--- a +++ b/get_data.ipynb @@ -0,0 +1,207 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "import pickle" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/ark576/Knee_Segmentation_Project\r\n" + ] + } + ], + "source": [ + "!pwd" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "train_file_names = os.listdir('./Knee Cartilage Data/Train Data')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "test_file_names = os.listdir('./Knee Cartilage Data/Test Data')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "val_file_names = os.listdir('./Knee Cartilage Data/Validation Data')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "pickle.dump(train_file_names, open('./Knee Cartilage Data/Train Data/train_file_names','wb'))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "pickle.dump(test_file_names, open('./Knee Cartilage Data/Test Data/test_file_names','wb'))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "pickle.dump(val_file_names, open('./Knee Cartilage Data/Validation Data/val_file_names','wb'))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "train_file_names = file_names[:35]\n", + "val_file_names = file_names[35:42]\n", + "test_file_names = file_names[42:]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(35,)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_file_names.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(7,)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "val_file_names.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(6,)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_file_names.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "np.save('train_file_names',train_file_names)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "np.save('val_file_names', val_file_names)\n", + "np.save('test_file_names', test_file_names)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pickle.load(open('file/path','rb'))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}