|
a |
|
b/get_data.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 12, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import os\n", |
|
|
10 |
"import numpy as np\n", |
|
|
11 |
"import pandas as pd\n", |
|
|
12 |
"import pickle" |
|
|
13 |
] |
|
|
14 |
}, |
|
|
15 |
{ |
|
|
16 |
"cell_type": "code", |
|
|
17 |
"execution_count": 2, |
|
|
18 |
"metadata": {}, |
|
|
19 |
"outputs": [ |
|
|
20 |
{ |
|
|
21 |
"name": "stdout", |
|
|
22 |
"output_type": "stream", |
|
|
23 |
"text": [ |
|
|
24 |
"/home/ark576/Knee_Segmentation_Project\r\n" |
|
|
25 |
] |
|
|
26 |
} |
|
|
27 |
], |
|
|
28 |
"source": [ |
|
|
29 |
"!pwd" |
|
|
30 |
] |
|
|
31 |
}, |
|
|
32 |
{ |
|
|
33 |
"cell_type": "code", |
|
|
34 |
"execution_count": 3, |
|
|
35 |
"metadata": {}, |
|
|
36 |
"outputs": [], |
|
|
37 |
"source": [ |
|
|
38 |
"train_file_names = os.listdir('./Knee Cartilage Data/Train Data')" |
|
|
39 |
] |
|
|
40 |
}, |
|
|
41 |
{ |
|
|
42 |
"cell_type": "code", |
|
|
43 |
"execution_count": 4, |
|
|
44 |
"metadata": {}, |
|
|
45 |
"outputs": [], |
|
|
46 |
"source": [ |
|
|
47 |
"test_file_names = os.listdir('./Knee Cartilage Data/Test Data')" |
|
|
48 |
] |
|
|
49 |
}, |
|
|
50 |
{ |
|
|
51 |
"cell_type": "code", |
|
|
52 |
"execution_count": 5, |
|
|
53 |
"metadata": {}, |
|
|
54 |
"outputs": [], |
|
|
55 |
"source": [ |
|
|
56 |
"val_file_names = os.listdir('./Knee Cartilage Data/Validation Data')" |
|
|
57 |
] |
|
|
58 |
}, |
|
|
59 |
{ |
|
|
60 |
"cell_type": "code", |
|
|
61 |
"execution_count": 14, |
|
|
62 |
"metadata": {}, |
|
|
63 |
"outputs": [], |
|
|
64 |
"source": [ |
|
|
65 |
"pickle.dump(train_file_names, open('./Knee Cartilage Data/Train Data/train_file_names','wb'))" |
|
|
66 |
] |
|
|
67 |
}, |
|
|
68 |
{ |
|
|
69 |
"cell_type": "code", |
|
|
70 |
"execution_count": 15, |
|
|
71 |
"metadata": {}, |
|
|
72 |
"outputs": [], |
|
|
73 |
"source": [ |
|
|
74 |
"pickle.dump(test_file_names, open('./Knee Cartilage Data/Test Data/test_file_names','wb'))" |
|
|
75 |
] |
|
|
76 |
}, |
|
|
77 |
{ |
|
|
78 |
"cell_type": "code", |
|
|
79 |
"execution_count": 16, |
|
|
80 |
"metadata": {}, |
|
|
81 |
"outputs": [], |
|
|
82 |
"source": [ |
|
|
83 |
"pickle.dump(val_file_names, open('./Knee Cartilage Data/Validation Data/val_file_names','wb'))" |
|
|
84 |
] |
|
|
85 |
}, |
|
|
86 |
{ |
|
|
87 |
"cell_type": "code", |
|
|
88 |
"execution_count": 9, |
|
|
89 |
"metadata": {}, |
|
|
90 |
"outputs": [], |
|
|
91 |
"source": [ |
|
|
92 |
"train_file_names = file_names[:35]\n", |
|
|
93 |
"val_file_names = file_names[35:42]\n", |
|
|
94 |
"test_file_names = file_names[42:]" |
|
|
95 |
] |
|
|
96 |
}, |
|
|
97 |
{ |
|
|
98 |
"cell_type": "code", |
|
|
99 |
"execution_count": 10, |
|
|
100 |
"metadata": {}, |
|
|
101 |
"outputs": [ |
|
|
102 |
{ |
|
|
103 |
"data": { |
|
|
104 |
"text/plain": [ |
|
|
105 |
"(35,)" |
|
|
106 |
] |
|
|
107 |
}, |
|
|
108 |
"execution_count": 10, |
|
|
109 |
"metadata": {}, |
|
|
110 |
"output_type": "execute_result" |
|
|
111 |
} |
|
|
112 |
], |
|
|
113 |
"source": [ |
|
|
114 |
"train_file_names.shape" |
|
|
115 |
] |
|
|
116 |
}, |
|
|
117 |
{ |
|
|
118 |
"cell_type": "code", |
|
|
119 |
"execution_count": 11, |
|
|
120 |
"metadata": {}, |
|
|
121 |
"outputs": [ |
|
|
122 |
{ |
|
|
123 |
"data": { |
|
|
124 |
"text/plain": [ |
|
|
125 |
"(7,)" |
|
|
126 |
] |
|
|
127 |
}, |
|
|
128 |
"execution_count": 11, |
|
|
129 |
"metadata": {}, |
|
|
130 |
"output_type": "execute_result" |
|
|
131 |
} |
|
|
132 |
], |
|
|
133 |
"source": [ |
|
|
134 |
"val_file_names.shape" |
|
|
135 |
] |
|
|
136 |
}, |
|
|
137 |
{ |
|
|
138 |
"cell_type": "code", |
|
|
139 |
"execution_count": 12, |
|
|
140 |
"metadata": {}, |
|
|
141 |
"outputs": [ |
|
|
142 |
{ |
|
|
143 |
"data": { |
|
|
144 |
"text/plain": [ |
|
|
145 |
"(6,)" |
|
|
146 |
] |
|
|
147 |
}, |
|
|
148 |
"execution_count": 12, |
|
|
149 |
"metadata": {}, |
|
|
150 |
"output_type": "execute_result" |
|
|
151 |
} |
|
|
152 |
], |
|
|
153 |
"source": [ |
|
|
154 |
"test_file_names.shape" |
|
|
155 |
] |
|
|
156 |
}, |
|
|
157 |
{ |
|
|
158 |
"cell_type": "code", |
|
|
159 |
"execution_count": 13, |
|
|
160 |
"metadata": {}, |
|
|
161 |
"outputs": [], |
|
|
162 |
"source": [ |
|
|
163 |
"np.save('train_file_names',train_file_names)" |
|
|
164 |
] |
|
|
165 |
}, |
|
|
166 |
{ |
|
|
167 |
"cell_type": "code", |
|
|
168 |
"execution_count": 14, |
|
|
169 |
"metadata": {}, |
|
|
170 |
"outputs": [], |
|
|
171 |
"source": [ |
|
|
172 |
"np.save('val_file_names', val_file_names)\n", |
|
|
173 |
"np.save('test_file_names', test_file_names)" |
|
|
174 |
] |
|
|
175 |
}, |
|
|
176 |
{ |
|
|
177 |
"cell_type": "code", |
|
|
178 |
"execution_count": null, |
|
|
179 |
"metadata": {}, |
|
|
180 |
"outputs": [], |
|
|
181 |
"source": [ |
|
|
182 |
"pickle.load(open('file/path','rb'))" |
|
|
183 |
] |
|
|
184 |
} |
|
|
185 |
], |
|
|
186 |
"metadata": { |
|
|
187 |
"kernelspec": { |
|
|
188 |
"display_name": "Python 3", |
|
|
189 |
"language": "python", |
|
|
190 |
"name": "python3" |
|
|
191 |
}, |
|
|
192 |
"language_info": { |
|
|
193 |
"codemirror_mode": { |
|
|
194 |
"name": "ipython", |
|
|
195 |
"version": 3 |
|
|
196 |
}, |
|
|
197 |
"file_extension": ".py", |
|
|
198 |
"mimetype": "text/x-python", |
|
|
199 |
"name": "python", |
|
|
200 |
"nbconvert_exporter": "python", |
|
|
201 |
"pygments_lexer": "ipython3", |
|
|
202 |
"version": "3.6.3" |
|
|
203 |
} |
|
|
204 |
}, |
|
|
205 |
"nbformat": 4, |
|
|
206 |
"nbformat_minor": 2 |
|
|
207 |
} |