Diff of /get_data.ipynb [000000] .. [94d9b6]

Switch to unified view

a b/get_data.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 12,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import os\n",
10
    "import numpy as np\n",
11
    "import pandas as pd\n",
12
    "import pickle"
13
   ]
14
  },
15
  {
16
   "cell_type": "code",
17
   "execution_count": 2,
18
   "metadata": {},
19
   "outputs": [
20
    {
21
     "name": "stdout",
22
     "output_type": "stream",
23
     "text": [
24
      "/home/ark576/Knee_Segmentation_Project\r\n"
25
     ]
26
    }
27
   ],
28
   "source": [
29
    "!pwd"
30
   ]
31
  },
32
  {
33
   "cell_type": "code",
34
   "execution_count": 3,
35
   "metadata": {},
36
   "outputs": [],
37
   "source": [
38
    "train_file_names = os.listdir('./Knee Cartilage Data/Train Data')"
39
   ]
40
  },
41
  {
42
   "cell_type": "code",
43
   "execution_count": 4,
44
   "metadata": {},
45
   "outputs": [],
46
   "source": [
47
    "test_file_names = os.listdir('./Knee Cartilage Data/Test Data')"
48
   ]
49
  },
50
  {
51
   "cell_type": "code",
52
   "execution_count": 5,
53
   "metadata": {},
54
   "outputs": [],
55
   "source": [
56
    "val_file_names = os.listdir('./Knee Cartilage Data/Validation Data')"
57
   ]
58
  },
59
  {
60
   "cell_type": "code",
61
   "execution_count": 14,
62
   "metadata": {},
63
   "outputs": [],
64
   "source": [
65
    "pickle.dump(train_file_names, open('./Knee Cartilage Data/Train Data/train_file_names','wb'))"
66
   ]
67
  },
68
  {
69
   "cell_type": "code",
70
   "execution_count": 15,
71
   "metadata": {},
72
   "outputs": [],
73
   "source": [
74
    "pickle.dump(test_file_names, open('./Knee Cartilage Data/Test Data/test_file_names','wb'))"
75
   ]
76
  },
77
  {
78
   "cell_type": "code",
79
   "execution_count": 16,
80
   "metadata": {},
81
   "outputs": [],
82
   "source": [
83
    "pickle.dump(val_file_names, open('./Knee Cartilage Data/Validation Data/val_file_names','wb'))"
84
   ]
85
  },
86
  {
87
   "cell_type": "code",
88
   "execution_count": 9,
89
   "metadata": {},
90
   "outputs": [],
91
   "source": [
92
    "train_file_names = file_names[:35]\n",
93
    "val_file_names = file_names[35:42]\n",
94
    "test_file_names = file_names[42:]"
95
   ]
96
  },
97
  {
98
   "cell_type": "code",
99
   "execution_count": 10,
100
   "metadata": {},
101
   "outputs": [
102
    {
103
     "data": {
104
      "text/plain": [
105
       "(35,)"
106
      ]
107
     },
108
     "execution_count": 10,
109
     "metadata": {},
110
     "output_type": "execute_result"
111
    }
112
   ],
113
   "source": [
114
    "train_file_names.shape"
115
   ]
116
  },
117
  {
118
   "cell_type": "code",
119
   "execution_count": 11,
120
   "metadata": {},
121
   "outputs": [
122
    {
123
     "data": {
124
      "text/plain": [
125
       "(7,)"
126
      ]
127
     },
128
     "execution_count": 11,
129
     "metadata": {},
130
     "output_type": "execute_result"
131
    }
132
   ],
133
   "source": [
134
    "val_file_names.shape"
135
   ]
136
  },
137
  {
138
   "cell_type": "code",
139
   "execution_count": 12,
140
   "metadata": {},
141
   "outputs": [
142
    {
143
     "data": {
144
      "text/plain": [
145
       "(6,)"
146
      ]
147
     },
148
     "execution_count": 12,
149
     "metadata": {},
150
     "output_type": "execute_result"
151
    }
152
   ],
153
   "source": [
154
    "test_file_names.shape"
155
   ]
156
  },
157
  {
158
   "cell_type": "code",
159
   "execution_count": 13,
160
   "metadata": {},
161
   "outputs": [],
162
   "source": [
163
    "np.save('train_file_names',train_file_names)"
164
   ]
165
  },
166
  {
167
   "cell_type": "code",
168
   "execution_count": 14,
169
   "metadata": {},
170
   "outputs": [],
171
   "source": [
172
    "np.save('val_file_names', val_file_names)\n",
173
    "np.save('test_file_names', test_file_names)"
174
   ]
175
  },
176
  {
177
   "cell_type": "code",
178
   "execution_count": null,
179
   "metadata": {},
180
   "outputs": [],
181
   "source": [
182
    "pickle.load(open('file/path','rb'))"
183
   ]
184
  }
185
 ],
186
 "metadata": {
187
  "kernelspec": {
188
   "display_name": "Python 3",
189
   "language": "python",
190
   "name": "python3"
191
  },
192
  "language_info": {
193
   "codemirror_mode": {
194
    "name": "ipython",
195
    "version": 3
196
   },
197
   "file_extension": ".py",
198
   "mimetype": "text/x-python",
199
   "name": "python",
200
   "nbconvert_exporter": "python",
201
   "pygments_lexer": "ipython3",
202
   "version": "3.6.3"
203
  }
204
 },
205
 "nbformat": 4,
206
 "nbformat_minor": 2
207
}