--- a +++ b/dataloader_3d.py @@ -0,0 +1,80 @@ +import torch +import torch.nn as nn +from torch.autograd import Variable +import torch.optim as optim +import torchvision +from torchvision import datasets, models +from torchvision import transforms as T +from torch.utils.data import DataLoader, Dataset +import numpy as np +import matplotlib.pyplot as plt +import os +import time +import pandas as pd +from skimage import io, transform +import matplotlib.image as mpimg +from PIL import Image +from sklearn.metrics import roc_auc_score +import torch.nn.functional as F +import scipy +import random +import pickle +import scipy.io as sio +import itertools +from scipy.ndimage.interpolation import shift + +import warnings +warnings.filterwarnings("ignore") +plt.ion() + +class KneeMRI3DDataset(Dataset): + '''Knee MRI Dataset''' + def __init__(self, root_dir, label, train_data = False, flipping = True, rotation = True, translation = True, + normalize = False): + self.root_dir = root_dir + self.label = label + self.flipping = flipping + self.rotation = rotation + self.translation = translation + self.train_data = train_data + self.normalize = normalize + + def __len__(self): + return len(self.label) + + def __getitem__(self,idx): + variable_path_name = os.path.join(self.root_dir, self.label[idx]) + variables = sio.loadmat(variable_path_name) + segment_T = variables['SegmentationT'].transpose(2,0,1).astype(float) + segment_F = variables['SegmentationF'].transpose(2,0,1).astype(float) + segment_P = variables['SegmentationP'].transpose(2,0,1).astype(float) + images = [] + md = variables['MDnr'].transpose(2,0,1) + image = variables['NUFnr'].transpose(3,2,0,1) + fa = variables['FAnr'].transpose(2,0,1) + image = torch.from_numpy(image).type(torch.FloatTensor) + fa = torch.from_numpy(fa).type(torch.FloatTensor) + md = torch.from_numpy(md).type(torch.FloatTensor) + images.append(image) + images.append(fa.unsqueeze(0)) + images.append(md.unsqueeze(0)) + image_all = torch.cat(images, dim = 0) + segment_F = torch.from_numpy(segment_F).type(torch.FloatTensor) + segment_T = torch.from_numpy(segment_T).type(torch.FloatTensor) + segment_P = torch.from_numpy(segment_P).type(torch.FloatTensor) + segments = [] + segments.append(segment_F.unsqueeze(0)) + segments.append(segment_T.unsqueeze(0)) + segments.append(segment_P.unsqueeze(0)) + seg_tot = segment_F + segment_T + segment_P + seg_none = (seg_tot == 0).type(torch.FloatTensor) + segments.append(seg_none.unsqueeze(0)) + segments_all = torch.cat(segments, dim = 0) + + if self.normalize: + max_image, min_image, max_fa, min_fa, max_md, min_md = pickle.load(open('normalizing_values_new','rb')) + image_all[:7,:,:,:] = (image_all[:7,:,:,:] - min_image)/(max_image - min_image) + image_all[7,:,:,:] = (image_all[7,:,:,:] - min_fa)/(max_fa - min_fa) + image_all[-1,:,:,:] = (image_all[-1,:,:,:] - min_md)/(max_md - min_md) + + return (image_all,segments_all,self.label[idx])