|
a |
|
b/dataloader_2d.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
from torch.autograd import Variable |
|
|
4 |
import torch.optim as optim |
|
|
5 |
import torchvision |
|
|
6 |
from torchvision import datasets, models |
|
|
7 |
from torchvision import transforms as T |
|
|
8 |
from torch.utils.data import DataLoader, Dataset |
|
|
9 |
import numpy as np |
|
|
10 |
import matplotlib.pyplot as plt |
|
|
11 |
import os |
|
|
12 |
import time |
|
|
13 |
import pandas as pd |
|
|
14 |
from skimage import io, transform |
|
|
15 |
import matplotlib.image as mpimg |
|
|
16 |
from PIL import Image |
|
|
17 |
from sklearn.metrics import roc_auc_score |
|
|
18 |
import torch.nn.functional as F |
|
|
19 |
import scipy |
|
|
20 |
import random |
|
|
21 |
import pickle |
|
|
22 |
import scipy.io as sio |
|
|
23 |
import itertools |
|
|
24 |
from scipy.ndimage.interpolation import shift |
|
|
25 |
import copy |
|
|
26 |
import warnings |
|
|
27 |
warnings.filterwarnings("ignore") |
|
|
28 |
plt.ion() |
|
|
29 |
|
|
|
30 |
def count_parameters(model): |
|
|
31 |
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
32 |
|
|
|
33 |
class KneeMRIDataset(Dataset): |
|
|
34 |
'''Knee MRI Dataset''' |
|
|
35 |
def __init__(self, root_dir, label, train_data = False, flipping = True, rotation = True, translation = True, |
|
|
36 |
normalize = False): |
|
|
37 |
self.root_dir = root_dir |
|
|
38 |
self.label = label |
|
|
39 |
self.flipping = flipping |
|
|
40 |
self.rotation = rotation |
|
|
41 |
self.translation = translation |
|
|
42 |
self.train_data = train_data |
|
|
43 |
self.normalize = normalize |
|
|
44 |
|
|
|
45 |
def __len__(self): |
|
|
46 |
return len(self.label) |
|
|
47 |
|
|
|
48 |
def __getitem__(self,idx): |
|
|
49 |
variable_path_name = os.path.join(self.root_dir, self.label[idx]) |
|
|
50 |
variables = pickle.load(open(variable_path_name,'rb')) |
|
|
51 |
segment_T = variables['SegmentationT'].astype(float) |
|
|
52 |
segment_F = variables['SegmentationF'].astype(float) |
|
|
53 |
segment_P = variables['SegmentationP'].astype(float) |
|
|
54 |
md = variables['MDnr'] |
|
|
55 |
image = variables['NUFnr'] |
|
|
56 |
fa = variables['FAnr'] |
|
|
57 |
images = [] |
|
|
58 |
flip = random.random() > 0.5 |
|
|
59 |
angle = random.uniform(-4,4) |
|
|
60 |
dx = np.round(random.uniform(-7,7)) |
|
|
61 |
dy = np.round(random.uniform(-7,7)) |
|
|
62 |
for i in range(7): |
|
|
63 |
im = image[:,:,i] |
|
|
64 |
if self.train_data: |
|
|
65 |
if self.flipping and flip: |
|
|
66 |
im = np.fliplr(im) |
|
|
67 |
if self.rotation: |
|
|
68 |
im = transform.rotate(im, angle, order = 0) |
|
|
69 |
if self.translation: |
|
|
70 |
im = shift(im,(dx,dy), order = 0) |
|
|
71 |
im = torch.from_numpy(im).type(torch.DoubleTensor) |
|
|
72 |
images.append(im.unsqueeze(0)) |
|
|
73 |
if self.train_data: |
|
|
74 |
if self.flipping and flip: |
|
|
75 |
segment_T = np.fliplr(segment_T) |
|
|
76 |
segment_F = np.fliplr(segment_F) |
|
|
77 |
segment_P = np.fliplr(segment_P) |
|
|
78 |
md = np.fliplr(md) |
|
|
79 |
fa = np.fliplr(fa) |
|
|
80 |
if self.rotation: |
|
|
81 |
segment_T = transform.rotate(segment_T,angle, order = 0) |
|
|
82 |
segment_F = transform.rotate(segment_F,angle, order = 0) |
|
|
83 |
segment_P = transform.rotate(segment_P,angle, order = 0) |
|
|
84 |
md = transform.rotate(md,angle, order = 0) |
|
|
85 |
fa = transform.rotate(fa,angle, order = 0) |
|
|
86 |
if self.translation: |
|
|
87 |
segment_T = shift(segment_T,(dx,dy), order = 0) |
|
|
88 |
segment_F = shift(segment_F,(dx,dy), order = 0) |
|
|
89 |
segment_P = shift(segment_P,(dx,dy), order = 0) |
|
|
90 |
md = shift(md,(dx,dy), order = 0) |
|
|
91 |
fa = shift(fa,(dx,dy), order = 0) |
|
|
92 |
fa = torch.from_numpy(fa).type(torch.DoubleTensor) |
|
|
93 |
md = torch.from_numpy(md).type(torch.DoubleTensor) |
|
|
94 |
images.append(fa.unsqueeze(0)) |
|
|
95 |
images.append(md.unsqueeze(0)) |
|
|
96 |
image_all = torch.cat(images, dim = 0) |
|
|
97 |
segment_F = torch.from_numpy(segment_F) |
|
|
98 |
segment_T = torch.from_numpy(segment_T) |
|
|
99 |
segment_P = torch.from_numpy(segment_P) |
|
|
100 |
if self.normalize: |
|
|
101 |
# max_image, min_image, max_fa, min_fa, max_md, min_md = pickle.load(open('normalizing_values','rb')) |
|
|
102 |
max_image, min_image = torch.max(image_all[:7,:,:]), torch.min(image_all[:7,:,:]) |
|
|
103 |
max_fa, min_fa = torch.max(image_all[7,:,:]), torch.min(image_all[7,:,:]) |
|
|
104 |
max_md, min_md = torch.max(image_all[8,:,:]), torch.min(image_all[8,:,:]) |
|
|
105 |
image_all[:7,:,:] = (image_all[:7,:,:] - min_image)/(max_image - min_image) |
|
|
106 |
image_all[7,:,:] = (image_all[7,:,:] - min_fa)/(max_fa - min_fa) |
|
|
107 |
image_all[-1,:,:] = (image_all[-1,:,:] - min_md)/(max_md - min_md) |
|
|
108 |
|
|
|
109 |
return (image_all.type(torch.FloatTensor), segment_F.type(torch.FloatTensor), |
|
|
110 |
segment_P.type(torch.FloatTensor), segment_T.type(torch.FloatTensor),self.label[idx]) |
|
|
111 |
|