|
a |
|
b/evaluate_ensemble.py |
|
|
1 |
import time |
|
|
2 |
import torch |
|
|
3 |
import torch.nn as nn |
|
|
4 |
from torch.autograd import Variable |
|
|
5 |
import torch.optim as optim |
|
|
6 |
import torchvision |
|
|
7 |
from torchvision import datasets, models |
|
|
8 |
from torchvision import transforms as T |
|
|
9 |
from torch.utils.data import DataLoader, Dataset |
|
|
10 |
import numpy as np |
|
|
11 |
import matplotlib.pyplot as plt |
|
|
12 |
import os |
|
|
13 |
import time |
|
|
14 |
import pandas as pd |
|
|
15 |
from skimage import io, transform |
|
|
16 |
import matplotlib.image as mpimg |
|
|
17 |
from PIL import Image |
|
|
18 |
from sklearn.metrics import roc_auc_score |
|
|
19 |
import torch.nn.functional as F |
|
|
20 |
import scipy |
|
|
21 |
import random |
|
|
22 |
import pickle |
|
|
23 |
import scipy.io as sio |
|
|
24 |
import itertools |
|
|
25 |
from scipy.ndimage.interpolation import shift |
|
|
26 |
import copy |
|
|
27 |
import warnings |
|
|
28 |
warnings.filterwarnings("ignore") |
|
|
29 |
plt.ion() |
|
|
30 |
|
|
|
31 |
from utils import * |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
def evaluate_pp(model,prediction_models, dataloader, data_size, batch_size, phase, dice_loss = dice_loss,\ |
|
|
35 |
smooth = False, filter_size = 3, print_all = False, certainity_map = False): |
|
|
36 |
model.eval() |
|
|
37 |
running_loss = 0 |
|
|
38 |
running_dice_score_class_0 = 0 |
|
|
39 |
running_dice_score_class_1 = 0 |
|
|
40 |
running_dice_score_class_2 = 0 |
|
|
41 |
dc_sr = {0:[],1:[],2:[]} |
|
|
42 |
acc_sr = {0:[],1:[],2:[]} |
|
|
43 |
phase = phase |
|
|
44 |
for i in prediction_models: |
|
|
45 |
for param in i.parameters(): |
|
|
46 |
param.requires_grad = False |
|
|
47 |
|
|
|
48 |
for i,data in enumerate(dataloader[phase]): |
|
|
49 |
input, segF,segP, segT,_ = data |
|
|
50 |
input = Variable(input).cuda() |
|
|
51 |
input_pp = [] |
|
|
52 |
for j in prediction_models: |
|
|
53 |
output = j(input) |
|
|
54 |
preds_m = predict_pp(output) |
|
|
55 |
input_pp.append(preds_m) |
|
|
56 |
input_pp = torch.cat(input_pp,dim = 1) |
|
|
57 |
output_pp = model(input_pp) |
|
|
58 |
true = Variable(segments(segF, segP, segT)).cuda() |
|
|
59 |
loss = dice_loss(true,output_pp) |
|
|
60 |
running_loss += loss.data[0] * batch_size |
|
|
61 |
dice_score_batch = dice_score(true,output_pp, smooth= smooth, filter_size=filter_size) |
|
|
62 |
running_dice_score_class_0 += dice_score_batch[0] * batch_size |
|
|
63 |
running_dice_score_class_1 += dice_score_batch[1] * batch_size |
|
|
64 |
running_dice_score_class_2 += dice_score_batch[2] * batch_size |
|
|
65 |
dc_dict, acc_dict = dice_score_list(true,output_pp) |
|
|
66 |
if certainity_map: |
|
|
67 |
cm = make_certainity_maps(output_pp) |
|
|
68 |
for k in range(3): |
|
|
69 |
dc_sr[k].append(dc_dict[k]) |
|
|
70 |
acc_sr[k].append(acc_dict[k]) |
|
|
71 |
preds = predict(output_pp,smooth = smooth, filter_size=filter_size) |
|
|
72 |
if i == 11 or i == 4 or print_all: |
|
|
73 |
for k in range(batch_size): |
|
|
74 |
if certainity_map: |
|
|
75 |
image_to_mask(input[k,1,:,:].data.cpu().numpy(),\ |
|
|
76 |
true[k,0,:,:].data.cpu().numpy(),\ |
|
|
77 |
true[k,1,:,:].data.cpu().numpy(),\ |
|
|
78 |
true[k,2,:,:].data.cpu().numpy(),\ |
|
|
79 |
preds[0][k,:,:].cpu().numpy(),\ |
|
|
80 |
preds[1][k,:,:].cpu().numpy(),\ |
|
|
81 |
preds[2][k,:,:].cpu().numpy(),\ |
|
|
82 |
cm[k].data.cpu().numpy()) |
|
|
83 |
else: |
|
|
84 |
image_to_mask(input[k,1,:,:].data.cpu().numpy(),\ |
|
|
85 |
true[k,0,:,:].data.cpu().numpy(),\ |
|
|
86 |
true[k,1,:,:].data.cpu().numpy(),\ |
|
|
87 |
true[k,2,:,:].data.cpu().numpy(),\ |
|
|
88 |
preds[0][k,:,:].cpu().numpy(),\ |
|
|
89 |
preds[1][k,:,:].cpu().numpy(),\ |
|
|
90 |
preds[2][k,:,:].cpu().numpy()) |
|
|
91 |
|
|
|
92 |
loss = running_loss/data_sizes[phase] |
|
|
93 |
dice_score_0 = running_dice_score_class_0/data_sizes[phase] |
|
|
94 |
dice_score_1 = running_dice_score_class_1/data_sizes[phase] |
|
|
95 |
dice_score_2 = running_dice_score_class_2/data_sizes[phase] |
|
|
96 |
for i in range(3): |
|
|
97 |
dc_sr[i] = list(itertools.chain(*dc_sr[i])) |
|
|
98 |
acc_sr[i] = list(itertools.chain(*acc_sr[i])) |
|
|
99 |
print('{} loss: {:.4f}, Dice Score (class 0): {:.4f}, Dice Score (class 1): {:.4f},Dice Score (class 2): {:.4f}'.format(phase,loss, dice_score_0, dice_score_1, dice_score_2)) |
|
|
100 |
return loss, dice_score_0, dice_score_1, dice_score_2, dc_sr, acc_sr |