--- a +++ b/main.py @@ -0,0 +1,48 @@ +import numpy as np +import matplotlib as mpl +import matplotlib.pyplot as plt +from scipy.misc import imresize, imread + +from human_pose_nn import HumanPoseIRNetwork +mpl.use('Agg') + +net_pose = HumanPoseIRNetwork() +net_pose.restore('../Thesis_solution/models/MPII+LSP.ckpt') + +img = imread('images/dummy.jpg') +img = imresize(img, [299, 299]) +img_batch = np.expand_dims(img, 0) + +y, x, a = net_pose.estimate_joints(img_batch) +y, x, a = np.squeeze(y), np.squeeze(x), np.squeeze(a) + +joint_names = [ + 'right ankle ', + 'right knee ', + 'right hip', + 'left hip', + 'left knee', + 'left ankle', + 'pelvis', + 'thorax', + 'upper neck', + 'head top', + 'right wrist', + 'right elbow', + 'right shoulder', + 'left shoulder', + 'left elbow', + 'left wrist' +] + +# Print probabilities of each estimation +for i in range(16): + print('%s: %.02f%%' % (joint_names[i], a[i] * 100)) + +colors = ['r', 'r', 'b', 'm', 'm', 'y', 'g', 'g', 'b', 'c', 'r', 'r', 'b', 'm', 'm', 'c'] +for i in range(16): + if i < 15 and i not in {5, 9}: + plt.plot([x[i], x[i + 1]], [y[i], y[i + 1]], color = colors[i], linewidth = 5) + +plt.imshow(img) +plt.savefig('images/dummy_pose.jpg') \ No newline at end of file