--- a +++ b/dataloader_2d.py @@ -0,0 +1,111 @@ +import torch +import torch.nn as nn +from torch.autograd import Variable +import torch.optim as optim +import torchvision +from torchvision import datasets, models +from torchvision import transforms as T +from torch.utils.data import DataLoader, Dataset +import numpy as np +import matplotlib.pyplot as plt +import os +import time +import pandas as pd +from skimage import io, transform +import matplotlib.image as mpimg +from PIL import Image +from sklearn.metrics import roc_auc_score +import torch.nn.functional as F +import scipy +import random +import pickle +import scipy.io as sio +import itertools +from scipy.ndimage.interpolation import shift +import copy +import warnings +warnings.filterwarnings("ignore") +plt.ion() + +def count_parameters(model): + return sum(p.numel() for p in model.parameters() if p.requires_grad) + +class KneeMRIDataset(Dataset): + '''Knee MRI Dataset''' + def __init__(self, root_dir, label, train_data = False, flipping = True, rotation = True, translation = True, + normalize = False): + self.root_dir = root_dir + self.label = label + self.flipping = flipping + self.rotation = rotation + self.translation = translation + self.train_data = train_data + self.normalize = normalize + + def __len__(self): + return len(self.label) + + def __getitem__(self,idx): + variable_path_name = os.path.join(self.root_dir, self.label[idx]) + variables = pickle.load(open(variable_path_name,'rb')) + segment_T = variables['SegmentationT'].astype(float) + segment_F = variables['SegmentationF'].astype(float) + segment_P = variables['SegmentationP'].astype(float) + md = variables['MDnr'] + image = variables['NUFnr'] + fa = variables['FAnr'] + images = [] + flip = random.random() > 0.5 + angle = random.uniform(-4,4) + dx = np.round(random.uniform(-7,7)) + dy = np.round(random.uniform(-7,7)) + for i in range(7): + im = image[:,:,i] + if self.train_data: + if self.flipping and flip: + im = np.fliplr(im) + if self.rotation: + im = transform.rotate(im, angle, order = 0) + if self.translation: + im = shift(im,(dx,dy), order = 0) + im = torch.from_numpy(im).type(torch.DoubleTensor) + images.append(im.unsqueeze(0)) + if self.train_data: + if self.flipping and flip: + segment_T = np.fliplr(segment_T) + segment_F = np.fliplr(segment_F) + segment_P = np.fliplr(segment_P) + md = np.fliplr(md) + fa = np.fliplr(fa) + if self.rotation: + segment_T = transform.rotate(segment_T,angle, order = 0) + segment_F = transform.rotate(segment_F,angle, order = 0) + segment_P = transform.rotate(segment_P,angle, order = 0) + md = transform.rotate(md,angle, order = 0) + fa = transform.rotate(fa,angle, order = 0) + if self.translation: + segment_T = shift(segment_T,(dx,dy), order = 0) + segment_F = shift(segment_F,(dx,dy), order = 0) + segment_P = shift(segment_P,(dx,dy), order = 0) + md = shift(md,(dx,dy), order = 0) + fa = shift(fa,(dx,dy), order = 0) + fa = torch.from_numpy(fa).type(torch.DoubleTensor) + md = torch.from_numpy(md).type(torch.DoubleTensor) + images.append(fa.unsqueeze(0)) + images.append(md.unsqueeze(0)) + image_all = torch.cat(images, dim = 0) + segment_F = torch.from_numpy(segment_F) + segment_T = torch.from_numpy(segment_T) + segment_P = torch.from_numpy(segment_P) + if self.normalize: +# max_image, min_image, max_fa, min_fa, max_md, min_md = pickle.load(open('normalizing_values','rb')) + max_image, min_image = torch.max(image_all[:7,:,:]), torch.min(image_all[:7,:,:]) + max_fa, min_fa = torch.max(image_all[7,:,:]), torch.min(image_all[7,:,:]) + max_md, min_md = torch.max(image_all[8,:,:]), torch.min(image_all[8,:,:]) + image_all[:7,:,:] = (image_all[:7,:,:] - min_image)/(max_image - min_image) + image_all[7,:,:] = (image_all[7,:,:] - min_fa)/(max_fa - min_fa) + image_all[-1,:,:] = (image_all[-1,:,:] - min_md)/(max_md - min_md) + + return (image_all.type(torch.FloatTensor), segment_F.type(torch.FloatTensor), + segment_P.type(torch.FloatTensor), segment_T.type(torch.FloatTensor),self.label[idx]) +