaped_train[a,b,:,:])\n",
" plt.show()\n",
" print(\"-----------------------------\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The RF with split of 100 gave dice loss of 0.85"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"random_stride1=pickle.load(open(\"/home/cvh255/Cartilage/jobsubmission/random_split100\",'rb'))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"val_trained=random_stride1.predict(val_norm_x)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.8563867930960705\n"
]
}
],
"source": [
"import scipy\n",
"print(scipy.spatial.distance.dice(val_y,val_trained))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The RF with split = 50 and leaf = 25 gave dice loss = 0.76 "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.7633676272987987\n"
]
}
],
"source": [
"import pickle\n",
"random_stride1=pickle.load(open(\"/home/cvh255/Cartilage/jobsubmission/random_split5025\",'rb'))\n",
"\n",
"val_trained=random_stride1.predict(val_norm_x)\n",
"\n",
"import scipy\n",
"print(scipy.spatial.distance.dice(val_y,val_trained))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## RF with no positional feature "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The previous model with positional parameter was still ok as it roughly estimated the shape of cartilages. The possibility if that the model is over fitting on positional parameter. Hence, model without positional parameter was trained with same setting but turns out that the model performs worse without positional parameter"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.6026065771393406\n"
]
}
],
"source": [
"import pickle\n",
"random_stride1=pickle.load(open(\"/home/cvh255/Cartilage/jobsubmission/random_without1\",'rb'))\n",
"\n",
"val_trained=random_stride1.predict(val_norm_x)\n",
"\n",
"import scipy\n",
"print(scipy.spatial.distance.dice(val_y,val_trained))\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"reshaped_val_y=val_trained.reshape(7,15,242,242)\n",
"reshaped_pp=val_y.reshape(7,15,242,242)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADc5JREFUeJzt3U+sXOV9xvHvU2OMQqgEJbWMsYqRrEqwqBNdQaWiKBVNTNiYbJCzqLxAchc0SqR2YZpF2SCllZLuiEQEilWlUJQE4QUKAisSqlQFTOQAhjo4/BE2BjclUlAXDpBfF/fcMq/x9Z17Z+bOmbnfjzSaM+85M/Pz8T3Pfd93zj2TqkKSlvzBtAuQ1C+GgqSGoSCpYShIahgKkhqGgqTGxEIhyW1JTiQ5meTgpN5H0nhlEucpJNkE/BL4InAKeA74alW9PPY3kzRWk+op3AScrKrXqup3wCPA3gm9l6QxumRCr7sdeGvg8Sng5uU2vjRb6jIun1ApkgDe5ze/rqrPrLTdpEJhRUkOAAcALuNT3Jxbp1WKtCE8XT98c5jtJjV8OA3sGHh8bdf2/6rqgapaqKqFzWyZUBmSVmtSofAcsCvJziSXAvuAwxN6L0ljNJHhQ1V9mORvgSeBTcBDVXV8Eu8labwmNqdQVU8AT0zq9SVNhmc0SmoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoaKyefPvYtEvQiAwFjdWea3ZPuwSNyFDQWNlTmH2GgqSGoaCxcvgw+wwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUuGSUJyd5A3gf+Aj4sKoWklwF/DtwHfAGcGdV/Wa0MiWtl3H0FP6yqnZX1UL3+CBwpKp2AUe6x5JmxCSGD3uBQ93yIeCOCbyHpAkZNRQKeDrJ80kOdG1bq+pMt/wOsHXE95C0jkaaUwBuqarTSf4YeCrJfw2urKpKUhd6YhciBwAu41MjliFpXEbqKVTV6e7+LPAYcBPwbpJtAN392WWe+0BVLVTVwma2jFKGpDFacygkuTzJFUvLwJeAl4DDwP5us/3A46MWKWn9jDJ82Ao8lmTpdf6tqn6S5Dng0SR3AW8Cd45epqT1suZQqKrXgD+7QPv/ALeOUpS0GoPfdO13WY7OMxo10wYDQeNhKEhqGAqSGoaCxqIP3XjnE8bDUNBYTPuAnPb7zxNDQVLDUNBcePLtY70YwswDQ0EzzWHD+BkKmnkGw3gZCpIao/7ptNQL9hbGx56CpIahIKlhKGhu+JHkeBgKmhvOK4yHoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYSho7vkn1atjKGju+SfVq2MoSGoYCpIahsJFOBbVRmQoXIRjUW1EhoKkhqFwHr+oVBvdiqGQ5KEkZ5O8NNB2VZKnkrza3V85sO6eJCeTnEiyZ1KFT4pDBm10w/QUvg/cdl7bQeBIVe0CjnSPSXIDsA+4sXvO/Uk2ja3adWIwaCNbMRSq6hngvfOa9wKHuuVDwB0D7Y9U1bmqeh04Cdw0plolrYO1zilsraoz3fI7wNZueTvw1sB2p7o2STNi5InGqiqgVvu8JAeSHE1y9APOjVqGpDFZayi8m2QbQHd/tms/DewY2O7aru0TquqBqlqoqoXNbFljGZLGba2hcBjY3y3vBx4faN+XZEuSncAu4NnRSpS0nob5SPJh4D+BP01yKsldwLeALyZ5Ffir7jFVdRx4FHgZ+Alwd1V9NKniJ8lzFbRRZXFKYLr+MFfVzbl12mVIc+3p+uHzVbWw0nae0SipYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShMgJeH1ywzFCbEYNCsMhQmyGDQLDIUJmDPNbunXYK0ZobChCwFg70FzZoNFwoepJPl/p19Gy4UhunaP/n2sbH+cM/7gTK4vxw6zb4NFwqrMWo4LB0g83ygPPn2MfZcs3uu/40bjd86fRGDgeAPvWad3zo9BgaBNiJDYUjzPi8gLTEUVjA4XjYYtBEYCkMaNRjG/YmGNCmXTLuAWTLqHINzFJoF9hTWaC2/9e0taBasGApJHkpyNslLA233Jjmd5Fh3u31g3T1JTiY5kWTPpAqftgv91h/2gDcY1GfD9BS+D9x2gfZ/qard3e0JgCQ3APuAG7vn3J9k07iK7buLDQ/OX2cwqK9WDIWqegZ4b8jX2ws8UlXnqup14CRw0wj1zTWDQX00ypzC15K80A0vruzatgNvDWxzqmuTNCPWGgrfBa4HdgNngG+v9gWSHEhyNMnRDzi3xjJmyyjzENJ6WVMoVNW7VfVRVf0e+B4fDxFOAzsGNr22a7vQazxQVQtVtbCZLWspY24YDOqTNYVCkm0DD78CLH0ycRjYl2RLkp3ALuDZ0Uqcf56/oD5Z8eSlJA8DXwCuTnIK+EfgC0l2AwW8AfwNQFUdT/Io8DLwIXB3VX00mdJn055rdn+iZ+C1CNQnK4ZCVX31As0PXmT7+4D7RilqnjlUUN95RuM6GiYQDA1Nm6GwjgaHB4N/fTn4x1YXGl5I68krL03ZSgHQh3mG82vsQ01aPa+8NCNWur6hvQatN0NhBvQpGOwlzD9DoSeWegzLHXR9CgbNN+cUemoW5ho0W5xTkLQmhkJP+QUrmhav0dhzg8EwOKSYxKnRnm4tcE6hV5ZOXhpmu2Gs9FrDvI4BMT+GnVPY8D2FYQ/E9TLOepY76JfOmlzp7Mk+7RetH+cU+Pgqy7Pysd+oB6uBoIsxFM4zzXBYz8nF5Xokk6hhVsJWizb88GFWjePq0Os5dOrbME3L2/A9hXk5g7DvB5x//Tk77ClcxKz9djv/48uVLhS7Xv+2YepSf2z4nsJKZvW323IHXh9OipqlSd2NyFAYsNwBM48/xNMOBpjdwJ13hkJnuasijcs8Bstqnb9P+xBM+iTnFLh4V3vJWg/ojR4EyzEQ+suewpDW+kPchzG8tBr2FNaJwbDo/IvUqn/sKWgqDIT+MhQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUWDEUkuxI8tMkLyc5nuTrXftVSZ5K8mp3f+XAc+5JcjLJiSR7JvkPkDRew/QUPgT+rqpuAP4cuDvJDcBB4EhV7QKOdI/p1u0DbgRuA+5PsmkSxUsavxVDoarOVNXPu+X3gVeA7cBe4FC32SHgjm55L/BIVZ2rqteBk8BN4y5c0mSsak4hyXXAZ4GfAVur6ky36h1ga7e8HXhr4Gmnura55SXXNE+GDoUknwZ+BHyjqn47uK4Wv7p6VV9fneRAkqNJjn7AudU8tXe8YIjmyVChkGQzi4Hwg6r6cdf8bpJt3fptwNmu/TSwY+Dp13Ztjap6oKoWqmphM1vWWr+kMRvm04cADwKvVNV3BlYdBvZ3y/uBxwfa9yXZkmQnsAt4dnwlS5qkYS7c+hfAXwMvJlkaPP8D8C3g0SR3AW8CdwJU1fEkjwIvs/jJxd1V9dHYK5c0ESuGQlX9B5BlVt+6zHPuA+4boS5JU+IZjZIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoJ6z0vor69hrtEoTYVhMB2GgnrL79OYDocPkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIaqSqpl0DSf4b+F/g19OuZZWuxprXw6zV3Nd6/6SqPrPSRr0IBYAkR6tqYdp1rIY1r49Zq3nW6j2fwwdJDUNBUqNPofDAtAtYA2teH7NW86zV2+jNnIKkfuhTT0FSD0w9FJLcluREkpNJDk67nuUkeSPJi0mOJTnatV2V5Kkkr3b3V065xoeSnE3y0kDbsjUmuafb7yeS7OlRzfcmOd3t62NJbu9ZzTuS/DTJy0mOJ/l6197rfT20qpraDdgE/Aq4HrgU+AVwwzRrukitbwBXn9f2z8DBbvkg8E9TrvHzwOeAl1aqEbih299bgJ3d/8OmntR8L/D3F9i2LzVvAz7XLV8B/LKrrdf7etjbtHsKNwEnq+q1qvod8Aiwd8o1rcZe4FC3fAi4Y4q1UFXPAO+d17xcjXuBR6rqXFW9Dpxk8f9jXS1T83L6UvOZqvp5t/w+8AqwnZ7v62FNOxS2A28NPD7VtfVRAU8neT7Jga5ta1Wd6ZbfAbZOp7SLWq7Gvu/7ryV5oRteLHXDe1dzkuuAzwI/Y3b3dWPaoTBLbqmq3cCXgbuTfH5wZS32E3v9Uc4s1Nj5LotDyt3AGeDb0y3nwpJ8GvgR8I2q+u3guhna158w7VA4DewYeHxt19Y7VXW6uz8LPMZi9+/dJNsAuvuz06twWcvV2Nt9X1XvVtVHVfV74Ht83NXuTc1JNrMYCD+oqh93zTO3ry9k2qHwHLAryc4klwL7gMNTrukTklye5IqlZeBLwEss1rq/22w/8Ph0Kryo5Wo8DOxLsiXJTmAX8OwU6vuEpQOr8xUW9zX0pOYkAR4EXqmq7wysmrl9fUHTnukEbmdx9vZXwDenXc8yNV7P4uzxL4DjS3UCfwQcAV4FngaumnKdD7PY3f6AxXHrXRerEfhmt99PAF/uUc3/CrwIvMDiAbWtZzXfwuLQ4AXgWHe7ve/7etibZzRKakx7+CCpZwwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDU+D8CsT0sbVSUzwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b360afdfb00>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADf1JREFUeJzt3U2sXGd9x/Hvr8Ex4qVS0lDLcaxiKncRFjXoKlQqQlRRccjGYROZReVFJHeRIpDahVMWsIlEK0F3IAWBsCpKavGieIFqJRYS6obEIBPipCYmL4odJy4FiagLk4R/F/fcMo9zr+/ce2fmnJn7/UijOfOcM3P+Pr7nN8955sycVBWStOIP+i5A0rAYCpIahoKkhqEgqWEoSGoYCpIaUwuFJHclOZ/kQpJj01qPpMnKNM5TSHID8HPgr4GLwBPAJ6vq6YmvTNJETauncAdwoaqeq6rfAg8Dh6a0LkkT9LYpve4e4KWRxxeBD6218I3ZWW/nnVMqRRLAa/z6l1X1nvWWm1YorCvJUeAowNt5Bx/KnX2VIm0Lj9W3XxxnuWkdPlwC9o48vq1r+39V9VBVLVXV0g52TqkMSRs1rVB4AtifZF+SG4HDwMkprUvSBE0lFKrqDeDvgFPAM8CJqjo3jXUNwamXz/ZdgjQxUztPoaq+X1V/VlV/WlUPTms9Q3Dw1gN9lzAIhuNi8IxGTZTBMP8MBUkNQ0FSw1CQ1Ojt5CUtllMvn3XAdUHYU9BEGAiLw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBW1LXvNybYaCpIahoG3HXsL1GQqSGoaCth0vcXd9hoI0AYt0SGIoaFuadG9hkXofhoKkxtu28uQkLwCvAW8Cb1TVUpKbgX8H3gu8ANxbVb/eWpmSZmUSPYW/qqoDVbXUPT4GnK6q/cDp7rGkOTGNw4dDwPFu+jhwzxTWIWlKthoKBTyW5MdJjnZtu6rqcjf9CrBri+uQNENbGlMAPlxVl5L8MfBokv8anVlVlaRWe2IXIkcB3s47tliGpEnZUk+hqi5191eA7wF3AK8m2Q3Q3V9Z47kPVdVSVS3tYOdWypA0QZsOhSTvTPLulWngY8BTwEngSLfYEeCRrRYpaXa2cviwC/hekpXX+beq+o8kTwAnktwHvAjcu/UyJc3KpkOhqp4D/nyV9v8B7txKUZL64xmNkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShI13Hq5bN9lzBzhsKEbMc/nu3g4K0H+i5h5gwFSQ1DYQLsJWiRGAoTsh27mVpMhsIEGAhaJIaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqrBsKSb6e5EqSp0babk7yaJJnu/ubRuY9kORCkvNJDk6rcEnTMU5P4RvAXde0HQNOV9V+4HT3mCS3A4eB93fP+XKSGyZWraSpWzcUquqHwK+uaT4EHO+mjwP3jLQ/XFVXq+p54AJwx4RqlTQDmx1T2FVVl7vpV4Bd3fQe4KWR5S52bZLmxJYHGquqgNro85IcTXImyZnXubrVMiRNyGZD4dUkuwG6+ytd+yVg78hyt3Vtb1FVD1XVUlUt7WDnJsuQNGmbDYWTwJFu+gjwyEj74SQ7k+wD9gOPb61ESbP0tvUWSPIt4KPALUkuAp8DvgCcSHIf8CJwL0BVnUtyAngaeAO4v6renFLtkqZg3VCoqk+uMevONZZ/EHhwK0VJ6o9nNEpqGAqSGoaCpIahoJnz16+HzVDQzPlDt8NmKEhqGAqSGoaCpIahMCEOnmlRGAqSGobCBKz0EuwtaBEYChPgR2xaJIbChBgMWhSGwoR5CKF5ZyhIaqz7ewpan70DLRJ7ChPm2MLmGKzDYShMgEGwdSvb0HDon6GgQTFg+2coTMGpl8/6jqe5ZShM0Mq73MFbD/iOt0mGaf/89GEKRv+wDQfNG3sKE+LOr0VhKEhqGApT5jGy5s1ch8JQR/k9lNA8m+tQmBdDDC5pLYbClNhb2By3W//mOhSGfmqsf+CaR3MdCkMNg9UMdfxDutZch4LvxNLkzXUozCN7Cxq6uT/N+eCtB3rZ0VZb52o9l2vrs3ejoVuInsIsg2GrYwP2FDR0CxEKMJt34Ovt0BtZv8GgIVuYUOjLOF+T9pBB82TdUEjy9SRXkjw10vb5JJeSnO1ud4/MeyDJhSTnkxycVuFrmeW78EZ29muXtbegoRqnp/AN4K5V2v+lqg50t+8DJLkdOAy8v3vOl5PcMKli1zPtHW2rP55ij0HzYN1QqKofAr8a8/UOAQ9X1dWqeh64ANyxhfo2ZFY73aTWY29BQ7SVMYVPJXmyO7y4qWvbA7w0sszFrm0mZnmh10kGg+GgIdlsKHwFeB9wALgMfHGjL5DkaJIzSc68ztVNltEa3VGHuqOtFSZDrVfbz6ZCoaperao3q+p3wFf5/SHCJWDvyKK3dW2rvcZDVbVUVUs72LmZMuaWwaAh21QoJNk98vATwMonEyeBw0l2JtkH7Ace31qJmzfkncxBRw3Vuqc5J/kW8FHgliQXgc8BH01yACjgBeBvAarqXJITwNPAG8D9VfXmdEpf3dC/Tj3q2loNCg1BqqrvGvjD3Fwfyp19l9Erg0HT9lh9+8dVtbTecnP/hahFsfL9jbV6OIaFZsXTnAfkejv+PBwOaTEYCgOzXjAYDpo2Q2GA1jtUMBg0TYaCpIahMFBeuVp98dOHgZuHU7e1WBayp7CoO8+0eg6jA5iLuu00Pk9emkOTPNFpUj8xp+Hz5KUFNu6p3KPLbeT0b8NgezMU5tQ4O/foMuMeFhgIWshQGH1nXFST+ln7Rd9O2riFHGgc5+SfRTg7cKs7tIGg1WzbgUav2qTtZtyBxoXsKYzj2s//573XIE3Ktg0F8FoM0moWcqBxI1Y7dPAHT7SdbeuegqS32vY9hetxMFLbkT2FVSxyADioqvUYCmNapB1pkUNPW2cobMAiBIOBoPUYCmtY60dOFiEYpOsxFCQ1DIV1XNtbsPutRWcojGElCCb1zURpyAyFMY0Gg7TIDAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJjXVDIcneJD9I8nSSc0k+3bXfnOTRJM929zeNPOeBJBeSnE9ycJr/AEmTNU5P4Q3g76vqduAvgPuT3A4cA05X1X7gdPeYbt5h4P3AXcCXk9wwjeIlTd66oVBVl6vqJ930a8AzwB7gEHC8W+w4cE83fQh4uKquVtXzwAXgjkkXLmk6NjSmkOS9wAeAHwG7qupyN+sVYFc3vQd4aeRpF7s2SXNg7FBI8i7gO8Bnquo3o/Nq+dpzG7r+XJKjSc4kOfM6VzfyVElTNFYoJNnBciB8s6q+2zW/mmR3N383cKVrvwTsHXn6bV1bo6oeqqqlqlrawc7N1i9pwsb59CHA14BnqupLI7NOAke66SPAIyPth5PsTLIP2A88PrmSJU3TOBeD+Uvgb4CfJVn52aF/BL4AnEhyH/AicC9AVZ1LcgJ4muVPLu6vqjcnXrmkqVg3FKrqP4GsMXvV68dX1YPAg1uoS1JPPKNRUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAUNnpfqmy1DQYN26uWzXqpvxgwFDZaB0A9DQYNlIPTDUNDgnHr5rOMIPRrnW5LSTNlD6Jc9BUkNQ0FSw1CQ1DAUJDUMhQlyxFyLwFCYMINB886PJCfIj9K0COwpSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEozIBnOWqeGAozYjBoXhgKM2QwaB4YCjPgdyI0T1JVfddAkv8G/hf4Zd+1bNAtWPMszFvNQ633T6rqPestNIhQAEhypqqW+q5jI6x5Nuat5nmr91oePkhqGAqSGkMKhYf6LmATrHk25q3meau3MZgxBUnDMKSegqQB6D0UktyV5HySC0mO9V3PWpK8kORnSc4mOdO13Zzk0STPdvc39Vzj15NcSfLUSNuaNSZ5oNvu55McHFDNn09yqdvWZ5PcPbCa9yb5QZKnk5xL8umufdDbemxV1dsNuAH4BfA+4Ebgp8DtfdZ0nVpfAG65pu2fgWPd9DHgn3qu8SPAB4Gn1qsRuL3b3juBfd3/ww0DqfnzwD+ssuxQat4NfLCbfjfw8662QW/rcW999xTuAC5U1XNV9VvgYeBQzzVtxCHgeDd9HLinx1qoqh8Cv7qmea0aDwEPV9XVqnoeuMDy/8dMrVHzWoZS8+Wq+kk3/RrwDLCHgW/rcfUdCnuAl0YeX+zahqiAx5L8OMnRrm1XVV3upl8BdvVT2nWtVePQt/2nkjzZHV6sdMMHV3OS9wIfAH7E/G7rRt+hME8+XFUHgI8D9yf5yOjMWu4nDvqjnHmosfMVlg8pDwCXgS/2W87qkrwL+A7wmar6zei8OdrWb9F3KFwC9o48vq1rG5yqutTdXwG+x3L379UkuwG6+yv9VbimtWoc7Lavqler6s2q+h3wVX7f1R5MzUl2sBwI36yq73bNc7etV9N3KDwB7E+yL8mNwGHgZM81vUWSdyZ598o08DHgKZZrPdItdgR4pJ8Kr2utGk8Ch5PsTLIP2A883kN9b7GyY3U+wfK2hoHUnCTA14BnqupLI7Pmbluvqu+RTuBulkdvfwF8tu961qjxfSyPHv8UOLdSJ/BHwGngWeAx4Oae6/wWy93t11k+br3vejUCn+22+3ng4wOq+V+BnwFPsrxD7R5YzR9m+dDgSeBsd7t76Nt63JtnNEpq9H34IGlgDAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNT4P0uuM60uXSsWAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b360afd6e10>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADphJREFUeJzt3U/MHPV9x/H3t64xCiESLqllG6sYyRdz6JPokalUFFHRxISLyQU5h8oHJPdAo0RqD6Y5hAsSrZT0RiRHQbGqCBeRRFgqqoWtSCiXgIkM2KYOT/gjbIzdlEhBPTjgfHt45kn29/Csd5/dmZ2Z53m/pEc7+9uZ3a/HO5/9zW9mZyMzkaQlf9J2AZK6xVCQVDAUJBUMBUkFQ0FSwVCQVGgsFCLivog4HxELEXGoqdeRVK9o4jyFiNgA/BL4InABeAn4amaeq/3FJNWqqZ7CHmAhM9/MzN8BR4F9Db2WpBr9aUPPux14d+D+BeCuYTPfEJvyRm5qqBRJAB/ym19n5mdHzddUKIwUEQeBgwA38inuinvbKkVaF07kM++MM19Tuw8XgR0D92+r2v4gMw9n5nxmzm9kU0NlSFqtpkLhJWBXROyMiBuA/cCxhl5LUo0a2X3IzI8j4h+A48AG4MnMPNvEa0mqV2NjCpn5HPBcU88vqRme0SipYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGQkOOv3e67RKkibT2hai1aikM9m6ba7kSaTL2FBpiT0F9ZSjUzB6C+s5QkFQwFBpgb0F9Zig0xGBQXxkKkgqGgqSCoSCpYChIKhgKkgqGgibmWZtrk6GgiXnYdW0yFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJBUNBUmGq35KMiLeBD4FrwMeZOR8Rm4H/AG4H3gYezMzfTFempFmpo6fwN5k5l5nz1f1DwMnM3AWcrO5L6okmdh/2AUeq6SPAAw28hqSGTBsKCZyIiJcj4mDVtiUzL1XT7wNbpnwNSTM01ZgCcHdmXoyIPweej4j/HnwwMzMicqUFqxA5CHAjn5qyDEl1maqnkJkXq9srwE+APcDliNgKUN1eGbLs4cycz8z5jWyapgxJNZo4FCLipoi4eWka+BJwBjgGHKhmOwA8O22R0kq8xHwzpukpbAF+FhGvAC8C/5mZ/wU8DnwxIt4A/ra6LzXCYKjfxGMKmfkm8JcrtP8vcO80RUlqj2c0qrf8MZpmGArqPXch6mUoqLcMg2YYCloTDIj6GAqSCobCKvhp1C0ONDbDUFgF34Td4/9J/ab97oPUOoOhXvYUJBUMBUkFQ0FSwVCQVDAU1GvH3zvtoeKaGQpaEwyG+hgKkgqGgqSCoSCpYCio1zybsX6GgtYMBxvrYShIKhgK6r292+bcjaiRoaA1wV2H+vjVaa0J9hTqY09BUqEXoWDXUJqdXoSCpNnpRSjs3TZnb0GakV6EwvH3TjuQJM1IL0LBQJBmpxehIGl2DAVJBUNBUsFQkFQwFCQV/O6Demn5eSseoaqPPYUhvHR4ty19XXopDPy/qs/IUIiIJyPiSkScGWjbHBHPR8Qb1e0tA489EhELEXE+IvY2Vfis+GbrPq+nUK9xego/AO5b1nYIOJmZu4CT1X0iYjewH7izWuaJiNhQW7WSGjcyFDLzBeCDZc37gCPV9BHggYH2o5l5NTPfAhaAPTXVOjPLewf2FrSeTDqmsCUzL1XT7wNbquntwLsD812o2iT1xNQDjZmZQK52uYg4GBGnIuLUR1ydtoxauX+q9WzSULgcEVsBqtsrVftFYMfAfLdVbZ+QmYczcz4z5zeyacIyJNVt0lA4Bhyopg8Azw6074+ITRGxE9gFvDhdiZJmaeTJSxHxFHAPcGtEXAC+BTwOPB0RDwHvAA8CZObZiHgaOAd8DDycmdcaql1SA0aGQmZ+dchD9w6Z/zHgsWmKktQez2iUVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ2EIv/+g9cpQkFQwFCQVDAVJhd6HghdYlerV21CYRRA42Kj1qHehMKxn0ERI2APRetS7UFiy9Ck++GnuRixNr3e/EGWXXmpWb3sKkpqx5kKhzl0IeyVaj3oZCiv9uGgTPx229DqGg9aTXobCqI20rt6Cv1Go9ah3A42juBFL0+llT2GanoBnQErX18tQgOmCwd6ENFxvQ2HSDdtAkK6vl6Hghi01p5ehIKk5hoKkgqEgqWAoSCoYCpIKhoJq5clh/WcoNGC9bxgeMu43Q6Fmg2GwHoPBQOg/Q6FmyzeK9d5rUP8YCpIKhsKAOq/D0NRzS00bGQoR8WREXImIMwNtj0bExYg4Xf3dP/DYIxGxEBHnI2JvU4Wv1jgbZdP7wwaD+mCcnsIPgPtWaP+3zJyr/p4DiIjdwH7gzmqZJyJiQ13FSmreyFDIzBeAD8Z8vn3A0cy8mplvAQvAninqq82sR8UdhVdfTTOm8LWIeLXavbilatsOvDswz4WqbV0yGNRHk4bCd4E7gDngEvDt1T5BRByMiFMRceojrk5Yxmw4FqD1ZKJQyMzLmXktM38PfI8/7iJcBHYMzHpb1bbScxzOzPnMnN/IpknKmJk6P/ENGHXdRKEQEVsH7n4FWDoycQzYHxGbImInsAt4cboS+83Dk+qbkZd4j4ingHuAWyPiAvAt4J6ImAMSeBv4e4DMPBsRTwPngI+BhzPzWjOl98febXMGgXojMrPtGvhMbM674t62y2jUSqHgQKRm6UQ+83Jmzo+azzMaZ8TdCPWFoTBDw4LBcFCXGAodYTCoKwyFGbveOILBoC4wFDrGYFDbDIUWjDrqYDCoTYZCSwwGdZWh0CKDQV1kKLTMYFDXjDzNWc0bDIaVQuB6weBZkaqbPYWOWe1GvnTykz0K1cVQ6KC92+b+8LcaBkPJ9TEZQ6HjJu05yF2rSRkKPWCvQbPkQGOPrPYU6eVtfnJqHPYU1pFJdy2WL2cvZG3zIitryGo21sGrQS31IAaXX6lt2POoH8a9yIqhsMZM+ik+LAQMh7XDUKjJsI1hkoG/WW844wbEqA1/+eOT/DumWVb18HJsDVvtJ3IfNoaVjnKMur/csHGLSY6gqB0efVjDlm+EK40ZjLPcOMusZh51m7sPY/C7B1oL3H2okRv++Dyjsv/cfZiCYfFJdQxKql2GwpiWjuuPe4huvRv2dXBDovvcfViFwTe0b26tVYaCGre812Avq9vcfdBM2LPqD3sKkgqGgqSCoSCpYChIKhgKNXA0XWuJoSCpYCjUwMNtWksMBUmFkaEQETsi4qcRcS4izkbE16v2zRHxfES8Ud3eMrDMIxGxEBHnI2Jvk/8ASfUap6fwMfCPmbkb+Cvg4YjYDRwCTmbmLuBkdZ/qsf3AncB9wBMRsaGJ4iXVb2QoZOalzPxFNf0h8DqwHdgHHKlmOwI8UE3vA45m5tXMfAtYAPbUXbikZqxqTCEibgc+B/wc2JKZl6qH3ge2VNPbgXcHFrtQtUnqgbFDISI+DfwI+EZm/nbwsVy8ptuqrusWEQcj4lREnPqIq6tZVFKDxgqFiNjIYiD8MDN/XDVfjoit1eNbgStV+0Vgx8Dit1Vthcw8nJnzmTm/kU2T1i+pZuMcfQjg+8DrmfmdgYeOAQeq6QPAswPt+yNiU0TsBHYBL9ZXsqQmjXM9hb8G/g54LSKWzuf9Z+Bx4OmIeAh4B3gQIDPPRsTTwDkWj1w8nJnXaq9cUiNGhkJm/gyIIQ+veF32zHwMeGyKuiS1xDMaJRUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBa0ZXlW7HoaCpIKhoDXBXkJ9DAX1noFQL0NhxnwD12twffr7G/UwFGbMN666zlCYMXsK6jpDYcbsKTRjFut1vQS6oSCpYCjM2PH3Tq+bT5xZsfdVL0OhJQZDPQyE+sXi77i06zOxOe+KFa8BuyatFAi+udW0E/nMy5k5P2q+cS7xroYZCCvzHIR2uPvQAt/g6jJDQZ1kL6E9hkJLBt/oDjqWXB/tckyhRX4CjuY6mj17CuosA6EdhoKkgqHQIe5LL9q7bc5eQosMhY4xGNQ2Q6FD1vOno2HYHYZChxx/7/S6DwbDoX2d+O5DRPwP8H/Ar9uuZZVuxZpnoW81d7Xev8jMz46aqROhABARp8b5skaXWPNs9K3mvtW7nLsPkgqGgqRCl0LhcNsFTMCaZ6NvNfet3kJnxhQkdUOXegqSOqD1UIiI+yLifEQsRMShtusZJiLejojXIuJ0RJyq2jZHxPMR8UZ1e0vLNT4ZEVci4sxA29AaI+KRar2fj4i9Har50Yi4WK3r0xFxf8dq3hERP42IcxFxNiK+XrV3el2PLTNb+wM2AL8C7gBuAF4BdrdZ03VqfRu4dVnbvwKHqulDwL+0XOMXgM8DZ0bVCOyu1vcmYGf1/7ChIzU/CvzTCvN2peatwOer6ZuBX1a1dXpdj/vXdk9hD7CQmW9m5u+Ao8C+lmtajX3AkWr6CPBAi7WQmS8AHyxrHlbjPuBoZl7NzLeABRb/P2ZqSM3DdKXmS5n5i2r6Q+B1YDsdX9fjajsUtgPvDty/ULV1UQInIuLliDhYtW3JzEvV9PvAlnZKu65hNXZ93X8tIl6tdi+WuuGdqzkibgc+B/yc/q7rQtuh0Cd3Z+Yc8GXg4Yj4wuCDudhP7PShnD7UWPkui7uUc8Al4NvtlrOyiPg08CPgG5n528HHerSuP6HtULgI7Bi4f1vV1jmZebG6vQL8hMXu3+WI2ApQ3V5pr8KhhtXY2XWfmZcz81pm/h74Hn/sanem5ojYyGIg/DAzf1w1925dr6TtUHgJ2BUROyPiBmA/cKzlmj4hIm6KiJuXpoEvAWdYrPVANdsB4Nl2KryuYTUeA/ZHxKaI2AnsAl5sob5PWNqwKl9hcV1DR2qOiAC+D7yemd8ZeKh363pFbY90AvezOHr7K+CbbdczpMY7WBw9fgU4u1Qn8GfASeAN4ASwueU6n2Kxu/0Ri/utD12vRuCb1Xo/D3y5QzX/O/Aa8CqLG9TWjtV8N4u7Bq8Cp6u/+7u+rsf984xGSYW2dx8kdYyhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCv8P8KKsZ/eJXbUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b36122d6518>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADkdJREFUeJzt3V+IXOd5x/HvU1leE8cFK06FJItaBt3IF92ERS7UBBfTyPGNnBujXBRdGJQLNyTQXMjNRXxjSAtJ7xxQiIkoqVWRxFgXpsIWAVNoY8thY0tyFW/8B+uPpaYJxPRCsZWnF3u2nXe9o52dmTPnnJnvB5Y5854zO8+emfnN+75z5mxkJpK04o+aLkBSuxgKkgqGgqSCoSCpYChIKhgKkgq1hUJEPBgR5yNiKSIO13U/ksYr6jhOISI2Ab8E/gq4ALwCfCkzz439ziSNVV09hb3AUma+lZm/B44B+2u6L0ljdFNNv3cH8F7P9QvAvf02vjnm8hZurakUSQAf8NtfZ+an19uurlBYV0QcAg4B3MInuDceaKoUaSa8mD96d5Dt6ho+XAR29ly/s2r7P5l5JDMXMnNhM3M1lSFpo+oKhVeA3RGxKyJuBg4AJ2q6L0ljVMvwITM/ioi/AU4Cm4CnM/NsHfclabxqm1PIzOeB5+v6/ZLq4RGNY3Ly0mLTJUhjYShIKhgKkgqGgqSCoSCpYChIKhgKY7Jv+3zTJUhjYShIKhgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGwgg8sYqmkaEwpJOXFv2+g6aSoTCkfdvn7SloKhkKkgqGwpBWegn2FjRtDIUhOZ+gaWUojGDf9nnDQVPXWzQUpBFN2xuDoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgo3jXLjiHgH+AC4DnyUmQsRsQX4F+Au4B3gkcz87WhlSpqUcfQU/jIz5zNzobp+GDiVmbuBU9V1SR1Rx/BhP3C0Wj4KPFzDfUiqyaihkMCLEfFqRByq2rZm5uVq+X1g64j3IWmCRppTAO7LzIsR8SfACxHxn70rMzMjIte6YRUihwBu4RMjliFpXEbqKWTmxeryKvAssBe4EhHbAKrLq31ueyQzFzJzYTNzo5QhaYyGDoWIuDUibltZBj4PnAFOAAerzQ4Cz41apKTJGWX4sBV4NiJWfs8/Z+a/RsQrwPGIeBR4F3hk9DIlTcrQoZCZbwF/tkb7fwMPjFKUpOZ4RKOkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEgqWAoSCoYCpIKhoKkgqEwoJOXFjl5abHpMqTa3dR0AW3XGwT7ts83WIk0GfYUbsCegWbRuqEQEU9HxNWIONPTtiUiXoiIN6vL23vWPR4RSxFxPiL21VX4pNlL0KwYpKfwA+DBVW2HgVOZuRs4VV0nIvYAB4B7qts8FRGbxlatpNqtGwqZ+RLwm1XN+4Gj1fJR4OGe9mOZeS0z3waWgL1jqnWiVoYO+7bP20vQTBl2onFrZl6ult8HtlbLO4D/6NnuQtXWOQaBZtXIE42ZmUBu9HYRcSgiTkfE6Q+5NmoZY+UEo2bZsKFwJSK2AVSXV6v2i8DOnu3urNo+JjOPZOZCZi5sZm7IMuphL0GzbNhQOAEcrJYPAs/1tB+IiLmI2AXsBl4erURJk7TunEJEPAPcD9wREReAbwLfAo5HxKPAu8AjAJl5NiKOA+eAj4DHMvN6TbVLqsG6oZCZX+qz6oE+2z8JPDlKUZKa4xGNkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoTAEz+ysaWYoDMmvV2taGQobZA9B085QkFTwn8EMyX8So2llT2GDVs7u3BsEvQHh8EJdZyiM2b7t8346oU4zFEaw3rDBYFAXGQpj0C8cnGuYbV19UzAUxmD1g28YCMqhZJcCwk8fanTy0qIBMeO6+PgbCjXp4pNBgo4PH9rQJVt58a9VS9e6jRJ0PBTa8m7sRKOmSadDoSvvxF2oUVrR6VBoE3sFmhadDoWVw419J5bGp9OhAN3pmndlqCN1PhTazmGF1tO2N4vOH6fgi05d17bnsD0FSQVDYUCjdPH6nXtBaqPODx8maVxffPI7EVpt5bnVhueFPYUJacODLQ3CUBhAHV3+Lg0julRrV60+xV+TDIUBrH6whn0AV9+mKy82DxCbLeuGQkQ8HRFXI+JMT9sTEXExIharn4d61j0eEUsRcT4i9tVV+KStdcLWWWEgzJZBego/AB5co/0fM3O++nkeICL2AAeAe6rbPBURm8ZV7CAm9QQe1xGKvuDUNut++pCZL0XEXQP+vv3Ascy8BrwdEUvAXuDfh65wgyb1Tj6LPQbNhlHmFL4SEa9Vw4vbq7YdwHs921yo2iam7d8xWCtM2lyvZs+wofBd4G5gHrgMfHujvyAiDkXE6Yg4/SHXhizj47r6Dt7mYJjVuZRZNVQoZOaVzLyemX8AvsfyEAHgIrCzZ9M7q7a1fseRzFzIzIXNzA1Txpq6cGBQv/raHAyaHUOFQkRs67n6RWDlk4kTwIGImIuIXcBu4OXRStyYtgfCiq7Uqdmz7kRjRDwD3A/cEREXgG8C90fEPJDAO8CXATLzbEQcB84BHwGPZeb1ekqfTl3o6Wi6RWY2XQN/HFvy3nig6TIasdaQwVBQHV7MH72amQvrbecRjQ1zEk9tYyi0hF+vVlsYCi1lMKgphkJLrDXBaDCoCU40ttCNwsD5Bw1r5iYap+ld9UYv/Gn6O9VOUxMK0/YO2u+r2m39Ow2r6eE5GjugjUHQGwJ+rDpdpqanIGk8pran0Kaz49ap91OL1e/edZr2/TrLpjYUVr9QpvlJvNZ4fhb+btVjakNhFgwyued3K7RRUzunsPoMTP2Wu2yjL24nBDWIqQ2F1S+AfsvTZq2/zTDQRsz08GEazl3QLwSkYc10KDQxay+13dQOH4bV9rNBS3Wb+p7Ceu/84/pP0tK0mPpQWI8hIJUcPkgqGAqSCobCBjgBqVkw83MKNzLNIeDhz+rHUOhjrWMXVj6unIYXzzT8DaqHobCOWTk8WlrhnMINGAKaRYZCHwaCZpWhIKlgKEgqGAqSCoaCpIKhIKlgKEgqGAqSCoaCpIKhIKmwbihExM6I+GlEnIuIsxHx1ap9S0S8EBFvVpe399zm8YhYiojzEbGvzj9A0ngN0lP4CPjbzNwD/DnwWETsAQ4DpzJzN3Cquk617gBwD/Ag8FREbKqjeEnjt24oZOblzPx5tfwB8AawA9gPHK02Owo8XC3vB45l5rXMfBtYAvaOu3BJ9djQnEJE3AV8BvgZsDUzL1er3ge2Vss7gPd6bnahapPUAQOHQkR8Evgx8LXM/F3vusxMIDdyxxFxKCJOR8TpD7m2kZtKqtFAoRARm1kOhB9m5k+q5isRsa1avw24WrVfBHb23PzOqq2QmUcycyEzFzYzN2z9ksZskE8fAvg+8EZmfqdn1QngYLV8EHiup/1ARMxFxC5gN/Dy+EqWVKdBTsf2F8BfA69HxMqJC/8O+BZwPCIeBd4FHgHIzLMRcRw4x/InF49l5vWxVy6pFuuGQmb+GxB9Vj/Q5zZPAk+OUJekhnhEo6SCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoaBOOXlpkZOXFtffUEMzFNQZhsFkGArqhN5A8D+C18tQUOvZQ5gsQ0GdYi+hfoaCWs1hw+QNcpIVqRErgWAYTJY9BbWecwqTZSjUwCfxaFYfi2BPYbIcPtTAJ/F4uB+bYSioVU5eWjQMGubwoWYOJTbGQGieoSCpYChIKhgKE+AQQl3iRGPNHCOra+wpTIjnAVBXGAqSCoaCpIKhMCErcwsOIdR2TjROkJOO6gJ7CpIKhoKkQmRm0zUQEf8F/A/w66Zr2aA7sOZJ6FrNba33TzPz0+tt1IpQAIiI05m50HQdG2HNk9G1mrtW72oOHyQVDAVJhTaFwpGmCxiCNU9G12ruWr2F1swpSGqHNvUUJLVA46EQEQ9GxPmIWIqIw03X009EvBMRr0fEYkScrtq2RMQLEfFmdXl7wzU+HRFXI+JMT1vfGiPi8Wq/n4+IfS2q+YmIuFjt68WIeKhlNe+MiJ9GxLmIOBsRX63aW72vB5aZjf0Am4BfAXcDNwO/APY0WdMNan0HuGNV2z8Ah6vlw8DfN1zj54DPAmfWqxHYU+3vOWBX9ThsaknNTwBfX2PbttS8DfhstXwb8Muqtlbv60F/mu4p7AWWMvOtzPw9cAzY33BNG7EfOFotHwUebrAWMvMl4DermvvVuB84lpnXMvNtYInlx2Oi+tTcT1tqvpyZP6+WPwDeAHbQ8n09qKZDYQfwXs/1C1VbGyXwYkS8GhGHqratmXm5Wn4f2NpMaTfUr8a27/uvRMRr1fBipRveupoj4i7gM8DP6O6+LjQdCl1yX2bOA18AHouIz/WuzOV+Yqs/yulCjZXvsjyknAcuA99utpy1RcQngR8DX8vM3/Wu69C+/pimQ+EisLPn+p1VW+tk5sXq8irwLMvdvysRsQ2gurzaXIV99auxtfs+M69k5vXM/APwPf6/q92amiNiM8uB8MPM/EnV3Ll9vZamQ+EVYHdE7IqIm4EDwImGa/qYiLg1Im5bWQY+D5xhudaD1WYHgeeaqfCG+tV4AjgQEXMRsQvYDbzcQH0fs/LCqnyR5X0NLak5IgL4PvBGZn6nZ1Xn9vWamp7pBB5iefb2V8A3mq6nT413szx7/Avg7EqdwKeAU8CbwIvAlobrfIbl7vaHLI9bH71RjcA3qv1+HvhCi2r+J+B14DWWX1DbWlbzfSwPDV4DFqufh9q+rwf98YhGSYWmhw+SWsZQkFQwFCQVDAVJBUNBUsFQkFQwFCQVDAVJhf8FAQlFRWXH4UUAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b3612332518>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADaJJREFUeJzt3U2sXGd9x/Hvr65jxJsUN9RyHKuYyiyC1Bp0lVRqhGhTcMjGYYPMAnkRyV2kCKR24YgFbJBoJeguSEFEWBUljXhRvEBYiYXEjsRBJsRJnZgkKHacuBQkolYySfh3cc8t8zj3+l7feTtn/P1IoznnOefc+fv4zm+e55kzc1NVSNKKP5p3AZL6xVCQ1DAUJDUMBUkNQ0FSw1CQ1JhaKCS5I8mZJGeTHJnW40iarEzjOoUkW4BngY8C54DHgU9V1dMTfzBJEzWtnsItwNmqer6qfgc8CByY0mNJmqA/ntLP3QW8NLJ+Drh1rZ2vy7Z6G++YUimatvf/xf8C8OyTb59zJbqS1/jNr6rqPevtN61QWFeSw8BhgLfxdm7N7fMqRWM6fvwU+2/cx62ZdyW6kkfrO7/cyH7TGj6cB3aPrN/Utf2/qrq/qpaqamkr26ZUhqbt+Mun5l2CJmxaofA4sDfJniTXAQeBY1N6LEkTNJXhQ1W9keQfgOPAFuCBqjo9jcfS/O2/cd+8S9AETe06har6QVW9v6r+vKq+NK3HmaaVrrFdZF1LvKJxA3wlvDJDc7EYCldgGGyM52mxGAoai4GweAwFSQ1DQVJjoULBCS9pfAsVCpLGZyhIaixUKDgTrmvRpIfNCxUKzilI41uoULCnoGvNNF4IFyoU7CnoWjONF8KFCgV7CroWTfr3fqFCQdL4DAVJDUNBUsNQkNQwFCQ15vYV75JmY+Wt+i07N7a/oSAtqM1et2MoSAtoJRDaaxjObuhYQ0FaQONc0OREo6SGoSCp4fBBGoDRScNpf8bHnoI0APtv3DezD/wZCtKAzCIYDAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJjbE++5DkReA14E3gjapaSrId+A/gvcCLwCer6jfjlSlpVibRU/ibqtpXVUvd+hHgRFXtBU506wvNv0ylRTKN4cMB4Gi3fBS4awqP0Sv+ZSotknFDoYBHkzyR5HDXtqOqLnTLrwA7xnwMSTM07vcp3FZV55P8KfBIkv8c3VhVlaRWO7ALkcMAb+PtY5YhaVLG6ilU1fnu/iLwfeAW4NUkOwG6+4trHHt/VS1V1dJWto1ThqQJ2nQoJHlHknetLAMfA54CjgGHut0OAQ+PW6Sk2Rln+LAD+H6SlZ/z71X1wySPAw8luRv4JfDJ8cuUNCubDoWqeh74y1Xa/xu4fZyiNByz/O5AzYZXNGoiDITFYShoLIbB4jEUNDaDYbEYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEozJDf0KQhMBRm5PjLp7zIR4NgKMzASg/BnoKGYNxvXtJVsKegK7n8RWNevy+GgtQz837xMBRmZN7/0eq/vvyOOKcwI84naCgMhSkzDDQ0hoKkhqEgqWEoSGoYCpoY508Wg6GgienLW2oaj6EgqWEoSGoYClPkGFtDZChM0egY2/G2hsJQmAEDQUNiKMyAwwgNiaEwRYaBhshQmBEDQkNhKMyI8woaCkNBUsNQkNQwFCQ1DAVJjXVDIckDSS4meWqkbXuSR5I8191fP7Lt3iRnk5xJsn9ahQ+N7z5oKDbSU/gmcMdlbUeAE1W1FzjRrZPkZuAg8IHumPuSbJlYtQPjOw4aonVDoap+DPz6suYDwNFu+Shw10j7g1V1qapeAM4Ct0yo1kEaDQZ7CxqCzc4p7KiqC93yK8CObnkX8NLIfue6NmHPQcMw9kRjVRVQV3tcksNJTiY5+TqXxi1D0oRsNhReTbIToLu/2LWfB3aP7HdT1/YWVXV/VS1V1dJWtm2yjP4bHTI4fNAQbDYUjgGHuuVDwMMj7QeTbEuyB9gLPDZeicPmkEFDs+7fkkzybeAjwA1JzgFfAL4MPJTkbuCXwCcBqup0koeAp4E3gHuq6s0p1S5pCtYNhar61Bqbbl9j/y8BXxqnqEVlr0FD4BWNkhqGgqSGoTBlvuOgoTEUpmxlHsH5BA2FoTADBoKGxFCQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1Fj3o9PS5Z/f8ArNxWZPQVfND3ktNnsKWtflX1NvT2Gx2VPQVTEQFp+hIKlhKEhqGAqSGobClExiht5Zfs2DoTAl+2/cN7FgMBw0S4bCFDlTryEyFHrOYNGsGQo9NvpN0A4hNCuGwkDYY9CsGAqSGoaCpIahMFDOMWha/JTkQI0zx+D3I+hKDIUBu5on91o9CwNBl3P4MGCXP6HXuvpxtbb9N+4zELQqQ2HgVntiO9+gcTh8WACrXdzkvIE2y57CghgdDqwsj673hb2Y/ls3FJI8kORikqdG2r6Y5HySU93tzpFt9yY5m+RMkv3TKlyruzwA+hQI0L969FYb6Sl8E7hjlfZ/rap93e0HAEluBg4CH+iOuS/JlkkVK2n61g2Fqvox8OsN/rwDwINVdamqXgDOAreMUZ+kGRtnTuEzSZ7shhfXd227gJdG9jnXtUkaiM2GwteA9wH7gAvAV672ByQ5nORkkpOvc2mTZUiatE2FQlW9WlVvVtXvga/zhyHCeWD3yK43dW2r/Yz7q2qpqpa2sm0zZUiagk2FQpKdI6ufAFbemTgGHEyyLckeYC/w2HglSpqldS9eSvJt4CPADUnOAV8APpJkH1DAi8DfA1TV6SQPAU8DbwD3VNWb0yld0jSkquZdA+/O9ro1t8+7DGmhPVrfeaKqltbbzysaJTUMBUkNQ0FSw1CQ1DAUJDUMhR7xY8XqA0NBUsNQkNQwFCQ1DIUe8VuJ1AeGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpsW4oJNmd5EdJnk5yOslnu/btSR5J8lx3f/3IMfcmOZvkTJL90/wHSJqsjfQU3gD+sapuBv4KuCfJzcAR4ERV7QVOdOt02w4CHwDuAO5LsmUaxUuavHVDoaouVNVPu+XXgGeAXcAB4Gi321Hgrm75APBgVV2qqheAs8Atky5c0nRc1ZxCkvcCHwR+AuyoqgvdpleAHd3yLuClkcPOdW2SBmDDoZDkncB3gc9V1W9Ht1VVAXU1D5zkcJKTSU6+zqWrOVTSFG0oFJJsZTkQvlVV3+uaX02ys9u+E7jYtZ8Hdo8cflPX1qiq+6tqqaqWtrJts/VLmrCNvPsQ4BvAM1X11ZFNx4BD3fIh4OGR9oNJtiXZA+wFHptcyZKmaSM9hb8GPg38bZJT3e1O4MvAR5M8B/xdt05VnQYeAp4GfgjcU1VvTqX6BXf85VPzLkHXoCxPB8zXu7O9bs3t8y5j6o6/fIr9N+6bdxm6Rj1a33miqpbW288rGmfIQNAQGAoz5pBAfWcozJi9BfWdoSCpYShIahgKkhqGwowdf/mUk43qNUNBUsNQmBN7C+orQ2FOfGtSfWUozIk9BfWVoTAn9hTUV4bCHBgI6jNDYQ4cOqjPDAVJDUNhDhw+qM8MhRkzENR3hsIMeYmzhsBQmCF7CRoCQ2HGDAb1naEwEA47NCuGwkDYw9CsGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpEaqat41kOS/gP8BfjXvWq7SDVjzLAyt5r7W+2dV9Z71dupFKAAkOVlVS/Ou42pY82wMreah1Xs5hw+SGoaCpEafQuH+eRewCdY8G0OreWj1NnozpyCpH/rUU5DUA3MPhSR3JDmT5GySI/OuZy1JXkzy8ySnkpzs2rYneSTJc9399XOu8YEkF5M8NdK2Zo1J7u3O+5kk+3tU8xeTnO/O9akkd/as5t1JfpTk6SSnk3y2a+/1ud6wqprbDdgC/AJ4H3Ad8DPg5nnWdIVaXwRuuKztX4Aj3fIR4J/nXOOHgQ8BT61XI3Bzd763AXu6/4ctPan5i8A/rbJvX2reCXyoW34X8GxXW6/P9UZv8+4p3AKcrarnq+p3wIPAgTnXdDUOAEe75aPAXXOshar6MfDry5rXqvEA8GBVXaqqF4CzLP9/zNQaNa+lLzVfqKqfdsuvAc8Au+j5ud6oeYfCLuClkfVzXVsfFfBokieSHO7adlTVhW75FWDHfEq7orVq7Pu5/0ySJ7vhxUo3vHc1J3kv8EHgJwz3XDfmHQpDcltV7QM+DtyT5MOjG2u5n9jrt3KGUGPnaywPKfcBF4CvzLec1SV5J/Bd4HNV9dvRbQM6128x71A4D+weWb+pa+udqjrf3V8Evs9y9+/VJDsBuvuL86twTWvV2NtzX1WvVtWbVfV74Ov8oavdm5qTbGU5EL5VVd/rmgd3rlcz71B4HNibZE+S64CDwLE51/QWSd6R5F0ry8DHgKdYrvVQt9sh4OH5VHhFa9V4DDiYZFuSPcBe4LE51PcWK0+szidYPtfQk5qTBPgG8ExVfXVk0+DO9armPdMJ3Mny7O0vgM/Pu541anwfy7PHPwNOr9QJ/AlwAngOeBTYPuc6v81yd/t1lsetd1+pRuDz3Xk/A3y8RzX/G/Bz4EmWn1A7e1bzbSwPDZ4ETnW3O/t+rjd684pGSY15Dx8k9YyhIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGv8H4gnChNUG8HQAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b3612288198>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADc5JREFUeJzt3V2IXPd5gPHnrSxvqONCVAehLyoZdCMHugmLXKgxbhVHsgnIuTHKRaMLU/VCzQekF3JzEd8Y3ELcOwcUYiJKasXkAwtqskQiYAJt7HVYO5KMIsVWsD4sJY0hpheKpLy92LPp/Fc72tn5Omdmnh8sO3NmZufV2dlnzzkzs4rMRJIW/UndA0hqFqMgqWAUJBWMgqSCUZBUMAqSCgOLQkTsiYgzEXEuIg4N6n4k9VcM4nUKEbEG+AXwMHABeA34bGae7vudSeqrQW0p7ATOZebbmfl74Ciwd0D3JamP7hjQ190EvNty/gJwf7sr3xlT+SHuGtAokgA+4P3fZOZHV7reoKKwoog4ABwA+BB/yv2xq65RpIlwPL/7q06uN6jdh4vAlpbzm6tlf5SZhzNzJjNn1jI1oDEkrdagovAasD0itkXEncA+4NiA7kvSbcxeml/V9Qey+5CZNyLiH4FZYA3wfGaeGsR9SWpvtUGAAR5TyMyXgZcH9fUHaXFF7t44XfMkUu9W+zj2FY3SGOvmF5tRuI1uNr3G3eyledfLmDMKy3C3YXnGYDIYBXXEIEyO2l681FQ++DXp3FKQVDAKkgpGQavmgdjxZhRaeDyhPUMwOYyCpIJR0Kq4xTD+jMIyfOAvz/UyGYzCbfhDoElkFCQVjIKkglFYYnGXwV2H5fm07fgzClo1wzDejEILtw46ZxjGl1Fowwf98nZvnDaeY84otOED//ZcP+PLKEgqGAV1xd2r8WUU1BV3H8aXf46tRetvPx/0mlRuKUgqGAVJBXcfWrTuMsxemncXQhPJLYU2DIImlVGQVDAKkgpGQVLBKEgqGAVJBaMgqWAUJBWMgqRCT69ojIjzwAfATeBGZs5ExDrgO8BW4DzweGa+39uYkoalH1sKf5OZ05k5U50/BJzIzO3Aier80Pg+f6k3g9h92AscqU4fAR4bwH0sazEIhkHqXq9RSOB4RLweEQeqZesz83J1+j1gfY/3oYaavTRvgMdQr1F4IDOngUeAgxHxYOuFmZkshOMWEXEgIuYiYu4613oco+SbmYZjcT0bhvHSUxQy82L1+SrwA2AncCUiNgBUn6+2ue3hzJzJzJm1TPUyRsEgSL3pOgoRcVdE3L14GvgUcBI4BuyvrrYfeKnXITtlEIbPdT5+etlSWA/8JCLeAF4F/jMzfwg8AzwcEWeBT1bnNebchRgfXb9OITPfBv5ymeX/A+zqZShJ9fEVjeqZBxzHi1GQVDAK6hsPOo4Ho6C+MAjjwyiobzymMB6MgqSCUVDf+CzEeDAKkgpGQVLBKKjvfCZitBkFSQWjIKkwkVHw6LjU3kRGwX1eqb2JjIKk9oyCpIJRkFQwCpIKRkFSwShIKhgFSQWjIKlgFLrkqyI1roxCFwyCxplRkFQY2yj421zqzthGYRhvejI8GkdjGwVJ3TEKkgpGQVLBKEgqGAVJBaPQA/+sm8aRUeiBT0lqHBmFHriloHFkFFbJrQONuztWukJEPA98GriamR+rlq0DvgNsBc4Dj2fm+9VlTwJPADeBL2Tm7EAmr4lbBxp3nWwpfAvYs2TZIeBEZm4HTlTniYgdwD7gvuo2z0XEmr5NK2ngVoxCZr4C/HbJ4r3Aker0EeCxluVHM/NaZr4DnAN29mlWSUPQ7TGF9Zl5uTr9HrC+Or0JeLfleheqZZJGRM8HGjMzgVzt7SLiQETMRcTcda71OoakPuk2ClciYgNA9flqtfwisKXlepurZbfIzMOZOZOZM2uZ6nIMSf3WbRSOAfur0/uBl1qW74uIqYjYBmwHXu1tREnD1MlTki8ADwH3RMQF4KvAM8CLEfEE8CvgcYDMPBURLwKngRvAwcy8OaDZJQ3AilHIzM+2uWhXm+s/DTzdy1CS6uMrGiUVjIKkglGQVJj4KHTyBiffBNVcs5fm/f702cRHwTc4jT6/h/018VHohA+65tq9cdothT4zChp5Rru/jIKkglGQVDAKkgpGQVLBKEgqGAVJBaMgqWAUJBWMwpD56js1nVEYMl+Wq6YzCkNmENR0RqEmxkFNZRSGzDfvqOmMQg0Mg5rMKNTAXQc1mVGogVsKajKjUBPDoKYyCpIKRkFSwShIKhgFSQWjIKlgFCQVjIKkglGQVDAKkgp31D2AVq/1vRO+MlL9ZhRGiG+k0jC4+zDiDIX6bcUthYh4Hvg0cDUzP1Ytewr4e+DX1dX+OTNfri57EngCuAl8ITNnBzD3RFrcVVgaguXC4G6FutXJlsK3gD3LLP+3zJyuPhaDsAPYB9xX3ea5iFjTr2G1YPfG6RV/6N2CULdW3FLIzFciYmuHX28vcDQzrwHvRMQ5YCfwX11PqLbabTks8oCkutHLgcbPR8TngDngy5n5PrAJ+O+W61yolmmAWn/gBxGI2UvzRmWCdHug8evAvcA0cBn42mq/QEQciIi5iJi7zrUuxxiecdocb/23zF6aX/bjdrfReOsqCpl5JTNvZuYfgG+wsIsAcBHY0nLVzdWy5b7G4cycycyZtUx1M8ZQLf4nLu1+aJqi09/onf47lgZE46+r3YeI2JCZl6uznwFOVqePAf8REc8CG4HtwKs9T9kQK+3DN0Uv/wvV0qi42zB5OnlK8gXgIeCeiLgAfBV4KCKmgQTOA/8AkJmnIuJF4DRwAziYmTcHM3p9RuEHZbkZlzs2sNzTm6Pw79PgRGbWPQN/Fuvy/thV9xgTzyCMt+P53dczc2al6/mKRv2RQRAYBUlLGAVJBaOgjjT9GRf1j1FQRzzeMDmMgqSCUZBUMAqSCkZBUsEoSCoYBUkFoyCpYBQkFYyCpIJRkFQwCpIKRkFSwShIKhgFSQWjIKlgFCQVjIKkglGQVDAKkgpGQVLBKEgqGAVJBaMgqWAUJBWMgqSCUZBUMAqSCkZBUsEoSCoYBUkFo9Cj2UvzxWdp1K0YhYjYEhE/jojTEXEqIr5YLV8XET+KiLPV54+03ObJiDgXEWciYvcg/wF1271xugiDcdCo62RL4Qbw5czcAfwVcDAidgCHgBOZuR04UZ2numwfcB+wB3guItYMYvim2L1xmt0bp+seQ+qLFaOQmZcz82fV6Q+At4BNwF7gSHW1I8Bj1em9wNHMvJaZ7wDngJ39HlyTxS2w4VnVMYWI2Ap8HPgpsD4zL1cXvQesr05vAt5tudmFatnYW9xi8AHcf26JDU/HUYiIDwPfA76Umb9rvSwzE8jV3HFEHIiIuYiYu8611dy08XwAa5R1FIWIWMtCEL6dmd+vFl+JiA3V5RuAq9Xyi8CWlptvrpYVMvNwZs5k5sxaprqdX1KfdfLsQwDfBN7KzGdbLjoG7K9O7wdealm+LyKmImIbsB14tX8jSxqkTrYU/hr4O+BvI2K++ngUeAZ4OCLOAp+szpOZp4AXgdPAD4GDmXlzINOPCI8xaJTcsdIVMvMnQLS5eFeb2zwNPN3DXJJq4isah8ADjxolRkFSwShIKhgFSQWjIKlgFCQVjIKkglEYIv8gi0aBUaiBr1tQkxmFIfOvM6npjIKkglHQRHOr7VZGQRPPMJSMQg080KgmMwo18beTmsooSCoYhZq4C6GmMgqaeAa6ZBSGzAdgs/j9uJVRkFQwCpIKRmGI3FTVKDAKkgpGQVLBKEgqGAVJBaMgqWAUhsw3QqnpjIKkglGogX+nUU1mFGriC5nUVEahJm4pqKkiM+uegYj4NfC/wG/qnmWV7sGZh2HUZm7qvH+RmR9d6UqNiAJARMxl5kzdc6yGMw/HqM08avMu5e6DpIJRkFRoUhQO1z1AF5x5OEZt5lGbt9CYYwqSmqFJWwqSGqD2KETEnog4ExHnIuJQ3fO0ExHnI+LnETEfEXPVsnUR8aOIOFt9/kjNMz4fEVcj4mTLsrYzRsST1Xo/ExG7GzTzUxFxsVrX8xHxaMNm3hIRP46I0xFxKiK+WC1v9LruWGbW9gGsAX4J3AvcCbwB7KhzptvMeh64Z8myfwUOVacPAf9S84wPAp8ATq40I7CjWt9TwLbq+7CmITM/BfzTMtdtyswbgE9Up+8GflHN1uh13elH3VsKO4Fzmfl2Zv4eOArsrXmm1dgLHKlOHwEeq3EWMvMV4LdLFrebcS9wNDOvZeY7wDkWvh9D1Wbmdpoy8+XM/Fl1+gPgLWATDV/Xnao7CpuAd1vOX6iWNVECxyPi9Yg4UC1bn5mXq9PvAevrGe222s3Y9HX/+Yh4s9q9WNwMb9zMEbEV+DjwU0Z3XRfqjsIoeSAzp4FHgIMR8WDrhbmwndjop3JGYcbK11nYpZwGLgNfq3ec5UXEh4HvAV/KzN+1XjZC6/oWdUfhIrCl5fzmalnjZObF6vNV4AcsbP5diYgNANXnq/VN2Fa7GRu77jPzSmbezMw/AN/g/ze1GzNzRKxlIQjfzszvV4tHbl0vp+4ovAZsj4htEXEnsA84VvNMt4iIuyLi7sXTwKeAkyzMur+62n7gpXomvK12Mx4D9kXEVERsA7YDr9Yw3y0Wf7Aqn2FhXUNDZo6IAL4JvJWZz7ZcNHLrell1H+kEHmXh6O0vga/UPU+bGe9l4ejxG8CpxTmBPwdOAGeB48C6mud8gYXN7ess7Lc+cbsZga9U6/0M8EiDZv534OfAmyz8QG1o2MwPsLBr8CYwX3082vR13emHr2iUVKh790FSwxgFSQWjIKlgFCQVjIKkglGQVDAKkgpGQVLh/wBIrh1f8jIJ1AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b3612322978>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADVRJREFUeJzt3V2IXPd9h/HnW0WWSeKAVadCkUUtg1qwS6uExS40hBQ3sWMKcm6MclF0YapeuGkC7YWcXDQ3gbSQ9C4Bh5iIkto1Tox1YbLYImAKJbYcNrZk17biF6wXW0kTiGlBsZVfL/ZsPX9Zq32Z17N6PrDsmTNndn8e7Tw+58zsbKoKSVryO9MeQNJsMQqSGkZBUsMoSGoYBUkNoyCpMbYoJLktyQtJTiQ5OK7vI2m0Mo7XKSTZBLwIfAo4CTwFfK6qnhv5N5M0UuPaU7gJOFFVL1fVb4AHgL1j+l6SRuh9Y/q6O4DXBy6fBG5ebuMrsqWu5ANjGmV4f/DH/8uLz7x/2mNIQ3mLX/2iqj680nbjisKKkhwADgBcyfu5ObdMa5QVzc8vcOtH9kx7DGkoj9dDr61mu3EdPpwCdg5cvrZb9/+q6t6qmququc1sGdMYo2EQdDkZVxSeAnYn2ZXkCmAfcHhM30vSCI3l8KGq3knyt8A8sAm4r6qOj+N7SRqtsZ1TqKpHgUfH9fUljYevaJTUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpMaGiML86QXmTy9MewxpQ9gQUfAXlqTR2RBRAMMgjcqGiYKk0TAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRSkDWJUbzRkFKQNZBRhMArSBjKKNxsyCtIGMap3HzMKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqTG+4a5cZJXgbeA88A7VTWXZCvw78B1wKvAnVX1q+HGlDQpo9hT+POq2lNVc93lg8CRqtoNHOkuS+qJcRw+7AUOdcuHgDvG8D0kjcmwUSjg8SRPJznQrdtWVWe65TeAbUN+D0kTNNQ5BeDjVXUqye8BjyX5r8Erq6qS1MVu2EXkAMCVvH/IMSSNylB7ClV1qvt8FngYuAl4M8l2gO7z2WVue29VzVXV3Ga2DDOGpBFadxSSfCDJVUvLwKeBY8BhYH+32X7gkWGHlDQ5wxw+bAMeTrL0df6tqn6Y5CngwSR3Aa8Bdw4/pqRJWXcUqupl4E8usv6/gVuGGUrS9PiKRkkNoyCpYRQkNXodhVG9pbWkd/U6CqN6o0pJ7+p1FCSNnlGQ1DAKkhpGQVLDKEhqGAVJDaMwIb6mQn1hFC7BB7IuR0ZhGfOnF3xxlC5LRmEZBkGXK6MgqWEUJDWMgqRGr6PgswOzx3+T/uttFJZ++PwhnD3+m/Rbb6PgswOzyX+X/uttFODdH8D50wu9+L9TH2YcBcPQb8P+2bip68sPYF/mlHq9pyBp9IyCpIZRGLO+nO+QlhgFSQ2jMCHuLagvjMKE+OyD+sIojNngaymkPjAKkhpGQVLDKEhqGIUx81yC+sYojJnPOqhvjMIEudegPlgxCknuS3I2ybGBdVuTPJbkpe7z1QPX3ZPkRJIXktw6rsEljcdq9hS+C9x2wbqDwJGq2g0c6S6T5AZgH3Bjd5tvJtk0smkljd2KUaiqJ4BfXrB6L3CoWz4E3DGw/oGqOldVrwAngJtGNKukCVjvOYVtVXWmW34D2NYt7wBeH9juZLdOUk8MfaKxqgqotd4uyYEkR5McfZtzw44haUTWG4U3k2wH6D6f7dafAnYObHdtt+49qureqpqrqrnNbFnnGJJGbb1ROAzs75b3A48MrN+XZEuSXcBu4MnhRuy/pdcq+JoF9cFqnpK8H/hP4A+TnExyF/A14FNJXgL+ortMVR0HHgSeA34I3F1V58c1fN/4OgX1QRZPCUzXh7K1bs4t0x5DmhlL/wNZ697l/OmFZW/zeD30dFXNrfQ1ev8W79JGstq9yXHudRoFaYas57zTqM9VGYUJudRunbRW4/xZ8heiJsQgqC+MgqSGUZDUMAqSGkZBUsMoSGoYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ3fT0Frcql3/PHXwzcGo6A1WXrg+6YxG5eHD1oXg7BxGQVJDaMgqWEUtCbzpxf8ozYbnFG4BH/4W+v9AyXqF599uIRbP7LHB8IA74PLg1FYgQ8EXW6MwgQMHoYYGc06ozABhkB94onGHvNEqMbBKPTcsE8R+hSjLmQUemzwsMQHtkbFcwobyHpOaF4YFs9/yD2Fnlt6EF/4YL7UnsPSdRduYxAE7ilsCIMP5sEXXK0mDNKFjMIGsp5DBl0e5k8vsGn76rZdMQpJ7gP+EjhbVX/UrfsK8NfAz7vNvlRVj3bX3QPcBZwH/q6q5tc4v4bkg14XWvyZOLGqbVdzTuG7wG0XWf8vVbWn+1gKwg3APuDG7jbfTLJpVZNImgkrRqGqngB+ucqvtxd4oKrOVdUrLKbppiHmkzRhwzz78PkkzyS5L8nV3bodwOsD25zs1knqifVG4VvA9cAe4Azw9bV+gSQHkhxNcvRtzq1zDEmjtq4oVNWbVXW+qn4LfJt3DxFOATsHNr22W3exr3FvVc1V1dxmtqxnDEljsK4oJBl8cuOzwLFu+TCwL8mWJLuA3cCTw40oaZJW85Tk/cAngWuSnAT+Efhkkj1AAa8CfwNQVceTPAg8B7wD3F1V58czuqRxSFVNewY+lK11c26Z9hjShvZ4PfR0Vc2ttJ2/+yCpYRQkNYyCpIZRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGIVV8K8p6XJiFFbBP66iy4lRkNQwCpIaRkFSwyhIahgFSQ2jIKlhFCQ1jIKkhlGQ1DAKkhpGQVLDKEhqGAVJDaMgqWEUJDWMgqSGUZDUMAqSGkZBUmPFKCTZmeRHSZ5LcjzJF7r1W5M8luSl7vPVA7e5J8mJJC8kuXWc/wGSRms1ewrvAH9fVTcAfwrcneQG4CBwpKp2A0e6y3TX7QNuBG4Dvplk0ziGlzR6K0ahqs5U1U+65beA54EdwF7gULfZIeCObnkv8EBVnauqV4ATwE2jHlzSeKzpnEKS64CPAj8GtlXVme6qN4Bt3fIO4PWBm53s1knqgVVHIckHge8DX6yqXw9eV1UF1Fq+cZIDSY4mOfo259ZyU0ljtKooJNnMYhC+V1U/6Fa/mWR7d/124Gy3/hSwc+Dm13brGlV1b1XNVdXcZrasd35JI7aaZx8CfAd4vqq+MXDVYWB/t7wfeGRg/b4kW5LsAnYDT45uZEnj9L5VbPNnwF8BzyZZ+qOKXwK+BjyY5C7gNeBOgKo6nuRB4DkWn7m4u6rOj3xySWOxYhSq6j+ALHP1Lcvc5qvAV4eYS9KU+IpGSQ2jIKlhFCQ1jIKkhlGYsPnTC8yfXlh5Q2lKjMKE3fqRPQCGQTPLKEhqGAVJDaMgqWEUJDWMwoR5glGzzihMkYHQLDIKE7b0lORaGRBNilHoifXGRForozBFPtA1i4yCpIZRkNRYzduxacQ8bNAsc09BUsMoSGoYBUkNoyCpYRQkNYyCpIZRmLBx/g6Dvx+hUTAKkhpGQVLDKGwgvlJSo2AUpsBjf80yoyCpYRQkNfwtyQnzuF+zLlU17RlI8nPgf4BfTHuWNboGZ56Evs08q/P+flV9eKWNZiIKAEmOVtXctOdYC2eejL7N3Ld5L+Q5BUkNoyCpMUtRuHfaA6yDM09G32bu27yNmTmnIGk2zNKegqQZMPUoJLktyQtJTiQ5OO15lpPk1STPJllIcrRbtzXJY0le6j5fPeUZ70tyNsmxgXXLzpjknu5+fyHJrTM081eSnOru64Ukt8/YzDuT/CjJc0mOJ/lCt36m7+tVq6qpfQCbgJ8B1wNXAD8FbpjmTJeY9VXgmgvW/TNwsFs+CPzTlGf8BPAx4NhKMwI3dPf3FmBX9++waUZm/grwDxfZdlZm3g58rFu+Cnixm22m7+vVfkx7T+Em4ERVvVxVvwEeAPZOeaa12Asc6pYPAXdMcRaq6gnglxesXm7GvcADVXWuql4BTrD47zFRy8y8nFmZ+UxV/aRbfgt4HtjBjN/XqzXtKOwAXh+4fLJbN4sKeDzJ00kOdOu2VdWZbvkNYNt0Rruk5Wac9fv+80me6Q4vlnbDZ27mJNcBHwV+TH/v68a0o9AnH6+qPcBngLuTfGLwylrcT5zpp3L6MGPnWyweUu4BzgBfn+44F5fkg8D3gS9W1a8Hr+vRff0e047CKWDnwOVru3Uzp6pOdZ/PAg+zuPv3ZpLtAN3ns9ObcFnLzTiz931VvVlV56vqt8C3eXdXe2ZmTrKZxSB8r6p+0K3u3X19MdOOwlPA7iS7klwB7AMOT3mm90jygSRXLS0DnwaOsTjr/m6z/cAj05nwkpab8TCwL8mWJLuA3cCTU5jvPZYeWJ3Psnhfw4zMnCTAd4Dnq+obA1f17r6+qGmf6QRuZ/Hs7c+AL097nmVmvJ7Fs8c/BY4vzQn8LnAEeAl4HNg65TnvZ3F3+20Wj1vvutSMwJe7+/0F4DMzNPO/As8Cz7D4gNo+YzN/nMVDg2eAhe7j9lm/r1f74SsaJTWmffggacYYBUkNoyCpYRQkNYyCpIZRkNQwCpIaRkFS4/8AJQiuhTpPC6QAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b361243c588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADcNJREFUeJzt3U2MXXd5x/Hvr8Ex4qVS0lDLcazGVO4iVKpBVqhUhKii4oAqOWwis0BeRHUXKQWpXTiwgE0kWgm6AymICKuipBEviheoVmIhoUoViUEmxElDDEkUvySGgkTUhUnM08WcoffveDwz9/Xc4+9HGt1z/+fcuc8cj3/3Of9z7p1UFZK06vcWXYCkfjEUJDUMBUkNQ0FSw1CQ1DAUJDVmFgpJ7kzybJLTSQ7P6nkkTVdmcZ1CkuuAnwB/BZwBngA+WlVPT/3JJE3VrDqF24HTVfWzqvoN8BCwf0bPJWmK3jSj77sDeGnk/hngvWttfH221pt564xKkQTwKr/6RVW9Y73tZhUK60pyCDgE8Gbewntzx6JKka4Jj9U3XtzIdrM6fDgL7By5f0s39jtV9UBV7a2qvVvYOqMyJG3WrELhCWB3kl1JrgcOAEdn9FySpmgmhw9V9XqSvwOOAdcBD1bVqVk8l6Tpmtl1ClX1nar6k6r646q6f1bPo8U5du7kokvQDHhFo8ZiIAyXoSCpYShIahgKGtu+m/csugTNgKGgiTi3MDyGgqSGoaCx7Lt5D8fOnfQQYoAMBY3NQBgmQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBY3NS5yHyVCQ1DAUNBG7heExFDQRL3UeHkNBE7FTGB5DQWNZDQM7heFZ2F+I0nIzDIbLTkFSw1CQ1DAUJDUMBU3Esw/DYyhoIk44Do+hIKlhKEhqGAqayDLOKSxjzfNkKOiaYiCsz1DQNclwWJuXOWsiy3b2YdnqXQQ7BU3EV9zhMRQ0EV95h8dQkNSYaE4hyQvAq8Al4PWq2pvkRuDfgVuBF4C7q+pXk5UpaV6m0Sn8ZVXtqaq93f3DwPGq2g0c7+5rwJxXGJZZHD7sB450y0eAu2bwHOoR5xWGZdJQKOCxJD9Icqgb21ZV57vll4FtEz6HpDma9DqF91XV2SR/CDya5L9HV1ZVJakrPbALkUMAb+YtE5YhaVom6hSq6mx3ewH4NnA78EqS7QDd7YU1HvtAVe2tqr1b2DpJGZKmaOxQSPLWJG9fXQY+CDwFHAUOdpsdBB6ZtEhJ8zPJ4cM24NtJVr/Pv1XVfyR5Ang4yT3Ai8Ddk5cpaV7GDoWq+hnwZ1cY/x/gjkmKkrQ4XtEoqWEoSGoYCpIahoKkhqEgqWEoSGoYCpvkOwI1dIbCJhgIuhYYCpuw7+Y9vk14DQbmcBgKkhqGgqSGoaCp8LBqOAwFTYVzCsNhKGhsx86d/F0Y2CkMh6GgsdgZDJehoE0zEIbNUNCmXB4IHjYMj6GgTRkNAQNhmPxT9No0w2DY7BQkNQwFSY3Bh8IiZsqdndcyG3QoGAjS5g06FJwQkzZv0KHgq7a0eYM+JWmnIG3eoDuFeRvtTOxStJa+/24YClPk1X7aiNXfjb6Gg6GgqerrL3of9fWFw1CYsr7+Q0sbZShoqgzF5WcoTJnts5adoTBFBoKGwFCYAVtoLTNDQVLDUJDUWDcUkjyY5EKSp0bGbkzyaJLnutsbRtbdl+R0kmeT7JtV4X3m3IKW2UY6ha8Cd142dhg4XlW7gePdfZLcBhwA3tU95otJrptatUvCOQUts3VDoaq+B/zysuH9wJFu+Qhw18j4Q1V1saqeB04Dt0+p1t4zDDQE484pbKuq893yy8C2bnkH8NLIdme6sWuGwaBlN/FEY1UVUJt9XJJDSU4kOfEaFyctozecT9CyGzcUXkmyHaC7vdCNnwV2jmx3Szf2BlX1QFXtraq9W9g6Zhn9Y6egZTduKBwFDnbLB4FHRsYPJNmaZBewG3h8shIlzdO6n7yU5OvAB4CbkpwBPgN8Dng4yT3Ai8DdAFV1KsnDwNPA68C9VXVpRrVLmoF1Q6GqPrrGqjvW2P5+4P5JipK0OF7RKKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpMag/5bkLI2+8cn3O2hI7BQkNewUJmCHoCGyUxjDsXMnDQQNlqEwBgNBQ+bhg6bmSp86ZYAuHzsFSQ1DQTNjl7CcPHxYw+WtsL/g6xvdR36A7fIyFNYwzxAY4oVQQ/k5rkUePvSMr7BaNEOhB3xVVZ8YCj107NxJOwYtjKHQE3YL6gtDoUf23bzHcNDCefahhwwGLZKdgqSGoSCpYShIahgKS8JTlJoXQ2EJrH6oi9cvaB48+7AEVs9GeFZC82CnIKlhKEhqGAqSGs4pDIQfCqNpsVO4imWZ6b9SnZ6p0LjsFAZg9XTlWq72KctX+9Qn/77FtSlVdfUNkgeBvwYuVNWfdmOfBf4G+Hm32aeq6jvduvuAe4BLwN9X1bH1ivj93FjvzR3j/gxaw7idgkEwTI/VN35QVXvX224jhw9fBe68wvi/VNWe7ms1EG4DDgDv6h7zxSTXbbxsTdNa1zdc6S3aq2MGgtY9fKiq7yW5dYPfbz/wUFVdBJ5Pchq4HfivsSvURK524ZMBoCuZZKLx40meTPJgkhu6sR3ASyPbnOnGJC2JcUPhS8A7gT3AeeDzm/0GSQ4lOZHkxGtcHLMMSdM2VihU1StVdamqfgt8mZVDBICzwM6RTW/pxq70PR6oqr1VtXcLW8cpQ9IMjBUKSbaP3P0I8FS3fBQ4kGRrkl3AbuDxyUqUNE/rTjQm+TrwAeCmJGeAzwAfSLIHKOAF4G8BqupUkoeBp4HXgXur6tJsSpc0C+tepzAPXqcgzd40r1OQdA0xFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNhQn5isobGUJiQH2mmoTEUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBS09PxJvut606AKkcRkGs2GnoKXn52ROl6EgqeHhg5bSsXMn7RBmxE5BS8lAmJ11QyHJziTfTfJ0klNJPtGN35jk0STPdbc3jDzmviSnkzybZN8sf4A+ceJr9tzHs7eRTuF14B+q6jbgz4F7k9wGHAaOV9Vu4Hh3n27dAeBdwJ3AF5NcN4vi+8ZXr9lzH8/euqFQVeer6ofd8qvAM8AOYD9wpNvsCHBXt7wfeKiqLlbV88Bp4PZpF36t8RVS87KpOYUktwLvBr4PbKuq892ql4Ft3fIO4KWRh53pxjQBXyE1LxsOhSRvA74JfLKqfj26rqoKqM08cZJDSU4kOfEaFzfzUEkztKFQSLKFlUD4WlV9qxt+Jcn2bv124EI3fhbYOfLwW7qxRlU9UFV7q2rvFraOW7+kKdvI2YcAXwGeqaovjKw6Chzslg8Cj4yMH0iyNckuYDfw+PRKljRLG7l46S+AjwE/TrI62/Up4HPAw0nuAV4E7gaoqlNJHgaeZuXMxb1VdWnqlUuaiXVDoar+E8gaq+9Y4zH3A/dPUJfUe0O9qtIrGufEU4rDM8RAAENB0mUMhTkZ6quKhsdQkNQwFObMuQX1naEgqWEozJFdgpaBoTBHTjZqGRgKc2SnoGVgKMzRaqdgOKjPDIUF8DBCfWYoLICdgvrMUFgAOwX1maEgqWEozJldgvrOUJDUMBQkNQyFOfPMg/rOUJDUMBQkNQyFOfPsg/rOUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUFhSvodCs2IoSGoYCkvs2LmTdgyaulTVomsgyc+B/wV+sehaNukmrHkelq3mvtb7R1X1jvU26kUoACQ5UVV7F13HZljzfCxbzctW7+U8fJDUMBQkNfoUCg8suoAxWPN8LFvNy1ZvozdzCpL6oU+dgqQeWHgoJLkzybNJTic5vOh61pLkhSQ/TnIyyYlu7MYkjyZ5rru9YcE1PpjkQpKnRsbWrDHJfd1+fzbJvh7V/NkkZ7t9fTLJh3tW884k303ydJJTST7Rjfd6X29YVS3sC7gO+CnwTuB64EfAbYus6Sq1vgDcdNnYPwOHu+XDwD8tuMb3A+8BnlqvRuC2bn9vBXZ1/w7X9aTmzwL/eIVt+1LzduA93fLbgZ90tfV6X2/0a9Gdwu3A6ar6WVX9BngI2L/gmjZjP3CkWz4C3LXAWqiq7wG/vGx4rRr3Aw9V1cWqeh44zcq/x1ytUfNa+lLz+ar6Ybf8KvAMsIOe7+uNWnQo7ABeGrl/phvrowIeS/KDJIe6sW1Vdb5bfhnYtpjSrmqtGvu+7z+e5Mnu8GK1De9dzUluBd4NfJ/l3deNRYfCMnlfVe0BPgTcm+T9oytrpU/s9amcZaix8yVWDin3AOeBzy+2nCtL8jbgm8Anq+rXo+uWaF+/waJD4Sywc+T+Ld1Y71TV2e72AvBtVtq/V5JsB+huLyyuwjWtVWNv931VvVJVl6rqt8CX+f9Wuzc1J9nCSiB8raq+1Q0v3b6+kkWHwhPA7iS7klwPHACOLrimN0jy1iRvX10GPgg8xUqtB7vNDgKPLKbCq1qrxqPAgSRbk+wCdgOPL6C+N1j9j9X5CCv7GnpSc5IAXwGeqaovjKxaun19RYue6QQ+zMrs7U+BTy+6njVqfCcrs8c/Ak6t1gn8AXAceA54DLhxwXV+nZV2+zVWjlvvuVqNwKe7/f4s8KEe1fyvwI+BJ1n5D7W9ZzW/j5VDgyeBk93Xh/u+rzf65RWNkhqLPnyQ1DOGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIavwf2VHwE8oyGzgAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b36123d8748>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADfRJREFUeJzt3U+sHXd5xvHvU+MYFVIpaZDlOFZjJG+SRQ26CpWKEFUKDtk4bCKzqLyI5C5SBFK7cMoCNpFoJegOVCMirAqRRvxRLBXVSiykiA2JQSaJE5kYEhQ7TlwKElEXJjFvF3cunHHu9f135szMPd+PdHXm/GbOOW8mPs99fzNzzk1VIUlL/qTvAiQNi6EgqcVQkNRiKEhqMRQktRgKklo6C4Uk9yQ5l+R8kqNdvY6k6UoX1ykk2Qb8DPgYcAF4BvhUVb0w9ReTNFVddQp3Aeer6hdV9TvgUeBgR68laYre1dHz7gZenbh/AfjQShvfkB31bt7TUSmSAN7kN7+qqvettl1XobCqJEeAIwDv5k/5UO7uqxRpLjxZ3/7lWrbravpwEdgzcf+2ZuwPqupYVS1U1cJ2dnRUhqT16ioUngH2Jdmb5AbgEHCio9eSNEWdTB+q6u0k/wCcBLYBj1TV2S5eS9J0dXZMoaq+D3y/q+eX1A2vaJS2iJOvnZnK8xgK0hZx4Nb9U3keQ0HaAqbVJYChII3eUiA4fZDUCUNBGrFpThuWGArSFuGBRkmdMBSkKTj52plOWvk+GArSiE1ryjDJUJA2aalD6OINuhbTfl1DQerZNKYe0wwGQ0HahL67hC709s1L0phtlYOKy7FTkAZiKEFjKEibtJWmDmAoSJsyjUBY73N03VF4TEHagGl2B+t5k89iimGnIPXswK37BzUFMRSkEZlFeBgK0kCs5w3f5TTCUJAGwlOSklrW0yl0OY0wFCS1GAqSWgwFaWS6PgNhKEhqMRQktRgKkloMBUkthoKkFkNBUouhIKnFUJDUYihIajEUpGUs/S2GWX9ycQiflNzU17EleQV4E7gKvF1VC0luBv4TuB14Bbi/qn6zuTKl+TCEb2CaRqfwN1W1v6oWmvtHgVNVtQ841dyXpmIIv0m3ui6mDweB483yceC+Dl5Dc2rWv0mH8Jt71jb7bc4FPJnkKvDvVXUM2FlVl5r1rwM7N/ka0szNYxgs2Wyn8OGq2g98AngwyUcmV1ZVsRgc75DkSJLTSU6/xZVNliHNn66mUpsKhaq62NxeBr4H3AW8kWQXQHN7eYXHHquqhapa2M6OzZQhzaWuupkNh0KS9yS5cWkZ+DjwPHACONxsdhh4fLNFSpqdzXQKO4EfJvkp8DTwX1X138AXgY8leQn42+b+oHgEW1tBV9dRbPhAY1X9AvjLZcb/F7h7M0V1bZ4PImltJt9s8/bvxSsaJbUYCtKIddHFGAqSWgwFSS2GgnQd83aQEQwFaUXzGAhgKEjLmtdAAENBGrUuLl4yFKSBWc8b3VOSkjpnKEgDs9bf/oP7lKSkrclQkNRiKEhqMRQktRgKkloMBUkthoKkFkNBUouhIKnFUJDUYihIajEUJLUYCpJaDAVJLYaCpBZDQVKLoSDN2ND/wLGhIKnFUJBmaOhdAhgK0kyN4e9JGArSDJ187czgg8FQkGZo6IEAhoI0MydfOzOKYwrv6rsAaasbQxBMMhSkGRnD1AHWMH1I8kiSy0menxi7OckTSV5qbm+aWPdQkvNJziU50FXh0hgsdQljCQRY2zGFbwD3XDN2FDhVVfuAU819ktwBHALubB7zlSTbplatNDIHbt0/qkCANYRCVT0F/Pqa4YPA8Wb5OHDfxPijVXWlql4GzgN3TalWSTOw0bMPO6vqUrP8OrCzWd4NvDqx3YVmbO6M7eCStGTTpySrqoBa7+OSHElyOsnpt7iy2TIGZ2wto7Rko6HwRpJdAM3t5Wb8IrBnYrvbmrF3qKpjVbVQVQvb2bHBMiRN20ZD4QRwuFk+DDw+MX4oyY4ke4F9wNObK1HzbmkqNpaLf8Zu1esUknwL+ChwS5ILwOeBLwKPJXkA+CVwP0BVnU3yGPAC8DbwYFVd7aj2QRvDNe5jsbQf3Z+zsWooVNWnVlh19wrbPww8vJmitgqDQWPkZx86YhhorAyFDh24db9zYI2OodAxOwaNjaHQIY+W98f9vnF+SrJDdgn9cd9vnJ2CtiQ7hY0zFLQl2SlsnKEgqcVQkNRiKEhqMRQktRgKkloMBUkthoKkFkNBUouhIKnFUJDUYihIajEUNFN+nHz4DAVJLYaCpBZDQXPH6cv1GQqaSwbDygwFzZRffjJ8hoJ60fdvasNpZYaC5o6BcH2GQoc8J3997pth8iveO+A/do2ZnUIHbE81ZoZCByY7BQNCY2ModMhA0Bh5TKEDhsHauJ+GyU5BUoudgmbODmHY7BRmyFOVGgNDYUYMBI3FqqGQ5JEkl5M8PzH2hSQXk5xpfu6dWPdQkvNJziU50FXhY2PLrLFYS6fwDeCeZcb/rar2Nz/fB0hyB3AIuLN5zFeSbJtWsZK6t2ooVNVTwK/X+HwHgUer6kpVvQycB+7aRH1bit2CxmAzxxQ+neTZZnpxUzO2G3h1YpsLzZikkdhoKHwVeD+wH7gEfGm9T5DkSJLTSU6/xZUNliFp2jYUClX1RlVdrarfA1/jj1OEi8CeiU1va8aWe45jVbVQVQvb2bGRMiR1YEOhkGTXxN1PAktnJk4Ah5LsSLIX2Ac8vbkSJc3Sqlc0JvkW8FHgliQXgM8DH02yHyjgFeDvAarqbJLHgBeAt4EHq+pqN6VL6kKqqu8a+LPcXB/K3X2XIW1pT9a3f1xVC6tt5xWNkloMBUkthoKkFkNBUouhMCB+JbyGwFAYkKXPRhgO6pOhMDB+aEp9MxQGzG5BfTAUBs6phGbNUBigA7fuf8c0wnDQrBgKA7ZcOEhd8yveR8Bg0CzZKUhqMRQktTh9kH8lWy12CnPOQNC17BTm0HKnNg0ELTEU5sD1rm/oOgyufW3DZ/gMhTngG1Hr4TEFzZRXZQ6foSCpxVDQzNktDJuhoE4tdzzDYxzDZihIajEU1Dk7g3ExFDQTS8FgQAyfoaCZMRDGwVCQ1GIoSGoxFCS1GAqSWgwFSS2GgqQWQ0FSi6EgqcVQkNSyaigk2ZPkB0leSHI2yWea8ZuTPJHkpeb2ponHPJTkfJJzSQ50+R8gabrW0im8DfxjVd0B/BXwYJI7gKPAqaraB5xq7tOsOwTcCdwDfCXJti6KlzR9q4ZCVV2qqp80y28CLwK7gYPA8Waz48B9zfJB4NGqulJVLwPngbumXbikbqzrmEKS24EPAD8CdlbVpWbV68DOZnk38OrEwy40Y5JGYM2hkOS9wHeAz1bVbyfXVVUBtZ4XTnIkyekkp9/iynoeKqlDawqFJNtZDIRvVtV3m+E3kuxq1u8CLjfjF4E9Ew+/rRlrqapjVbVQVQvb2bHR+iVN2VrOPgT4OvBiVX15YtUJ4HCzfBh4fGL8UJIdSfYC+4Cnp1eypC6t5Y/B/DXwd8BzSZa+hvefgS8CjyV5APglcD9AVZ1N8hjwAotnLh6sqqtTr1xSJ1YNhar6IZAVVt+9wmMeBh7eRF2SeuIVjZJaDAVJLYaCpBZDQVKLoSCpxVCQ1GIoSGoxFCS1rOWKxrl08rUzf1j2z51pntgpSGoxFFYw2R1Mdg0aDv+/dMNQ0CgtBYLBMH2GwnXYLWgeGQqr8CCj5o1nH9bAYNA8sVNYI6cPw2RgT5+hsEb+4xsmw3r6DAWNjheWdctQ0KgYCN0zFDRKBkJ3DAWNxlKXYCB0y1DQqBgI3TMUNHh2CLNlKGgUPPU4O4aCBs0uYfYMBQ3WydfOGAY9MBQ0aAbD7PmBKA2OFyj1y05Bg2Ug9MNQ0KB4YLF/hoKkFkNBg2OX0K9UVd81kOR/gP8DftV3Let0C9Y8C2Oreaj1/kVVvW+1jQYRCgBJTlfVQt91rIc1z8bYah5bvddy+iCpxVCQ1DKkUDjWdwEbYM2zMbaax1Zvy2COKUgahiF1CpIGoPdQSHJPknNJzic52nc9K0nySpLnkpxJcroZuznJE0leam5v6rnGR5JcTvL8xNiKNSZ5qNnv55IcGFDNX0hysdnXZ5LcO7Ca9yT5QZIXkpxN8plmfND7es2qqrcfYBvwc+D9wA3AT4E7+qzpOrW+Atxyzdi/Akeb5aPAv/Rc40eADwLPr1YjcEezv3cAe5v/D9sGUvMXgH9aZtuh1LwL+GCzfCPws6a2Qe/rtf703SncBZyvql9U1e+AR4GDPde0HgeB483yceC+Hmuhqp4Cfn3N8Eo1HgQeraorVfUycJ7F/x8ztULNKxlKzZeq6ifN8pvAi8BuBr6v16rvUNgNvDpx/0IzNkQFPJnkx0mONGM7q+pSs/w6sLOf0q5rpRqHvu8/neTZZnqx1IYPruYktwMfAH7EePd1S9+hMCYfrqr9wCeAB5N8ZHJlLfaJgz6VM4YaG19lcUq5H7gEfKnfcpaX5L3Ad4DPVtVvJ9eNaF+/Q9+hcBHYM3H/tmZscKrqYnN7Gfgei+3fG0l2ATS3l/urcEUr1TjYfV9Vb1TV1ar6PfA1/thqD6bmJNtZDIRvVtV3m+HR7evl9B0KzwD7kuxNcgNwCDjRc03vkOQ9SW5cWgY+DjzPYq2Hm80OA4/3U+F1rVTjCeBQkh1J9gL7gKd7qO8dlt5YjU+yuK9hIDUnCfB14MWq+vLEqtHt62X1faQTuJfFo7c/Bz7Xdz0r1Ph+Fo8e/xQ4u1Qn8OfAKeAl4Eng5p7r/BaL7fZbLM5bH7hejcDnmv1+DvjEgGr+D+A54FkW31C7Blbzh1mcGjwLnGl+7h36vl7rj1c0Smrpe/ogaWAMBUkthoKkFkNBUouhIKnFUJDUYihIajEUJLX8PwN8CqZbvMR2AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b36124e16d8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADd1JREFUeJzt3V+IXOd9xvHvU1eWSeKCXadClkWtgHrhXFQJi3PREFJMI8c3Sm6MclFUMKgXbkighcjNRXJjSAtJ7xJwiIkoaVyTP1gXocY2KaFQYstBcSy7ihX/wZJlq2kCMb1QbOfXiz1bz5F2vbO7c/acM/P9wDJn3jkz89uznGff875nzqSqkKQVv9d3AZKGxVCQ1GIoSGoxFCS1GAqSWgwFSS2dhUKS25OcSXI2ybGu3kfSbKWL8xSSXAX8HPgL4BzwBPCpqnpm5m8maaa66incCpytquer6rfAA8Chjt5L0gz9fkevuwd4eeL+OeBDa618dXbWNby7o1IkAbzOr39ZVe9db72uQmFdSY4CRwGu4V18KLf1VYq0EB6t77w0zXpdHT6cB/ZO3L+paft/VXVfVS1V1dIOdnZUhqSN6ioUngD2J9mX5GrgMHCio/eSNEOdHD5U1ZtJ/gZ4GLgKuL+qTnfxXpJmq7Mxhar6AfCDrl5fUjc8o1FSi6EgqcVQkNRiKEhqMRQktRgKkloMBUkthoKkFkNBUouhIKnFUJDUYihIajEUVvHwK6f6LkHqjaGwBoNBi8pQWMXBGw/0XYLUG0NhDQaDFlVvF24dsslDB8NBi8ZQWIVBoEXm4YOkFkNBUouhIG3CPE9ZGwrSlC4PgnkNBkNBmsJKAKzcHrzxwNwOSBsK0gbMaxBMMhSkKS1CIIChIE1lUQIBDAVpNLZrYNNQkNRiKEhTGMr043bUYShI6xhKIMD2jG0YCpJaDAVpRDx8kLTtDAVpSn2PLWzXqdWGgjSlRTmByVCQ1LKly7EleRF4HXgLeLOqlpJcD/wrcDPwInBnVf16a2VK/VmUHsKKWfQU/ryqDlTVUnP/GPBYVe0HHmvuSxqJLg4fDgHHm+XjwCc6eA9JHdlqKBTwaJInkxxt2nZV1YVm+VVg1xbfQ9I22uol3j9cVeeT/BHwSJL/mnywqipJrfbEJkSOAlzDu7ZYhqRZ2VJPoarON7cXge8DtwKvJdkN0NxeXOO591XVUlUt7WDnVsqQNEObDoUk705y7coy8DHgaeAEcKRZ7Qjw0FaLlLR9tnL4sAv4fpKV1/mXqvq3JE8ADya5C3gJuHPrZUraLpsOhap6HvjTVdr/B7htK0VJfZm8WvOi8oxGqdH3ZxuGwlCQMBAmGQqSWgwFibfHEOb5m5+mZShIXPm1cItsq2c0SnNh0XsHk+wpSGoxFCS1GAqSWgwFqeEg4zJDQaPnzjxbhoJGbxYzBwbL2wwFCackJxkKUsNgWGYoSGoxFCS1GAqSWgwFSS2GgqQWQ0FSi6GgheeJS22GghaagXAlQ0HCcJhkKEhqMRQktRgKkloMBUkthoKEn5CcZChooRkGVzIUJJySnGQoSGoxFKSGvYVlhoKkFkNBC22yd+Cg4zJDQQvNILiS3zqthWcwtK3bU0hyf5KLSZ6eaLs+ySNJnmtur5t47J4kZ5OcSXKwq8K1eB5+5ZSDgdtgmsOHbwK3X9Z2DHisqvYDjzX3SXILcBh4f/Ocrya5ambVSjhL0LV1Dx+q6kdJbr6s+RDw0Wb5OPDvwOea9geq6hLwQpKzwK3Af86mXC0yu/nbY7MDjbuq6kKz/Cqwq1neA7w8sd65pk3SSGx59qGqCqiNPi/J0SQnk5x8g0tbLUPSjGw2FF5Lshugub3YtJ8H9k6sd1PTdoWquq+qlqpqaQc7N1mGpFnbbCicAI40y0eAhybaDyfZmWQfsB94fGslStpO6w40Jvk2y4OKNyQ5B3wB+BLwYJK7gJeAOwGq6nSSB4FngDeBu6vqrY5ql9SBaWYfPrXGQ7etsf69wL1bKUpSfzzNWVKLoSCpxVCQ1GIoSGoxFCS1GAqSWgyFDvgRX42ZoSCpxVDogB/x1ZgZCh14+JVTBoNGy1DoiGMKGitDoQP2EjRmhkJHDAaNlaEgqcVQkNRiKEhqMRQ65AyExshQkNRiKHTM3oLGxlCQ1GIodMQegsbKUOiAgaAxMxQktRgKHfN05/mxKBfPMRQ6YBDMp4M3HliIv62h0IFF+G+i+WUodGgR/qto/qz7XZLaOMNAY2ZPQVKLoSCpxVCQNmGepycNBWkTVsaN5jEYDAVpk+Z1QNlQkLZgHoPBUJDUYihIalk3FJLcn+Rikqcn2r6Y5HySU83PHROP3ZPkbJIzSQ52VbikbkzTU/gmcPsq7f9UVQeanx8AJLkFOAy8v3nOV5NcNatiJXVv3VCoqh8Bv5ry9Q4BD1TVpap6ATgL3LqF+iRts62MKXw6yVPN4cV1Tdse4OWJdc41bZJGYrOh8DXgfcAB4ALw5Y2+QJKjSU4mOfkGlzZZhqRZ21QoVNVrVfVWVf0O+DpvHyKcB/ZOrHpT07baa9xXVUtVtbSDnZspQ1IHNhUKSXZP3P0ksDIzcQI4nGRnkn3AfuDxrZUoaTutez2FJN8GPgrckOQc8AXgo0kOAAW8CPw1QFWdTvIg8AzwJnB3Vb3VTemSupCq6rsG/iDX14dyW99lSHPt0frOk1W1tN56ntEoqcVQkNRiKEhqMRQktRgKkloMBUkthoKkFkOhJ/N8NWCNm6HQk3m+GrDGza+NG4DJYJjHC4FqXOwp9GhRvtpc42IoSGrx8GEA7C1oSOwpSGoxFCS1GAoD5DkM6pOhMGAGg/rgQOMAOfCoPhkKI7HSa+gzMDzJajEYCiPTZzgYBIvBUBiJgzceuGKM4fL7Xey02/EeGhav5jwyGx18XO+DV5M7+XqvbSCM27RXc7anMDJr7Zhr7dDr7ehdz3A8/MqpVYPHgBkupyQ1lc3uxBsNMfXPUJgTXX3icpavu96YiIbBUJgzW9mJJ5+7XR/rNhiGx1CYUxvdoSfX93h/sTn7oG23Wu/AIOqe3yWpwbo8AAyEYTEU1IvJsQsNi6Gg3qycpelg47AYCurVyiyHwTAchoKkFkNBUouhoEFYhPGFsfxuhoIG4/KZiLHsRNMay0zLuqGQZG+SHyZ5JsnpJJ9p2q9P8kiS55rb6yaec0+Ss0nOJDnY5S+g+bKZMyvnvYex3ab56PSbwN9W1U+SXAs8meQR4K+Ax6rqS0mOAceAzyW5BTgMvB+4EXg0yZ9U1Vvd/ApadGP5DzwW6/YUqupCVf2kWX4deBbYAxwCjjerHQc+0SwfAh6oqktV9QJwFrh11oVL6saGxhSS3Ax8APgxsKuqLjQPvQrsapb3AC9PPO1c0yZpBKYOhSTvAb4LfLaqfjP5WC1/qmpDn6xKcjTJySQn3+DSRp4qqUNThUKSHSwHwreq6ntN82tJdjeP7wYuNu3ngb0TT7+paWupqvuqaqmqlnawc7P1S5qxaWYfAnwDeLaqvjLx0AngSLN8BHhoov1wkp1J9gH7gcdnV7KkLk0z+/BnwF8CP0uyMu/z98CXgAeT3AW8BNwJUFWnkzwIPMPyzMXdzjxI47FuKFTVfwBZ4+FVr4xSVfcC926hrt5MXn348isRS4vAMxovs9pZdZ4Yo0ViKEhq8ctg3oGHDlpE9hQktRgKkloMBUkthoJGz9mh2TIUNBecOp4dQ0Gj53dIzJahoNFb6SHYU5gNQ0FSi6GgUbN3MHuGgqQWQ0Fzw4HG2TAUNDc8lJgNQ0Fzw57CbBgKkloMBUkthoKkFkNBUouhoLngIOPsGAoaNcNg9gwFjZ7BMFuGgqQWQ0FSi6EgqcVQkNRiKEhqMRQktRgKkloMBUkthoKkllRV3zWQ5L+B/wV+2XctG3QD1rwdxlbzUOv946p673orDSIUAJKcrKqlvuvYCGveHmOreWz1Xs7DB0kthoKkliGFwn19F7AJ1rw9xlbz2OptGcyYgqRhGFJPQdIA9B4KSW5PcibJ2STH+q5nLUleTPKzJKeSnGzark/ySJLnmtvreq7x/iQXkzw90bZmjUnuabb7mSQHB1TzF5Ocb7b1qSR3DKzmvUl+mOSZJKeTfKZpH/S2nlpV9fYDXAX8AngfcDXwU+CWPmt6h1pfBG64rO0fgWPN8jHgH3qu8SPAB4Gn16sRuKXZ3juBfc3f4aqB1PxF4O9WWXcoNe8GPtgsXwv8vKlt0Nt62p++ewq3Amer6vmq+i3wAHCo55o24hBwvFk+Dnyix1qoqh8Bv7qsea0aDwEPVNWlqnoBOMvy32NbrVHzWoZS84Wq+kmz/DrwLLCHgW/rafUdCnuAlyfun2vahqiAR5M8meRo07arqi40y68Cu/op7R2tVePQt/2nkzzVHF6sdMMHV3OSm4EPAD9mvNu6pe9QGJMPV9UB4OPA3Uk+MvlgLfcTBz2VM4YaG19j+ZDyAHAB+HK/5awuyXuA7wKfrarfTD42om19hb5D4Tywd+L+TU3b4FTV+eb2IvB9lrt/ryXZDdDcXuyvwjWtVeNgt31VvVZVb1XV74Cv83ZXezA1J9nBciB8q6q+1zSPbluvpu9QeALYn2RfkquBw8CJnmu6QpJ3J7l2ZRn4GPA0y7UeaVY7AjzUT4XvaK0aTwCHk+xMsg/YDzzeQ31XWNmxGp9keVvDQGpOEuAbwLNV9ZWJh0a3rVfV90gncAfLo7e/AD7fdz1r1Pg+lkePfwqcXqkT+EPgMeA54FHg+p7r/DbL3e03WD5uveudagQ+32z3M8DHB1TzPwM/A55ieYfaPbCaP8zyocFTwKnm546hb+tpfzyjUVJL34cPkgbGUJDUYihIajEUJLUYCpJaDAVJLYaCpBZDQVLL/wFIKhYhlISUDAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b36078beeb8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADo1JREFUeJzt3V2sHGd9x/Hvr8Ex4qVS0lDLcaxiKlMpkVqDjpJKRYgqgENuHG6QuUC+QHIvUgRSe+GUi3JjiVaC3oEUBMKqEGnEi2KpiCixkBBSSzDIeXFSE0OCYseJS0EiaiWThH8vzhyyc3KOz8vunJnZ8/1IRzv77Kz379nZ3z7PM7O7qSokackf9F2ApGExFCS1GAqSWgwFSS2GgqQWQ0FSS2ehkOSOJOeSnE9yrKvHkTRb6eI8hSTXAD8FPgBcAH4EfLSqnpz5g0maqa56CrcC56vq51X1W+A+4FBHjyVpht7Q0b+7B3hu4voF4LbVVr42O+uNvLmjUjRG7/zz/+Onj72p7zLmykv8+pdV9ba11usqFNaU5ChwFOCNvInbcntfpWiIHofb0ncR8+Xh+sYv1rNeV8OHi8Deies3NW2/V1X3VtVCVS3sYGdHZWisHnz+TN8lbFtdhcKPgP1J9iW5FjgMnOzosTSHDt54oO8Stq1OQqGqXgH+FngQeAq4v6rOdvFYmk/2FPrT2XkKVfWdqnpnVf1pVR3v6nE0vwyGfnhGowbHMOiXoSCpxVCQRm7WPStDQYPjkYf162KoZShosAyHtXWxjQwFDZKBsH6z3laGgqQWQ0FSi6EgqcVQkNRiKEhqMRQktRgKkloMBWmkHnz+jGc0SlrU5SdJDQVJLYaCBm/pXdHvWdgahoIGz89BbC1DQaMxD+HQxeSg36cgjdgYgs1QkLbYrIPBj05LanH4IKnFnoKkThkK0sg5fJDU4vBB6sAYz5bs6vCmoSAxjvMHJnVZr6EgjZi/+yCpc4aCpBZDQVKLoaBR6fooQVdfcTYmhoK0gu0cDIaCRmVshw7HyFDQ6HT5Lj4ZOtt1KPGGae6c5FngJeBV4JWqWkhyPfBvwNuBZ4GPVNWvpytTek3XvYXt3huZRU/hr6vqQFUtNNePAaeqaj9wqrkuaSS6GD4cAk40yyeAuzp4DGnb6npYM20oFPBwkh8nOdq07aqqS83yC8CuKR9D0haaak4BeE9VXUzyx8BDSf5r8saqqiS10h2bEDkK8EbeNGUZkmZlqp5CVV1sLi8D3wZuBV5Mshuguby8yn3vraqFqlrYwc5pypA0Q5sOhSRvTvLWpWXgg8ATwEngSLPaEeCBaYuU5tnSHMFG5gmG+tHpXcAPkjwKPAL8e1V9F/gs8IEkTwPvb65LWsHyIFhPMBy88UCnE42bnlOoqp8Df7FC+/8At09TlLQdTPPC7rKnMO1Eo6RNWn725PK2vhgK0gAMIQyW+NkHSS2GgqQWQ0FSi6EgbcB2+Ci1oSBtwJAmBLtiKEhqMRQktRgKkloMBUkthoKkFkNBUouhIG3SvJ6zYChImzSv5ywYCpJa/Oi01JHlw4ux9CwMBakj6wmBB58/M7iwcPgg9WhogQCGgqRlDAVJLYaCpBZDQVKLoSCpxVCQ1GIoSGoxFCS1GAqSWgwFSS2GgqQWQ0FSi6EgqcVQkNRiKEhqMRQktRgKklrWDIUkX0lyOckTE23XJ3koydPN5XUTt92T5HySc0kOdlW4pG6sp6fwVeCOZW3HgFNVtR841Vwnyc3AYeCW5j5fSHLNzKqV1Lk1Q6Gqvg/8alnzIeBEs3wCuGui/b6qulJVzwDngVtnVOvgzeuPg2h72eycwq6qutQsvwDsapb3AM9NrHehads2DAaN3dQTjVVVQG30fkmOJjmd5PTLXJm2DEkzstlQeDHJboDm8nLTfhHYO7HeTU3b61TVvVW1UFULO9i5yTIkzdpmQ+EkcKRZPgI8MNF+OMnOJPuA/cAj05U4HkP8Dn9po9ZzSPLrwH8Af5bkQpKPA58FPpDkaeD9zXWq6ixwP/Ak8F3g7qp6tavih8p5BY3Zmj8bV1UfXeWm21dZ/zhwfJqipHkxxJ+FW4tnNM7Y0g5gb0FL+8DY9gVDYcbGtgOoO0tvEGPrKfir0zM2th1A3Rrj/mBPQVKLoSCpxVCYoQefP+OcgkbPUOiA4aAxMxQktXj0YYbGONMsLWdPQVKLoSCpxVCQ1GIoSGoxFCS1GAqSWgwFSS2GgqQWQ0FSi6GgXvjZkOEyFNQbg2GYDAX1ymAYHkNBUouhoF74idLhMhRmzO6wxs5QUG/8jYxhMhQ64E6+fgdvPOBQYmD85qUZcwfX2NlTkNRiKEhqmZtQcBwvzcbchIJjeWk25iYUJM2GoaDBcAg4DIaCBmEpEAyG/hkKkloMhRlY693Ndz+NyZqhkOQrSS4neWKi7TNJLiY50/zdOXHbPUnOJzmX5GBXhQ/Jeo58+EvUq3O7vF6f+8t6egpfBe5Yof1fqupA8/cdgCQ3A4eBW5r7fCHJNbMqdozc4bUZfR5iXzMUqur7wK/W+e8dAu6rqitV9QxwHrh1ivpGz/MnNsbt9Zq+tsU0cwqfSPJYM7y4rmnbAzw3sc6Fpk3SSGw2FL4IvAM4AFwCPrfRfyDJ0SSnk5x+mSubLGMc/Hjw+riNhmFToVBVL1bVq1X1O+BLvDZEuAjsnVj1pqZtpX/j3qpaqKqFHezcTBmaM86/DMOmQiHJ7omrHwaWjkycBA4n2ZlkH7AfeGS6EueH74QagzW/ZCXJ14H3ATckuQD8I/C+JAeAAp4F/gagqs4muR94EngFuLuqXu2mdM0bQ3MY1gyFqvroCs1fvsr6x4Hj0xQlqT9+HVsPJsfOvjtqaDzNuQeTQbDdz3R88PkzHp0ZGENhILZzMGhYDIWerPTOuN2CwY9LD1Oqqu8a+MNcX7fl9r7L6MVKLwi70urCw/WNH1fVwlrr2VPomQGgoTEUBmB5MNidVp8MhYEwGGbPbbg5hsKALD80506tPhgKA+Q8w2y4HTfHMxoHyh1afbGnIKnFUJDUYihIajEURs4jFJo1JxpHbpYTkp5yLTAUOjG270u4Wm9j6bYx/D80G4bCjC1/gQ0tIBxuaC2GQoeGEAKTNhoIQ6tfW8NQmLGDNx74/bcJjc0Ya9bsGQodGOqLaymwlrdJkwyFbcYQ0Fo8T0FSi6EgqcVQkNRiKEhqMRTUq+3+YzhDZCiodx4RGRZDQb0yEIbHUJDUYijMMcfq2gxDYc4ZDNooT3OeY47XtRn2FCS1GAqaW1sxdJrH4ZmhoLm0ld9pMW/BsGYoJNmb5HtJnkxyNsknm/brkzyU5Onm8rqJ+9yT5HySc0kOdvkf2Kx5eyK19eZ1H1pPT+EV4O+q6mbgL4G7k9wMHANOVdV+4FRznea2w8AtwB3AF5Jc00Xx03ASTlrZmqFQVZeq6ifN8kvAU8Ae4BBwolntBHBXs3wIuK+qrlTVM8B54NZZFy6pGxs6JJnk7cC7gB8Cu6rqUnPTC8CuZnkP8J8Td7vQtElbYiu79fPY41z3RGOStwDfBD5VVb+ZvK2qCqiNPHCSo0lOJzn9Mlc2cldJHVpXKCTZwWIgfK2qvtU0v5hkd3P7buBy034R2Dtx95uatpaqureqFqpqYQc7N1u/1GIvYXrrOfoQ4MvAU1X1+YmbTgJHmuUjwAMT7YeT7EyyD9gPPDK7kqW1zesLdiusZ07hr4CPAY8nWYrhfwA+C9yf5OPAL4CPAFTV2ST3A0+yeOTi7qp6deaVSyswDKa3ZihU1Q+ArHLz7avc5zhwfIq6JPXEMxoltRgKkloMBeb3dNV55/PWDUNBozTWH/EdA0MBZ6zHyOesO4aCpBa/jq0xOT71XWj4lp4vn6vZs6cgqcVQaEy+4zirPXz2ELpjKEwwGMbFYOiGobCMwaDtzlCQ1GIorMGfStd2YyiswLHqsBnS3TIUVmEwaLsyFDQqfuahe4bCVXgkYlgMhK1hKGg0DIStYSis4eCNB36/M9pb0HZgKEhqMRQktRgK6+QQQtuFoSCpxS9Z2QBnv7Ud2FOQ1GIoSGoxFCS1GAoaDD+mPgyGgqQWQ2EGfHebnl/ZPhyGwgy4I09nMlQN2P55noIGw3AdhlRV3zWQ5L+B/wV+2XctG3QD1rwVxlbzUOv9k6p621orDSIUAJKcrqqFvuvYCGveGmOreWz1LuecgqQWQ0FSy5BC4d6+C9gEa94aY6t5bPW2DGZOQdIwDKmnIGkAeg+FJHckOZfkfJJjfdezmiTPJnk8yZkkp5u265M8lOTp5vK6nmv8SpLLSZ6YaFu1xiT3NNv9XJKDA6r5M0kuNtv6TJI7B1bz3iTfS/JkkrNJPtm0D3pbr1tV9fYHXAP8DHgHcC3wKHBznzVdpdZngRuWtf0zcKxZPgb8U881vhd4N/DEWjUCNzfbeyewr3kerhlIzZ8B/n6FdYdS827g3c3yW4GfNrUNeluv96/vnsKtwPmq+nlV/Ra4DzjUc00bcQg40SyfAO7qsRaq6vvAr5Y1r1bjIeC+qrpSVc8A51l8PrbUKjWvZig1X6qqnzTLLwFPAXsY+LZer75DYQ/w3MT1C03bEBXwcJIfJznatO2qqkvN8gvArn5Ku6rVahz6tv9Eksea4cVSN3xwNSd5O/Au4IeMd1u39B0KY/KeqjoAfAi4O8l7J2+sxX7ioA/ljKHGxhdZHFIeAC4Bn+u3nJUleQvwTeBTVfWbydtGtK1fp+9QuAjsnbh+U9M2OFV1sbm8DHybxe7fi0l2AzSXl/urcFWr1TjYbV9VL1bVq1X1O+BLvNbVHkzNSXawGAhfq6pvNc2j29Yr6TsUfgTsT7IvybXAYeBkzzW9TpI3J3nr0jLwQeAJFms90qx2BHignwqvarUaTwKHk+xMsg/YDzzSQ32vs/TCanyYxW0NA6k5SYAvA09V1ecnbhrdtl5R3zOdwJ0szt7+DPh03/WsUuM7WJw9fhQ4u1Qn8EfAKeBp4GHg+p7r/DqL3e2XWRy3fvxqNQKfbrb7OeBDA6r5X4HHgcdYfEHtHljN72FxaPAYcKb5u3Po23q9f57RKKml7+GDpIExFCS1GAqSWgwFSS2GgqQWQ0FSi6EgqcVQkNTy/3FNdLVikh0PAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b3612500588>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADolJREFUeJzt3U2sXGd9x/Hvr2lixJsUN9RyHKsxkjfJogZZoVIRooqKQzYOm8gsKi8imUWKQGoXTlnABolWgu5AMgJhVZTU4kWxKtQosZDYVCQGmRAnNTEkUew4cSlIRF2YJP13cc+FOTf3+r7NzDlnzvcjjebMM2fm/u+xz2+e5znnnklVIUnL/qjrAiT1i6EgqcVQkNRiKEhqMRQktRgKklpmFgpJ7klyIcnFJMdn9XMkTVdmcZ5CkhuAnwN/DVwCngQ+XlXPTP2HSZqqWfUU7gIuVtUvq+p3wMPA4Rn9LElT9Mczet89wEsTjy8BH1hr5Zuyo97GO2ZUiiSA1/jNr6rqPeutN6tQWFeSY8AxgLfxdj6Qu7sqRRqFx+vbL25kvVkNHy4Deyce39a0/V5Vnaiqg1V18EZ2zKgMDd2jL5/ruoTRmVUoPAnsT7IvyU3AEeD0jH6WFtihWw90XcLozCQUquoN4G+BR4FngVNVdX4WP0uLZ7J3YE9h/mY2p1BV3we+P6v3lzQbntGoXnP4MH+GgnrHIOiWoSCpxVCQ1GIoSGoxFNQ7HobslqGgXjIYumMoqJc8AtEdQ0G9YyB0y1BQ7zh06JahoF4yGLpjKKh3HD50y1BQ7zz68jmDoUOGgnrHQOiWoSCpxVCQ1GIoSGoxFCS1GAqSWgwF9ZYnMHXDUFBveWiyG4aCeqtPPYVHXz73+9uiMxTUW33pKYwhCCYZCpJaDAVpE/rSe5klQ0HaoDEEAnT4VfTSEIzxLzbtKUhrGNsE4zJDQVKLwwdpDWMbNiyzpyCpxVCQ1GIoSKsYyynNqzEUpBUmw2CMwWAoSGoxFKQJY+wZrLStQ5JJXgBeA94E3qiqg0l2Av8G3A68ANxfVb/ZXplSN8Z4WHIaPYW/qqoDVXWweXwcOFNV+4EzzWNJAzGL4cNh4GSzfBK4bwY/Q5o6hw5LthsKBTye5MdJjjVtu6rqSrP8CrBrmz9D6sQYhw6w/dOcP1hVl5P8KfBYkv+afLKqKkmt9sImRI4BvI23b7MMSdOyrZ5CVV1u7q8C3wPuAl5Nshugub+6xmtPVNXBqjp4Izu2U4akKdpyKCR5R5J3LS8DHwGeBk4DR5vVjgKPbLdISfOzneHDLuB7SZbf51+r6j+SPAmcSvIA8CJw//bLlDQvWw6Fqvol8OertP8PcPd2ipLUHc9olFYx1iMPYChIWsFQkBrLvYMx9xLAUJB+zzMalxgKkloMBQkvrDLJUJBWcE5B0uiDYJLf+6DRWx4uGAxL7ClIGAiTDAWN2tgnFVdjKEhqcU5Bo+aw4a3sKUhqMRQktTh80OhNTjY6nLCnIBkEKxgK0gQPURoKEmBvYZKhIK0w9t6CoSA17C0sMRQktRgKkloMBWkVY55XMBSkCZPzCmMNBkNBWmHsE46GgnQdY+wtGAqSWgwFSS2GgrSKMc8rGArSGsYaDIaCdB1jDAZDQVKLoSCpxVCQ1GIoSGpZNxSSfD3J1SRPT7TtTPJYkuea+5snnnsoycUkF5IcmlXhkmZjIz2FbwD3rGg7Dpypqv3AmeYxSe4AjgB3Nq/5cpIbplbtgIzx9FgthnVDoap+CPx6RfNh4GSzfBK4b6L94aq6VlXPAxeBu6ZU66CM8VCWFsNW5xR2VdWVZvkVYFezvAd4aWK9S03b6NhT0FBte6Kxqgqozb4uybEkZ5OcfZ1r2y1D0pRsNRReTbIboLm/2rRfBvZOrHdb0/YWVXWiqg5W1cEb2bHFMvrL4YOGaquhcBo42iwfBR6ZaD+SZEeSfcB+4IntlShpntb9Lskk3wI+DNyS5BLwWeALwKkkDwAvAvcDVNX5JKeAZ4A3gAer6s0Z1S5pBtYNhar6+BpP3b3G+p8HPr+doiR1xzMaZ8gjEBoiQ2GGnGzUEBkKkloMBS2ER18+53BtStadaJSGwKHa9NhTkNRiKEhqMRQktRgKkloMBUkthoKkFkNBUouhIKnFUJDUYijMgaffDtvY/v0MBWkdYzuF2lCYk7F92mi4DAVJLYbCHIyt+6lhMxTmxGDQUBgKkloMBUkthoKkFkNBUouhIKnFUJDUYihIajEUJLUYCpoLv6xlOAwFSS1+Q5TmwtO8h8OegqQWQ0Ez5VzC8BgKmguDYTgMBc3MyiAwGIbBUNDcONk4DOuGQpKvJ7ma5OmJts8luZzkXHO7d+K5h5JcTHIhyaFZFa7hOHTrAQNhQDbSU/gGcM8q7f9cVQea2/cBktwBHAHubF7z5SQ3TKtYDcfyUMEwGJ51z1Ooqh8muX2D73cYeLiqrgHPJ7kI3AX855Yr1CAZBsO1nTmFTyZ5qhle3Ny07QFemljnUtMmaSC2GgpfAd4LHACuAF/c7BskOZbkbJKzr3Nti2WoK8vnH3hEYfFs6TTnqnp1eTnJV4F/bx5eBvZOrHpb07bae5wATgC8OztrK3UM0aMvn1u4rvVqwbBov+OYbKmnkGT3xMOPActHJk4DR5LsSLIP2A88sb0S1UfXO6JgIAzbuj2FJN8CPgzckuQS8Fngw0kOAAW8AHwCoKrOJzkFPAO8ATxYVW/OpvT+2Ugv4NCtBxaqt7Aov4f+IFXd99zfnZ31gdzddRnSQnu8vv3jqjq43nqe0SipxVCQ1GIodMxDeuobQ6FjTtSpbwwFSS2GgqQWQ0FSi6HQM048qmuGQg8ZDOqSodAzy0cjxvgXiJv5nce2bebJL4Ppucn//It8+NKdvD/sKfTQWn+BuMg7zmYDb5EDsmuGQo8NMRi2M+xxR+8HQ6HnhhQMy38Svt2du6+/31g4pzAAk5OPfTaNT3p7C90zFAZkcoeZxyXUxzLJqTZDYeC2Ew6bea3XYRwPQ2GgtrpDbmYIsnzpuPXey3BYLIbCAtvqiUCTO/lmexEGxPB59EHbNnnEoe+ToVqfobDAtvKpvZ1PeoNhMRgKI3O972rwkKLAS7yPwlrfM7FI3z+h9XmJ95HbyOTfEALBocj8GQoDtdYXvC7aYcJF+T2GxFAYuJU7jTuRtstQGCh3fs2KoTBgYwkG5xXmy1CQ5mQo4WYoSGoxFKQ5Gcpwz1BQ7w1lZ1oUhoKkFkNBUouhIKnFUFDvDeVQ3lqG9m1f64ZCkr1JfpDkmSTnk3yqad+Z5LEkzzX3N0+85qEkF5NcSHJolr+AFtvyzjSknWo1Q5os3UhP4Q3g76rqDuAvgAeT3AEcB85U1X7gTPOY5rkjwJ3APcCXk9wwi+K1+KZ1nQdt3LqhUFVXquonzfJrwLPAHuAwcLJZ7SRwX7N8GHi4qq5V1fPAReCuaReucRlqMAyxh7OpOYUktwPvA34E7KqqK81TrwC7muU9wEsTL7vUtEkagA2HQpJ3At8BPl1Vv518rpYu37SpSzglOZbkbJKzr3NtMy+dqaFNCknTtqFQSHIjS4Hwzar6btP8apLdzfO7gatN+2Vg78TLb2vaWqrqRFUdrKqDN7Jjq/VPnRcf1TQNcU5kI0cfAnwNeLaqvjTx1GngaLN8FHhkov1Ikh1J9gH7gSemV/JsLdqVi6TN2siXwfwl8DfAz5Isf3z+A/AF4FSSB4AXgfsBqup8klPAMywduXiwqt6ceuUzsjIMvLipxsarOUsj4dWcJW2JoSCpxVCQ1GIobILnMGgMDIVN8CiExsBQ2KRDtx6wx6CFZihswRDPUltEBvNsGApTtNb3O2p23NbTt5EzGrVB9h7mZzIMPOt0uuwpbNF6vQI/wWbLEJgdewpbtN5/Sv/TaqjsKUhqMRS2yOGBFpWhsEUOD7SoDAUNngE9XYaCpBZDQVKLoaBBcqJ3dgwFSS2GggZr1n+YNtbeiKGgQZrHEYexHtUwFKQ12FOQ1GJPQeq5sX5yz5uhoMEY6yf3vBkK6jV7B/NnKKiX1rqAjSExe4aCemfljj/52CHE7BkK6p2VO75BMF+GgnrNQJg/r9GoXnGo0D17CuoNA6EfUlVd10CS/wb+F/hV17Vs0i1Y8zwMrea+1vtnVfWe9VbqRSgAJDlbVQe7rmMzrHk+hlbz0OpdyeGDpBZDQVJLn0LhRNcFbIE1z8fQah5avS29mVOQ1A996ilI6oHOQyHJPUkuJLmY5HjX9awlyQtJfpbkXJKzTdvOJI8lea65v7njGr+e5GqSpyfa1qwxyUPNdr+Q5FCPav5cksvNtj6X5N6e1bw3yQ+SPJPkfJJPNe293tYbVlWd3YAbgF8A7wVuAn4K3NFlTdep9QXglhVt/wQcb5aPA//YcY0fAt4PPL1ejcAdzfbeAexr/h1u6EnNnwP+fpV1+1LzbuD9zfK7gJ83tfV6W2/01nVP4S7gYlX9sqp+BzwMHO64ps04DJxslk8C93VYC1X1Q+DXK5rXqvEw8HBVXauq54GLLP17zNUaNa+lLzVfqaqfNMuvAc8Ce+j5tt6orkNhD/DSxONLTVsfFfB4kh8nOda07aqqK83yK8Cubkq7rrVq7Pu2/2SSp5rhxXI3vHc1J7kdeB/wI4a7rVu6DoUh+WBVHQA+CjyY5EOTT9ZSP7HXh3KGUGPjKywNKQ8AV4AvdlvO6pK8E/gO8Omq+u3kcwPa1m/RdShcBvZOPL6taeudqrrc3F8FvsdS9+/VJLsBmvur3VW4prVq7O22r6pXq+rNqvo/4Kv8oavdm5qT3MhSIHyzqr7bNA9uW6+m61B4EtifZF+Sm4AjwOmOa3qLJO9I8q7lZeAjwNMs1Xq0We0o8Eg3FV7XWjWeBo4k2ZFkH7AfeKKD+t5iecdqfIylbQ09qTlJgK8Bz1bVlyaeGty2XlXXM53AvSzN3v4C+EzX9axR43tZmj3+KXB+uU7gT4AzwHPA48DOjuv8Fkvd7ddZGrc+cL0agc802/0C8NEe1fwvwM+Ap1jaoXb3rOYPsjQ0eAo419zu7fu23ujNMxoltXQ9fJDUM4aCpBZDQVKLoSCpxVCQ1GIoSGoxFCS1GAqSWv4fVDd+KZ2DvOYAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b360b005160>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADktJREFUeJzt3U2sXGd9x/Hvr8Yx4k2KG2o5jlWC5E1Y1KCrpFIRok3BIRuHDTKLyotI7iJFILULRyxgE4lWgu5ACiLCqihpFEDxAhHFFhI7EgeZECc1MSQodpy4FCSiLkwS/l3cc2Ge63t93+blnLnfjzSaM8+cmfnPuXN+8zzPnJmbqkKSlvzZrAuQ1C+GgqSGoSCpYShIahgKkhqGgqTGxEIhyV1Jzie5kOT4pB5H0nhlEscpJNkB/Bz4GHAReAr4dFU9N/YHkzRWk+op3A5cqKpfVtXvgYeBwxN6LElj9LYJ3e8+4OWRyxeBO1Zb+YbsqrfzzgmVIgngdX7766p671rrTSoU1pTkGHAM4O28gzty56xKkbaFU/Xor9az3qSGD5eA/SOXb+na/qiqHqyqhapa2MmuCZUhaaMmFQpPAQeS3JrkBuAIcHJCjyVpjCYyfKiqN5P8E/A4sAN4qKrOTeKxJI3XxOYUqur7wPcndf+SJsMjGiU1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJjUGHwuOvnP3j+dJptF3Sxg06FA7dfLA5h8VAOHTzQYOh5/z79FeqatY18J7srjty56zLkObaqXr06apaWGu9QfcUJI2foSCpYShIahgKkhqGgqSGoSCpYShIarxtKzdO8hLwOvAW8GZVLSTZDfwX8D7gJeBTVfXbrZUpaVrG0VP426o6OHJQxHHgdFUdAE53lyUNxCSGD4eBE93yCeCeCTyGpAnZaigUcCrJ00mOdW17qupyt/wqsGeLjyFpirY0pwB8uKouJfkL4Ikk/z16ZVVVkhW/XNGFyDGAt/OOLZYhaVy21FOoqkvd+RXge8DtwGtJ9gJ051dWue2DVbVQVQs72bWVMiSN0aZDIck7k7x7aRn4OPAscBI42q12FHhsq0VKmp6tDB/2AN9LsnQ//1lVP0jyFPBIknuBXwGf2nqZkqZl06FQVb8E/mqF9v8FpvbjCEs/1jH6QyuSNs8jGiU1tvrpw8zZQ5DGy56CpIahIKlhKEyBv1ysITEUpsB5Dw2JoSCpYShMgcMHDYmhIKlhKEyYvQQNjaEgqWEoTJDfy9AQGQqSGoaCpIahIKlhKEhqGAoT5iSjhsZQmCADQUM0+B9Z6avRg5YMBw2JPYUJMBA0ZIbCBBkIGiJDQduW30tZmaEwQb7oNESGwpgZBMPi3+tahsKYOY8wHP6tVmYoaNuzt9AyFCZg6R3Id6LNWdpJp7mzGgx/YihMiIGwedMMVf9O1zIUJAyHUYaCtj0DoWUoSDinMMpQkLC3MMpQkNQwFCQ1DAVJDUNhQh5/5ayTVxqkNUMhyUNJriR5dqRtd5InkrzQnd84ct39SS4kOZ/k0KQK13AZmP22np7CN4G7lrUdB05X1QHgdHeZJLcBR4APdLf5apIdY6t2IHzBa8jWDIWq+hHwm2XNh4ET3fIJ4J6R9oer6mpVvQhcAG4fU60asOU/UedHgP212TmFPVV1uVt+FdjTLe8DXh5Z72LXtm0t7zXYi1DfbXmisaoKqI3eLsmxJGeSnHmDq1st4xp92fmWvyMeuvlgb2qbJnsGw7HZUHgtyV6A7vxK134J2D+y3i1d2zWq6sGqWqiqhZ3s2mQZq5vli9DusYZss6FwEjjaLR8FHhtpP5JkV5JbgQPAk1srcfNm/Y5sMGiI1vxnMEm+DXwUuCnJReALwJeAR5LcC/wK+BRAVZ1L8gjwHPAmcF9VvTWh2tfU152yr3VJsI5QqKpPr3LVnaus/wDwwFaKmnfb4Z/FPP7K2bl9bvPOIxpnYN53llkP27Q1hsKMzdMOtB16QNuBobBFS4fsbnTnHt1p5iEY5uE5aJGhMEabDYh5MBpy9hKGzVDYotWOSVgrGOYtOJxYnB9ZPCBxtt6T3XVHVvwwY1Cut6Nfb4dZut0Qd6rlz3mIz2G7OFWPPl1VC2utt+ZHklq/re4QQ3u3nbfejhY5fJixIX9havnQaUiBptXZU5ixpR1pSGGwnGEwX7ZNT2G7fiogbdS2CYW+v5vN23ELGq5tM3xYmsTr82ReX+vS9rLtegrueNL1bZtQkLQ+22b4MCQeEKRZsqcwAE48apoMBUkNhw891NePJ4f8HQ2tn1+IGgB/vETjsN4vRDl86Lk+9RS0PRgKPbe8Z+Dh2po05xQGoO9HYmq+2FNYpq/vwtf7dae+1qxhsqcwUMsDYbPBMPq/Le2JCOwprGgI77zj+n+Vo8/V+QqBPYVrDO3dctzHNAzt+Wv87CnMka3s0P6nbC2xpzBnNrpjrzUnYVBsP4aCVv1kw0DYnhw+aMVegoGwfdlT2Obc+bWcPQVJDUNBUsNQkNQwFCQ1DAVJjTVDIclDSa4keXak7YtJLiU5253uHrnu/iQXkpxPcmhShUuajPX0FL4J3LVC+79X1cHu9H2AJLcBR4APdLf5apId4ypW0uStGQpV9SPgN+u8v8PAw1V1tapeBC4At2+hPklTtpU5hc8keaYbXtzYte0DXh5Z52LXJmkgNhsKXwPeDxwELgNf3ugdJDmW5EySM29wdZNlSBq3TYVCVb1WVW9V1R+Ar/OnIcIlYP/Iqrd0bSvdx4NVtVBVCzvZtZkyJE3ApkIhyd6Ri58Elj6ZOAkcSbIrya3AAeDJrZUoaZrW/EJUkm8DHwVuSnIR+ALw0SQHgQJeAv4RoKrOJXkEeA54E7ivqt6aTOn95FeONXRrhkJVfXqF5m9cZ/0HgAe2UpSk2fGIxjGzl6ChMxTGzF9E1tD5IytjYhBoXthTGBOHDZoX9hTGwF6C5ok9hTGwl6B5Yk9hTAwGzQt7CpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoaG75i1ibYyhIahgKmmv2FjbOUJDUMBQkNQwFSQ1DQVLDUNBc86f3N85Q0Fzz04eNMxQ01+wpbJyhIKlhKEhqGAqaWw4dNsdQ0NxyknFz1gyFJPuT/DDJc0nOJfls1747yRNJXujObxy5zf1JLiQ5n+TQJJ/AUPgCnT57Cpuznp7Cm8A/V9VtwF8D9yW5DTgOnK6qA8Dp7jLddUeADwB3AV9NsmMSxQ+JL1ANxZqhUFWXq+on3fLrwPPAPuAwcKJb7QRwT7d8GHi4qq5W1YvABeD2cRcuaTI2NKeQ5H3AB4EfA3uq6nJ31avAnm55H/DyyM0udm2SBmDdoZDkXcB3gM9V1e9Gr6uqAmojD5zkWJIzSc68wdWN3HSQnFPQUKwrFJLsZDEQvlVV3+2aX0uyt7t+L3Cla78E7B+5+S1dW6OqHqyqhapa2MmuzdY/GIduPmgwaBDW8+lDgG8Az1fVV0auOgkc7ZaPAo+NtB9JsivJrcAB4MnxlTxMBoKGYj09hb8B/gH4uyRnu9PdwJeAjyV5Afj77jJVdQ54BHgO+AFwX1W9NZHqB8RPHzQUWZwOmK33ZHfdkTtnXYY0107Vo09X1cJa63lEozRDfRxWGgqSGoaCpIahIKlhKEgz1rd5BUNBUsNQkNQwFCQ1DAVJDUNBc6lvk3dDYihIahgKU+S7l4bAUJgivymp5fr4mjAUNJf6uLOtpm+1GgpT9PgrZx1CqPcMhSkZDQODQX1mKEhqGAozYm9BfWUoTMnyyaS+TS7NA4N2PAyFKRl9wRoI6jNDQXPBXsL4GAqSGobClDl0UN8ZCpIahsKUOfZV3xkKU+bwQX1nKEyJYaChMBSmxGGDhsJQkNQwFCQ1DAXNDedtxsNQmCJftBqCVNWsayDJ/wD/B/x61rVs0E1Y8zQMrea+1vuXVfXetVbqRSgAJDlTVQuzrmMjrHk6hlbz0OpdzuGDpIahIKnRp1B4cNYFbII1T8fQah5avY3ezClI6oc+9RQk9cDMQyHJXUnOJ7mQ5Pis61lNkpeS/CzJ2SRnurbdSZ5I8kJ3fuOMa3woyZUkz460rVpjkvu77X4+yaEe1fzFJJe6bX02yd09q3l/kh8meS7JuSSf7dp7va3XrapmdgJ2AL8A3g/cAPwUuG2WNV2n1peAm5a1/RtwvFs+DvzrjGv8CPAh4Nm1agRu67b3LuDW7u+woyc1fxH4lxXW7UvNe4EPdcvvBn7e1dbrbb3e06x7CrcDF6rql1X1e+Bh4PCMa9qIw8CJbvkEcM8Ma6GqfgT8ZlnzajUeBh6uqqtV9SJwgcW/x1StUvNq+lLz5ar6Sbf8OvA8sI+eb+v1mnUo7ANeHrl8sWvrowJOJXk6ybGubU9VXe6WXwX2zKa061qtxr5v+88keaYbXix1w3tXc5L3AR8Efsxwt3Vj1qEwJB+uqoPAJ4D7knxk9Mpa7Cf2+qOcIdTY+RqLQ8qDwGXgy7MtZ2VJ3gV8B/hcVf1u9LoBbetrzDoULgH7Ry7f0rX1TlVd6s6vAN9jsfv3WpK9AN35ldlVuKrVauzttq+q16rqrar6A/B1/tTV7k3NSXayGAjfqqrvds2D29YrmXUoPAUcSHJrkhuAI8DJGdd0jSTvTPLupWXg48CzLNZ6tFvtKPDYbCq8rtVqPAkcSbIrya3AAeDJGdR3jaUdq/NJFrc19KTmJAG+ATxfVV8ZuWpw23pFs57pBO5mcfb2F8DnZ13PKjW+n8XZ458C55bqBP4cOA28AJwCds+4zm+z2N1+g8Vx673XqxH4fLfdzwOf6FHN/wH8DHiGxR1qb89q/jCLQ4NngLPd6e6+b+v1njyiUVJj1sMHST1jKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpMb/A/WdXuUxD0oaAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b360af94780>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADaFJREFUeJzt3U+sXGd9xvHvU9cxIqRS0lDLcazGSN6ERQ26CpWKUNoUHLJx2CB3UXmB5C5SBFK7cMSCbJBoJegOpCAirIomjYAoXkREiYUUdUNikAlxgonJH8WOE5cGiagLk4RfF/fcMu+Nb+6/OTPnXH8/0mjOvHNm5nfPvfPM+57z3jOpKiRpyR/NuwBJw2IoSGoYCpIahoKkhqEgqWEoSGr0FgpJbk9yJsnZJEf7eh1J05U+5ikk2Qb8EvgkcA54Cvi7qnp26i8maar66incApytqheq6nfAA8DBnl5L0hT9cU/Puxt4ZeL2OeBjK618VXbU+7i6p1IkAbzJb35dVR9cbb2+QmFVSY4ARwDex/v5WG6bVynSFeHx+t7La1mvr+HDeWDPxO0bu7b/V1X3VtVCVS1sZ0dPZUhar75C4SlgX5K9Sa4CDgHHe3otSVPUy/Chqt5O8o/Ao8A24L6qOt3Ha0mart72KVTVI8AjfT2/pH44o1FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAUJDUMBUkNQ0FSw1CQ1DAU1KtHXz017xK0ToaCemcwjMvcTtyqK8OBG/bPuwSt05boKfhJJE3PlggFP42k6dkSoSBpegwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDUMBQkNTZ1jsYkLwFvAu8Ab1fVQpLrgP8EbgJeAj5bVb/ZXJmSZmUaPYW/rqr9VbXQ3T4KnKiqfcCJ7rakkehj+HAQONYtHwPu7OE1JPVks6FQwONJfpLkSNe2s6oudMuvATs3+RqSZmiz3/vw8ao6n+TPgMeS/GLyzqqqJHW5B3YhcgTgfbx/k2VImpZN9RSq6nx3fRF4CLgFeD3JLoDu+uIKj723qhaqamE7OzZThqQp2nAoJLk6yTVLy8CngGeA48DhbrXDwMObLVLS7Gxm+LATeCjJ0vP8R1X9MMlTwINJPge8DHx282VKmpUNh0JVvQD8xWXa/we4bTNFbRVLX2fnN1hpTJzROAN+16XGxFDoyfIguFKD4Ur9ucfMUJiRK3UIcaX+3GNmKPTEN4PGylCQ1DAUeuJYWmNlKEhqGAqSGoZCD5YPHdzpqDExFCQ1DAVJDUNBUsNQ6MHkPgT3J2hsDAVJDUOhB05c0pgZClNmIGjsDAVJDUNhipy0pK1gFKEw1i75WOvWlW0UoTBW9hQ0RqMJhTF+6o6xZmk0oTBG9hQ0RqMIBd9c0uyMIhQ0bo++esqh1Ihs9gtmZ8bewnj5uxsXewqSGoaCpIah0BO7zBorQ0FSw1CQ1DAUJDUMhSlyP4KGaL1zRAyFHhgOGpL1/j0aCpIahsKU2UvQ2I1mmvMYTI7dDAeN1ao9hST3JbmY5JmJtuuSPJbk+e762on77k5yNsmZJAf6KnyoDAON3VqGD98Bbl/WdhQ4UVX7gBPdbZLcDBwCPtw95htJtk2t2hHwvwE1dquGQlU9AbyxrPkgcKxbPgbcOdH+QFVdqqoXgbPALVOqVdIMbHRH486qutAtvwbs7JZ3A69MrHeua5M0Eps++lBVBdR6H5fkSJKTSU6+xaXNljE4DiM0VhsNhdeT7ALori927eeBPRPr3di1vUtV3VtVC1W1sJ0dGyxjWJZ2Mh64YT8HbthvMGiUNhoKx4HD3fJh4OGJ9kNJdiTZC+wDntxcieOy0jdOe0qytXEbzd+q8xSS3A/cClyf5BzwZeCrwINJPge8DHwWoKpOJ3kQeBZ4G7irqt7pqXZtQR7Snb8s7hKYrz/JdfWx3DbvMqQt7fH63k+qamG19ZzmLKlhKEhqGAqSGobCjLl3XUNnKMyY8xc0dIbCHHjYTUNmKMyBPQUNmaEwJwaDhspQmCOnPmuIDIU5WPqHqSUGg4bEUJDU8MStc7TUW1g+jPDohObJnsIALA+BIe9rGGpdmh5DYcCG+Aa0F7P1GQoDN8Rg0NbmPgUu/8ab9Sfie01/fvTVU35Ca2bsKUhqGAormFe3fWkOw+V2Pkqz4OnYtGlLgTV5iHXytobB07FNyZAPDw7N0rYyDMbNUFiFf+BrNznscbuNl6GwBkP7Ax9Sz8WhwtZjKIzQ0uHLPsJhvc95uZ2iGjdDYeSmGQ5D6oFofpy8NFLLJzttZAff8hDwE19gT2HUls9peK8Zkcuvl/9XpoGgJc5TuMJ4yPDK5TwFXZaBoNUYCpIahoKkhqEgqWEoSGoYCpIahoKkhqEgqWEoDIz/f6B5WzUUktyX5GKSZyba7klyPsmp7nLHxH13Jzmb5EySA30VvlU5uUjztpaewneA2y/T/m9Vtb+7PAKQ5GbgEPDh7jHfSLJtWsVK6t+qoVBVTwBvrPH5DgIPVNWlqnoROAvcson6JM3YZvYpfD7J093w4tqubTfwysQ657o2SSOx0VD4JvAhYD9wAfjaep8gyZEkJ5OcfItLGyxD0rRtKBSq6vWqeqeqfg98iz8MEc4DeyZWvbFru9xz3FtVC1W1sJ0dGylDUg82FApJdk3c/AywdGTiOHAoyY4ke4F9wJObK1HSLK16OrYk9wO3AtcnOQd8Gbg1yX6ggJeAfwCoqtNJHgSeBd4G7qqqd/opXVIfPPOSdIXwzEuSNsRQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNBUsNQkNQwFCQ1DAVJDUNhnR599ZTf4qQtzVDYIINBW9Wq52jUyiaDwa9701ZhT2GdVnrz23PQVmEobMCBG/bbM9CWZShsguGgrchQmIKlcHAIoa3AUJiSpUDwkKXGzlCQ1DAUJDUMhSmZ3OHozkeNmZOXpsgw0FZgT0FSw1CQ1DAUJDUMBUkNQ0FSw1CYEWc5aiwMhRkwEDQmhoKkxqqhkGRPkh8leTbJ6SRf6NqvS/JYkue762snHnN3krNJziQ50OcPIGm61tJTeBv4p6q6GfhL4K4kNwNHgRNVtQ840d2mu+8Q8GHgduAbSbb1UfwYTA4dHEZoDFYNhaq6UFU/7ZbfBJ4DdgMHgWPdaseAO7vlg8ADVXWpql4EzgK3TLtwSf1Y1z6FJDcBHwF+DOysqgvdXa8BO7vl3cArEw8717VJGoE1h0KSDwDfB75YVb+dvK+qCqj1vHCSI0lOJjn5FpfW81BJPVpTKCTZzmIgfLeqftA1v55kV3f/LuBi134e2DPx8Bu7tkZV3VtVC1W1sJ0dG61f0pSt5ehDgG8Dz1XV1yfuOg4c7pYPAw9PtB9KsiPJXmAf8OT0SpbUp7X0FP4K+Hvgb5Kc6i53AF8FPpnkeeBvu9tU1WngQeBZ4IfAXVX1Ti/Vj4AnX9HYrHqSlar6LyAr3H3bCo/5CvCVTdQlaU6c0dgz5yZobAwFSQ1DoWfuR9DYGAo9Wxo+GA4aC0OhZ4aBxsZQ6Jk7GjU2hsKMGA4aC0NBUsNQmCF7CxoDQ6FnTnPW2BgKkhqGgqSGoSCpYShIahgKkhqGgqSGoTADS4cinaegMTAUZsAw0JgYCjPk5CWNgaHQM3sJGhtDoWf2DjQ2hoKkhqHQM4cPGhtDoWcOHzQ2hsKMGA4aC0NBUsNQmAF7CRoTQ0FSw1CQ1DAUJDUMBUkNQ0FSI1U17xpI8t/A/wK/nnct63Q91jwLY6t5qPX+eVV9cLWVBhEKAElOVtXCvOtYD2uejbHVPLZ6l3P4IKlhKEhqDCkU7p13ARtgzbMxtprHVm9jMPsUJA3DkHoKkgZg7qGQ5PYkZ5KcTXJ03vWsJMlLSX6e5FSSk13bdUkeS/J8d33tnGu8L8nFJM9MtK1YY5K7u+1+JsmBAdV8T5Lz3bY+leSOgdW8J8mPkjyb5HSSL3Ttg97Wa1ZVc7sA24BfAR8CrgJ+Btw8z5reo9aXgOuXtf0rcLRbPgr8y5xr/ATwUeCZ1WoEbu629w5gb/d72DaQmu8B/vky6w6l5l3AR7vla4BfdrUNeluv9TLvnsItwNmqeqGqfgc8ABycc03rcRA41i0fA+6cYy1U1RPAG8uaV6rxIPBAVV2qqheBsyz+PmZqhZpXMpSaL1TVT7vlN4HngN0MfFuv1bxDYTfwysTtc13bEBXweJKfJDnSte2sqgvd8mvAzvmU9p5WqnHo2/7zSZ7uhhdL3fDB1ZzkJuAjwI8Z77ZuzDsUxuTjVbUf+DRwV5JPTN5Zi/3EQR/KGUONnW+yOKTcD1wAvjbfci4vyQeA7wNfrKrfTt43om39LvMOhfPAnonbN3Ztg1NV57vri8BDLHb/Xk+yC6C7vji/Cle0Uo2D3fZV9XpVvVNVvwe+xR+62oOpOcl2FgPhu1X1g655dNv6cuYdCk8B+5LsTXIVcAg4Puea3iXJ1UmuWVoGPgU8w2Kth7vVDgMPz6fC97RSjceBQ0l2JNkL7AOenEN977L0xup8hsVtDQOpOUmAbwPPVdXXJ+4a3ba+rHnv6QTuYHHv7a+AL827nhVq/BCLe49/BpxeqhP4U+AE8DzwOHDdnOu8n8Xu9lssjls/9141Al/qtvsZ4NMDqvnfgZ8DT7P4hto1sJo/zuLQ4GngVHe5Y+jbeq0XZzRKasx7+CBpYAwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUJDU+D83ohGJG8E1vAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b361226b908>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADrtJREFUeJzt3V2IXOd9x/Hvv6q8xo4LVp0KWRa1XNSCXKgSFrlQE1LcRI4pyLkxykXQhal64aYJtBdyclHfGNJC0jsHFGIiSmrVJDHWRYiwRcAU2thyUGxJrmLFL1gvlpI6ENMLxVb+vdizyTzyrnZezsx5me8HljnzzJmd/57Z85vnOW8TmYkkLfudpguQ1C6GgqSCoSCpYChIKhgKkgqGgqTC1EIhIu6NiNMRcSYi9k/rdSTVK6ZxnEJErAN+AnwCOAu8AHwmM0/V/mKSajWtnsJO4ExmvpaZvwIOAbun9FqSavS7U/q9m4G3Bu6fBe5abebrYiGv58YplSIJ4F1+8fPM/PBa800rFNYUEfuAfQDXcwN3xT1NlTK2I+ePs+vWHU2XIQ3l2fz2m8PMN63hwzlgy8D926q238jMA5m5mJmL61mYUhnTc+T88eJW6otphcILwLaI2BoR1wF7gMNTeq1GLPcQ7Cmob6YyfMjM9yPi74AjwDrg8cw8OY3XaoK9A/XZ1I5TyMzvZeYfZ+YfZeaj03qdphkQ6huPaJyQwwf1jaEgqWAojMjhgvrOUBjB1YHg0EF9ZCiMyUBQXzV2RGMXGQSaB/YUJBUMhSG4cVHzpPPDh+UVdhpd+2n+bqmtOh8Ky6a1Z8BA0Lzp7fChTV3+NtUiraXzobDr1h1T+zS3t6F51Jvhw+CK5yezNL7O9xRWstx7MByk0fUyFCSNr9eh4FheGl2vQ0HS6AwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVLBUJBUMBQkFQwFSQVDQVKhF5djG7zCktdQkCbTu56Cl2CTJtOLUBjsHdhTkCbTi1CwdyDVpxfbFOwdSPWZKBQi4g3gXeAK8H5mLkbEBuA/gNuBN4AHMvMXk5UpaVbqGD78ZWbuyMzF6v5+4GhmbgOOVvcldcQ0tinsBg5W0weB+6fwGpKmZNJQSODZiHgxIvZVbRsz80I1/TawccLXkDRDk25ovDszz0XEHwDPRMT/DD6YmRkRudITqxDZB3A9N0xYhqS6TNRTyMxz1e0l4ClgJ3AxIjYBVLeXVnnugcxczMzF9SxMUoakGo0dChFxY0TctDwNfBI4ARwG9laz7QWenrRISbMzyfBhI/BURCz/nn/PzO9HxAvAkxHxIPAm8MDkZUqalbFDITNfA/5shfb/Be6ZpChJzenFYc5t4eHW6gNDoWYGg7rOUJBUMBSmwN6CusxQkFQwFKbAU7nVZYbCFDh8UJcZCpIKhsIUOHxQlxkKNXHIoL4wFCQVehsKTX1yO3RQ1/U2FGa5cjp0UJ/0NhRcUaXx9DYUZtVTWA4fhw3NOXL++G9+NLnehkITDIbZGycIDJBr63UozOKNNwiatevWHcV7sNoKbwgMrxdfG9cGR84fNyAatNayv/pLiA2J1fW2pzDLldQw6B7fs9X1NhR806Xx9DYUJI3HUJBUMBRq4nBFfWEo1MSt2eoLd0lOyDBQ3xgKE3LYoL5x+FADD5tVnxgKNbC3oD4xFCQVDIWa2FtQXxgKkgqGgqSCoVAD9z6oTwyFGrg9QX1iKNTEYFBfGAqSCmuGQkQ8HhGXIuLEQNuGiHgmIl6tbm8eeOzhiDgTEacjYte0Cm8btyuoL4bpKXwTuPeqtv3A0czcBhyt7hMR24E9wJ3Vcx6LiHW1VStdg6FcjzVDITOfA965qnk3cLCaPgjcP9B+KDMvZ+brwBlgZ021Stfkdp16jLtNYWNmXqim3wY2VtObgbcG5jtbtc3c8qeGnx7SaCY+dTozMyJy1OdFxD5gH8D13DBpGR+wfBlvr+gsjWbcnsLFiNgEUN1eqtrPAVsG5rutavuAzDyQmYuZubiehTHLuLblFdXegjS8cUPhMLC3mt4LPD3QviciFiJiK7ANeH6yEifnp7g0vGF2ST4B/BfwJxFxNiIeBL4MfCIiXgX+qrpPZp4EngROAd8HHsrMK9MqfhT2Fprhcu+eNbcpZOZnVnnonlXmfxR4dJKipqHp3oLfTq2umKsjGtvwqdWGGmbJEOyeuQqFtvyDzlswqFvmKhQkrc1QaIi9BbWVoTAjbRm6zIKB122GgmplIHSfoTBDV/cW+rgC7bp1x1z1ivrIUJBUMBRmaKWeQR97C+o2Q6EFDAa1iaEwQ9caaxsMagtDQVLBUJBUMBQqTV6+rcu78LyKdf8YCgNmEQzL+/EHg6APK1Uf/gYtMRQkFSa+cGufNNWNX77IbJd1eQikUmSOfCHm2v1ebMi7YsULOc2MV0ZS3z2b334xMxfXms/hQ6UNx+x3vbegfjAUWqTpUJLAUGgdd/GpaYZCy9hbUNMMhRYa5RwJexWqm6HQMSvtvjQYVCdDoYNW+45Mw0F1MBQ6bHA3qoGguhgKPXD1eRQGhCbhYc49MbitYbXDplfbgDlMiLhXZH4YCj0y6oo7So/Cw8Dnh6FQkyPnj7dqhVnpcvKDNY4SCG36uzR9hsKcuHrFHvXMzJVCb5QhirrDsyRr0pfu9bh/hwHRfp4lOWN9WQHGPVt00p6I2sOegiayPKxwD0b72VPQTCwHwjArvD2HbjAUNLHlQGjDhWo0uTX3PkTE48BfA5cy80+rtkeAvwF+Vs32xcz8XvXYw8CDwBXg7zPzyBTqVosZDN02TE/hm8C9K7T/a2buqH6WA2E7sAe4s3rOYxGxrq5iu8Susmatrv+5NUMhM58D3hny9+0GDmXm5cx8HTgD7Jygvs7y01JNqCMYJtmm8LmIeCkiHo+Im6u2zcBbA/Ocrdrmjj0FzVpdH0TjhsLXgDuAHcAF4Cuj/oKI2BcRxyLi2HtcHrOMdmryK+g03+o4PmSsUMjMi5l5JTN/DXyd3w4RzgFbBma9rWpb6XccyMzFzFxcz8I4ZUhawaQ9hrFCISI2Ddz9NHCimj4M7ImIhYjYCmwDnp+oQkkzNcwuySeAjwO3RMRZ4J+Aj0fEDiCBN4C/BcjMkxHxJHAKeB94KDOvTKf09vIQX3WZhzlPyWAouCdCbTDsYc6eOj0lBoG6ysOcJRUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBUMBUkFQ0FSwVCQVDAUJBU8S1K94Knq9TEU1BuGQT0cPqgXDIT6GArqFS+DNzlDQb1ij2FyhoKkgqEgqWAoSCoYCpIKhoKkgqFQI3eHqQ8MhRq5O0x9YChIKhgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgprhkJEbImIH0TEqYg4GRGfr9o3RMQzEfFqdXvzwHMejogzEXE6InZN8w+QZmVezm0ZpqfwPvAPmbkd+HPgoYjYDuwHjmbmNuBodZ/qsT3AncC9wGMRsW4axUuq35qhkJkXMvNH1fS7wCvAZmA3cLCa7SBwfzW9GziUmZcz83XgDLCz7sIlTcdI3/sQEbcDHwF+CGzMzAvVQ28DG6vpzcB/DzztbNU21/yykm6bl6EDjLChMSI+BHwH+EJm/nLwscxMIEd54YjYFxHHIuLYe1we5amSpmioUIiI9SwFwrcy87tV88WI2FQ9vgm4VLWfA7YMPP22qq2QmQcyczEzF9ezMG79kmo2zN6HAL4BvJKZXx146DCwt5reCzw90L4nIhYiYiuwDXi+vpKl5szDMGKYbQp/AXwWeDkilpfIF4EvA09GxIPAm8ADAJl5MiKeBE6xtOfiocy8UnvlUgPmYXvQmqGQmf8JxCoP37PKcx4FHp2gLqmVjpw/3vtg8IjGGev7P1TfzcP7ZyjMwDyMQ+fBPAQCGAozMS//TH03L+FuKEhDmpdwNxRmbF4+bdRdhsKMzcunjbrLUJCGME9hbihIQ5inYZ+hIKkw0qnTGt88dT/7aJ7eP3sKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCpYChIKhgKkgqGgjSmvp4PYShIKhgK0pj6ej6EoSCpYChIKhgKkgqGgqSCoTBjfd2Npf4wFGbIQFAXGAozYiCoKwwFSQVDoQH2GtRmhoKkQmRm0zUQET8D/g/4edO1jOgWrHkWulZzW+v9w8z88FoztSIUACLiWGYuNl3HKKx5NrpWc9fqvZrDB0kFQ0FSoU2hcKDpAsZgzbPRtZq7Vm+hNdsUJLVDm3oKklqg8VCIiHsj4nREnImI/U3Xs5qIeCMiXo6I4xFxrGrbEBHPRMSr1e3NDdf4eERciogTA22r1hgRD1fL/XRE7GpRzY9ExLlqWR+PiPtaVvOWiPhBRJyKiJMR8fmqvdXLemiZ2dgPsA74KXAHcB3wY2B7kzVdo9Y3gFuuavsXYH81vR/454Zr/BjwUeDEWjUC26vlvQBsrd6HdS2p+RHgH1eYty01bwI+Wk3fBPykqq3Vy3rYn6Z7CjuBM5n5Wmb+CjgE7G64plHsBg5W0weB+xushcx8DnjnqubVatwNHMrMy5n5OnCGpfdjplapeTVtqflCZv6omn4XeAXYTMuX9bCaDoXNwFsD989WbW2UwLMR8WJE7KvaNmbmhWr6bWBjM6Vd02o1tn3Zfy4iXqqGF8vd8NbVHBG3Ax8Bfkh3l3Wh6VDokrszcwfwKeChiPjY4IO51E9s9a6cLtRY+RpLQ8odwAXgK82Ws7KI+BDwHeALmfnLwcc6tKw/oOlQOAdsGbh/W9XWOpl5rrq9BDzFUvfvYkRsAqhuLzVX4apWq7G1yz4zL2bmlcz8NfB1ftvVbk3NEbGepUD4VmZ+t2ru3LJeSdOh8AKwLSK2RsR1wB7gcMM1fUBE3BgRNy1PA58ETrBU695qtr3A081UeE2r1XgY2BMRCxGxFdgGPN9AfR+wvGJVPs3SsoaW1BwRAXwDeCUzvzrwUOeW9Yqa3tIJ3MfS1tufAl9qup5VaryDpa3HPwZOLtcJ/D5wFHgVeBbY0HCdT7DU3X6PpXHrg9eqEfhStdxPA59qUc3/BrwMvMTSCrWpZTXfzdLQ4CXgePVzX9uX9bA/HtEoqdD08EFSyxgKkgqGgqSCoSCpYChIKhgKkgqGgqSCoSCp8P/bEar70yUaFgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b360af9ba20>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQUAAAD8CAYAAAB+fLH0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADgRJREFUeJzt3VuoXNd9x/Hvr6os41zAqlMhyaJ2QC3Y0J6Eg11oCGlzkeMXJS9BfSh6CKgPbkighcrkoX5MC0nfEnCIiShJXJML1oOxsEWKX0J8KYpt2VWs2A6WLFtNHYhpwbGdfx/OPsksWUfnNpe953w/MMzea/ac+Z99zvxmrTV79qSqkKRlvzfrAiT1i6EgqWEoSGoYCpIahoKkhqEgqTGxUEhyW5IzSc4mOTqpx5E0XpnEcQpJtgE/BT4OnAMeA/66qp4Z+4NJGqtJ9RRuAc5W1fNV9WvgXuDghB5L0hj9/oR+7l7gpZH1c8CtK218VXbU1bxrQqWM1x//6f/x0yevmXUZ0rq9zi9/UVXvW227SYXCqpIcAY4AXM013JqPzqqU9XkKbs2si5DW7+H67s/Xst2khg/ngX0j69d3bb9VVXdX1WJVLW5nx4TKkLRekwqFx4D9SW5MchVwCDg+oceSNEYTGT5U1VtJ/g44AWwD7qmq05N4LEnjNbE5hap6AHhgUj9f0mR4RGPPnHj51KxL0BZnKPTMgT0Lsy5BW5yhIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGnMTCidePuUXqUhjMLOvoh+XS4NgdN0vVpHWb256CpLGY/A9hcuxhyBt3Nz1FAwEaXMGHwoH9iwYBNIYzc3wwWCQxmPwPQVJ42UoSGoYCpIahoKkxqYmGpO8CLwOvA28VVWLSXYC/w7cALwIfKaqfrm5MiVNyzh6Cn9ZVQtVtditHwVOVtV+4GS3LmkgJjF8OAgc65aPAZ+awGNImpDNhkIBDyd5IsmRrm1XVV3oll8Bdm3yMcbOT1RKK9vswUsfqqrzSf4QeCjJf43eWFWVpC53xy5EjgBczTWbLGP9PNhJurxN9RSq6nx3fRH4AXAL8GqS3QDd9cUV7nt3VS1W1eJ2dmymjHUzEKSVbTgUkrwryXuWl4FPAE8Dx4HD3WaHgfs3W+RKNjoMcOggrWwzw4ddwA+SLP+cb1fVg0keA+5L8lng58BnNl/myjbyqm9PQVrZhkOhqp4H/uwy7f8DfHQzRa3VkJ7cJ14+Nah6tXV5RKOkhqEgqWEoTIlDBw2FoTAFvtuhITEUpsRg0FAYCpIahsKUOKegoTAUpsBA0JAMPhT6PlZfPhS773VKywYfCn1/FV6ur+91SssGHwp9Zw9BQ2MoTInhoKEwFKbE4YOGwlCYMMNAQ2MoTIHBoCExFCQ15uZbpzV7o5Op9o6Gy1DQ2BgE88Hhg6SGoTBBHpugITIUJDUMhQmzt6ChMRQm6MCeBSff5tC8B72hMCHz/o+zlR3Ys/Dbv+88fjTeUJgQewjzazQQRnuD8xIMhoK0AZeG/jy9CKTqst8UP1Xvzc66NVP5pjlpy3q4vvtEVS2utp09hQmZt3Gmtg5DYcIMBg2NoSCpYShIahgKkhqGwoTN01tV2hoMhQlzolFDYyhIahgKE2DvQEO2aigkuSfJxSRPj7TtTPJQkue662tHbrszydkkZ5IcmFThkiZjLT2FbwK3XdJ2FDhZVfuBk906SW4CDgE3d/f5apJtY6tW0sStGgpV9Qjw2iXNB4Fj3fIx4FMj7fdW1RtV9QJwFrhlTLUOgkMHDd1G5xR2VdWFbvkVYFe3vBd4aWS7c13blrHaW5CGhvpu06d4r6pKsu6PWiY5AhwBuJprNltGry1/7n6ldelSl3vxmNb/zEZ7Cq8m2Q3QXV/s2s8D+0a2u75re4equruqFqtqcTs7NlhGP13ps/aGgdZj+SQu0/y/2WhP4ThwGPhSd33/SPu3k3wF2APsBx7dbJFDtNIf0eGD1mJcITD6/7Zt99rus5a3JL8D/Aj4kyTnknyWpTD4eJLngI9161TVaeA+4BngQeCOqnp7Xb/FFmBvQdOykf81z7wkbRGeeUnShhgKkhqGgqSGoSCpYShoUzxr9fzZ9BGN2ro8MnM+2VPokSG+4g6xZl2ZodAzQ3mSDaVOrZ/Dhx4aQre87/Vp4+wp9JSvxJoVQ6EHVprBNxg0C4ZCzxkMmjZDoQc8W5P6xFDo9P2J1/f6ND8MhRGzfOKtZTbfYNA0GAoM68k27VqHtG80Hp5kpWfW+iT0OAGt11pPsuLBSz1z6ZN9lq/UQziISuPn8KHnpn0m30sfW1uPoTAQswwHbS2GwkB5HgNNinMKA7PcW1gOhNXG/asFh70PXcpQmAPLT/y1TlIaBLoSQ2GOGAIaB+cUBmqtE48GgtbLnsLA+W3WGjd7CnPEQNA4GAqSGoaCpIahIKlhKEhqGAqSGoaCpIahIKlhKEhqGAqSGquGQpJ7klxM8vRI211Jzic51V1uH7ntziRnk5xJcmBShUuajLX0FL4J3HaZ9n+tqoXu8gBAkpuAQ8DN3X2+mmTbuIqVNHmrhkJVPQK8tsafdxC4t6reqKoXgLPALZuoT9KUbWZO4XNJnuyGF9d2bXuBl0a2Ode1SRqIjYbC14D3AwvABeDL6/0BSY4keTzJ42/yxgbLkDRuGwqFqnq1qt6uqt8AX+d3Q4TzwL6RTa/v2i73M+6uqsWqWtzOjo2UIWkCNhQKSXaPrH4aWH5n4jhwKMmOJDcC+4FHN1eipGla9cxLSb4DfAS4Lsk54J+AjyRZAAp4EfhbgKo6neQ+4BngLeCOqnp7MqVLmgS/S1LaItb6XZIe0SipYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqTGqp+S1JITL5/67bJf+a55Zk9hjQwCbRWGgqSGobAOB/YscGDPQjOUkOaNobABDiU0zwwFSQ1DQVLDUJDUMBQkNQwFSQ1DQVLDUNAgeGzI9BgK6r0TL5/y2JApMhTUewbCdBkKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKkhqGgqTGqqGQZF+SHyZ5JsnpJJ/v2ncmeSjJc931tSP3uTPJ2SRnkhyY5C8wJH6oR0Owlp7CW8DfV9VNwJ8DdyS5CTgKnKyq/cDJbp3utkPAzcBtwFeTbJtE8ZLGb9VviKqqC8CFbvn1JM8Ce4GDwEe6zY4B/wH8Y9d+b1W9AbyQ5CxwC/CjcRc/FPYQNCTrmlNIcgPwAeDHwK4uMABeAXZ1y3uBl0budq5rkzQAaw6FJO8Gvgd8oap+NXpbVRVQ63ngJEeSPJ7k8Td5Yz13lTRBawqFJNtZCoRvVdX3u+ZXk+zubt8NXOzazwP7Ru5+fdfWqKq7q2qxqha3s2Oj9Q+G5wTQUKzl3YcA3wCeraqvjNx0HDjcLR8G7h9pP5RkR5Ibgf3Ao+MrebgMBg3BWnoKfwH8DfBXSU51l9uBLwEfT/Ic8LFunao6DdwHPAM8CNxRVW9PpPoBWJ5kdLJRQ5Gl6YDZem921q356KzLmJjRQLC3oFl5uL77RFUtrradRzROgUGgITEUpshw0BAYCpIahsKU2EvQUBgKkhqGgqSGoSCpYShIahgKkhqGgqSGoSCpYShIahgKU3Li5VN+UlKDYChIahgKU+JhzhoKQ2FKHDpoKAyFKTAQNCSGgqSGoTBl9hrUd4bCDFwpGAwNzdqqXxun8TuwZ2HFk7n6LoVmzZ5CD9g7UJ8YClO23BM4sGfBXoF6yeHDjBkM6ht7CpIahsKEOV+goTEUJszhgYbGOYUpMBg0JPYUJDUMBUkNQ0FzxYndzTMUNFecv9m8VNWsayDJfwP/C/xi1rWs03VY8zQMrea+1vtHVfW+1TbqRSgAJHm8qhZnXcd6WPN0DK3modV7KYcPkhqGgqRGn0Lh7lkXsAHWPB1Dq3lo9TZ6M6cgqR/61FOQ1AMzD4UktyU5k+RskqOzrmclSV5M8lSSU0ke79p2JnkoyXPd9bUzrvGeJBeTPD3StmKNSe7s9vuZJAd6VPNdSc53+/pUktt7VvO+JD9M8kyS00k+37X3el+vWVXN7AJsA34GvB+4CvgJcNMsa7pCrS8C113S9i/A0W75KPDPM67xw8AHgadXqxG4qdvfO4Abu7/Dtp7UfBfwD5fZti817wY+2C2/B/hpV1uv9/VaL7PuKdwCnK2q56vq18C9wMEZ17QeB4Fj3fIx4FMzrIWqegR47ZLmlWo8CNxbVW9U1QvAWZb+HlO1Qs0r6UvNF6rqP7vl14Fngb30fF+v1axDYS/w0sj6ua6tjwp4OMkTSY50bbuq6kK3/AqwazalXdFKNfZ9338uyZPd8GK5G967mpPcAHwA+DHD3deNWYfCkHyoqhaATwJ3JPnw6I211E/s9Vs5Q6ix8zWWhpQLwAXgy7Mt5/KSvBv4HvCFqvrV6G0D2tfvMOtQOA/sG1m/vmvrnao6311fBH7AUvfv1SS7Abrri7OrcEUr1djbfV9Vr1bV21X1G+Dr/K6r3Zuak2xnKRC+VVXf75oHt68vZ9ah8BiwP8mNSa4CDgHHZ1zTOyR5V5L3LC8DnwCeZqnWw91mh4H7Z1PhFa1U43HgUJIdSW4E9gOPzqC+d1h+YnU+zdK+hp7UnCTAN4Bnq+orIzcNbl9f1qxnOoHbWZq9/RnwxVnXs0KN72dp9vgnwOnlOoE/AE4CzwEPAztnXOd3WOpuv8nSuPWzV6oR+GK3388An+xRzf8GPAU8ydITanfPav4QS0ODJ4FT3eX2vu/rtV48olFSY9bDB0k9YyhIahgKkhqGgqSGoSCpYShIahgKkhqGgqTG/wMQSh/1PrwNWAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2b36124e42b0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"i=[4,6,5,3]\n",
"j=[7,5,8,6]\n",
"for a in i:\n",
" for b in j:\n",
" plt.imshow(reshaped_val_y[a,b,:,:])\n",
" plt.show()\n",
"# plt.imshow(reshaped_pp[a,b,:,:])\n",
"# plt.show()\n",
"# print(\"-----------------------------\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}