|
a |
|
b/inception_resnet_v2.py |
|
|
1 |
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. |
|
|
2 |
# |
|
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
4 |
# you may not use this file except in compliance with the License. |
|
|
5 |
# You may obtain a copy of the License at |
|
|
6 |
# |
|
|
7 |
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
8 |
# |
|
|
9 |
# Unless required by applicable law or agreed to in writing, software |
|
|
10 |
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
12 |
# See the License for the specific language governing permissions and |
|
|
13 |
# limitations under the License. |
|
|
14 |
# ============================================================================== |
|
|
15 |
# The content is derived from https://github.com/tensorflow/models/blob/master/slim/nets/inception_resnet_v2.py |
|
|
16 |
# ============================================================================== |
|
|
17 |
|
|
|
18 |
"""Contains the definition of the Inception Resnet V2 architecture. |
|
|
19 |
|
|
|
20 |
As described in http://arxiv.org/abs/1602.07261. |
|
|
21 |
|
|
|
22 |
Inception-v4, Inception-ResNet and the Impact of Residual Connections |
|
|
23 |
on Learning |
|
|
24 |
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi |
|
|
25 |
""" |
|
|
26 |
from __future__ import absolute_import |
|
|
27 |
from __future__ import division |
|
|
28 |
from __future__ import print_function |
|
|
29 |
|
|
|
30 |
import tensorflow as tf |
|
|
31 |
|
|
|
32 |
slim = tf.contrib.slim |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
def block35(net, scale = 1.0, activation_fn = tf.nn.relu, scope = None, reuse = None): |
|
|
36 |
"""Builds the 35x35 resnet block.""" |
|
|
37 |
with tf.variable_scope(scope, 'Block35', [net], reuse = reuse): |
|
|
38 |
with tf.variable_scope('Branch_0'): |
|
|
39 |
tower_conv = slim.conv2d(net, 32, 1, scope = 'Conv2d_1x1') |
|
|
40 |
with tf.variable_scope('Branch_1'): |
|
|
41 |
tower_conv1_0 = slim.conv2d(net, 32, 1, scope = 'Conv2d_0a_1x1') |
|
|
42 |
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope = 'Conv2d_0b_3x3') |
|
|
43 |
with tf.variable_scope('Branch_2'): |
|
|
44 |
tower_conv2_0 = slim.conv2d(net, 32, 1, scope = 'Conv2d_0a_1x1') |
|
|
45 |
tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope = 'Conv2d_0b_3x3') |
|
|
46 |
tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope = 'Conv2d_0c_3x3') |
|
|
47 |
mixed = tf.concat(axis = 3, values = [tower_conv, tower_conv1_1, tower_conv2_2]) |
|
|
48 |
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn = None, |
|
|
49 |
activation_fn = None, scope = 'Conv2d_1x1') |
|
|
50 |
net += scale * up |
|
|
51 |
if activation_fn: |
|
|
52 |
net = activation_fn(net) |
|
|
53 |
return net |
|
|
54 |
|
|
|
55 |
|
|
|
56 |
def block17(net, scale = 1.0, activation_fn = tf.nn.relu, scope = None, reuse = None): |
|
|
57 |
"""Builds the 17x17 resnet block.""" |
|
|
58 |
with tf.variable_scope(scope, 'Block17', [net], reuse = reuse): |
|
|
59 |
with tf.variable_scope('Branch_0'): |
|
|
60 |
tower_conv = slim.conv2d(net, 192, 1, scope = 'Conv2d_1x1') |
|
|
61 |
with tf.variable_scope('Branch_1'): |
|
|
62 |
tower_conv1_0 = slim.conv2d(net, 128, 1, scope = 'Conv2d_0a_1x1') |
|
|
63 |
tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7], |
|
|
64 |
scope = 'Conv2d_0b_1x7') |
|
|
65 |
tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1], |
|
|
66 |
scope = 'Conv2d_0c_7x1') |
|
|
67 |
mixed = tf.concat(axis = 3, values = [tower_conv, tower_conv1_2]) |
|
|
68 |
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn = None, |
|
|
69 |
activation_fn = None, scope = 'Conv2d_1x1') |
|
|
70 |
net += scale * up |
|
|
71 |
if activation_fn: |
|
|
72 |
net = activation_fn(net) |
|
|
73 |
return net |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
def block8(net, scale = 1.0, activation_fn = tf.nn.relu, scope = None, reuse = None): |
|
|
77 |
"""Builds the 8x8 resnet block.""" |
|
|
78 |
with tf.variable_scope(scope, 'Block8', [net], reuse = reuse): |
|
|
79 |
with tf.variable_scope('Branch_0'): |
|
|
80 |
tower_conv = slim.conv2d(net, 192, 1, scope = 'Conv2d_1x1') |
|
|
81 |
with tf.variable_scope('Branch_1'): |
|
|
82 |
tower_conv1_0 = slim.conv2d(net, 192, 1, scope = 'Conv2d_0a_1x1') |
|
|
83 |
tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3], |
|
|
84 |
scope = 'Conv2d_0b_1x3') |
|
|
85 |
tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1], |
|
|
86 |
scope = 'Conv2d_0c_3x1') |
|
|
87 |
mixed = tf.concat(axis = 3, values = [tower_conv, tower_conv1_2]) |
|
|
88 |
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn = None, |
|
|
89 |
activation_fn = None, scope = 'Conv2d_1x1') |
|
|
90 |
net += scale * up |
|
|
91 |
if activation_fn: |
|
|
92 |
net = activation_fn(net) |
|
|
93 |
return net |
|
|
94 |
|
|
|
95 |
|
|
|
96 |
def inception_resnet_v2(inputs, is_training = True, |
|
|
97 |
reuse = None, |
|
|
98 |
scope = 'InceptionResnetV2'): |
|
|
99 |
"""Creates the Inception Resnet V2 model. |
|
|
100 |
|
|
|
101 |
Args: |
|
|
102 |
inputs: a 4-D tensor of size [batch_size, height, width, 3]. |
|
|
103 |
num_classes: number of predicted classes. |
|
|
104 |
is_training: whether is training or not. |
|
|
105 |
dropout_keep_prob: float, the fraction to keep before final layer. |
|
|
106 |
reuse: whether or not the network and its variables should be reused. To be |
|
|
107 |
able to reuse 'scope' must be given. |
|
|
108 |
scope: Optional variable_scope. |
|
|
109 |
|
|
|
110 |
Returns: |
|
|
111 |
logits: the logits outputs of the model. |
|
|
112 |
end_points: the set of end_points from the inception model. |
|
|
113 |
""" |
|
|
114 |
end_points = { } |
|
|
115 |
|
|
|
116 |
with tf.variable_scope(scope, 'InceptionResnetV2', [inputs], reuse = reuse): |
|
|
117 |
with slim.arg_scope([slim.batch_norm, slim.dropout], |
|
|
118 |
is_training = is_training): |
|
|
119 |
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], |
|
|
120 |
stride = 1, padding = 'SAME'): |
|
|
121 |
# 149 x 149 x 32 |
|
|
122 |
net = slim.conv2d(inputs, 32, 3, stride = 2, padding = 'VALID', |
|
|
123 |
scope = 'Conv2d_1a_3x3') |
|
|
124 |
end_points['Conv2d_1a_3x3'] = net |
|
|
125 |
# 147 x 147 x 32 |
|
|
126 |
net = slim.conv2d(net, 32, 3, padding = 'VALID', |
|
|
127 |
scope = 'Conv2d_2a_3x3') |
|
|
128 |
end_points['Conv2d_2a_3x3'] = net |
|
|
129 |
# 147 x 147 x 64 |
|
|
130 |
net = slim.conv2d(net, 64, 3, scope = 'Conv2d_2b_3x3') |
|
|
131 |
end_points['Conv2d_2b_3x3'] = net |
|
|
132 |
# 73 x 73 x 64 |
|
|
133 |
net = slim.max_pool2d(net, 3, stride = 2, padding = 'VALID', |
|
|
134 |
scope = 'MaxPool_3a_3x3') |
|
|
135 |
end_points['MaxPool_3a_3x3'] = net |
|
|
136 |
# 73 x 73 x 80 |
|
|
137 |
net = slim.conv2d(net, 80, 1, padding = 'VALID', |
|
|
138 |
scope = 'Conv2d_3b_1x1') |
|
|
139 |
end_points['Conv2d_3b_1x1'] = net |
|
|
140 |
# 71 x 71 x 192 |
|
|
141 |
net = slim.conv2d(net, 192, 3, padding = 'VALID', |
|
|
142 |
scope = 'Conv2d_4a_3x3') |
|
|
143 |
end_points['Conv2d_4a_3x3'] = net |
|
|
144 |
# 35 x 35 x 192 |
|
|
145 |
net = slim.max_pool2d(net, 3, stride = 2, padding = 'VALID', |
|
|
146 |
scope = 'MaxPool_5a_3x3') |
|
|
147 |
end_points['MaxPool_5a_3x3'] = net |
|
|
148 |
|
|
|
149 |
# 35 x 35 x 320 |
|
|
150 |
with tf.variable_scope('Mixed_5b'): |
|
|
151 |
with tf.variable_scope('Branch_0'): |
|
|
152 |
tower_conv = slim.conv2d(net, 96, 1, scope = 'Conv2d_1x1') |
|
|
153 |
with tf.variable_scope('Branch_1'): |
|
|
154 |
tower_conv1_0 = slim.conv2d(net, 48, 1, scope = 'Conv2d_0a_1x1') |
|
|
155 |
tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5, |
|
|
156 |
scope = 'Conv2d_0b_5x5') |
|
|
157 |
with tf.variable_scope('Branch_2'): |
|
|
158 |
tower_conv2_0 = slim.conv2d(net, 64, 1, scope = 'Conv2d_0a_1x1') |
|
|
159 |
tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3, |
|
|
160 |
scope = 'Conv2d_0b_3x3') |
|
|
161 |
tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3, |
|
|
162 |
scope = 'Conv2d_0c_3x3') |
|
|
163 |
with tf.variable_scope('Branch_3'): |
|
|
164 |
tower_pool = slim.avg_pool2d(net, 3, stride = 1, padding = 'SAME', |
|
|
165 |
scope = 'AvgPool_0a_3x3') |
|
|
166 |
tower_pool_1 = slim.conv2d(tower_pool, 64, 1, |
|
|
167 |
scope = 'Conv2d_0b_1x1') |
|
|
168 |
net = tf.concat(axis = 3, values = [tower_conv, tower_conv1_1, |
|
|
169 |
tower_conv2_2, tower_pool_1]) |
|
|
170 |
|
|
|
171 |
end_points['Mixed_5b'] = net |
|
|
172 |
net = slim.repeat(net, 10, block35, scale = 0.17) |
|
|
173 |
|
|
|
174 |
# 17 x 17 x 1024 |
|
|
175 |
with tf.variable_scope('Mixed_6a'): |
|
|
176 |
with tf.variable_scope('Branch_0'): |
|
|
177 |
tower_conv = slim.conv2d(net, 384, 3, stride = 2, padding = 'VALID', |
|
|
178 |
scope = 'Conv2d_1a_3x3') |
|
|
179 |
with tf.variable_scope('Branch_1'): |
|
|
180 |
tower_conv1_0 = slim.conv2d(net, 256, 1, scope = 'Conv2d_0a_1x1') |
|
|
181 |
tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3, |
|
|
182 |
scope = 'Conv2d_0b_3x3') |
|
|
183 |
tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3, |
|
|
184 |
stride = 2, padding = 'VALID', |
|
|
185 |
scope = 'Conv2d_1a_3x3') |
|
|
186 |
with tf.variable_scope('Branch_2'): |
|
|
187 |
tower_pool = slim.max_pool2d(net, 3, stride = 2, padding = 'VALID', |
|
|
188 |
scope = 'MaxPool_1a_3x3') |
|
|
189 |
net = tf.concat(axis = 3, values = [tower_conv, tower_conv1_2, tower_pool]) |
|
|
190 |
|
|
|
191 |
end_points['Mixed_6a'] = net |
|
|
192 |
net = slim.repeat(net, 20, block17, scale = 0.10) |
|
|
193 |
|
|
|
194 |
end_points['BeforeAux'] = net |
|
|
195 |
|
|
|
196 |
# Auxiliary tower |
|
|
197 |
with tf.variable_scope('AuxLogits'): |
|
|
198 |
aux = slim.avg_pool2d(net, 5, stride = 1, padding = 'SAME', |
|
|
199 |
scope = 'Conv2d_1a_3x3') |
|
|
200 |
aux = slim.conv2d(aux, 128, 1, scope = 'Conv2d_1b_1x1') |
|
|
201 |
aux = slim.conv2d(aux, 768, 5, |
|
|
202 |
padding = 'SAME', scope = 'Conv2d_2a_5x5') |
|
|
203 |
|
|
|
204 |
end_points['AuxBeforeScoring'] = aux |
|
|
205 |
|
|
|
206 |
return aux, end_points |
|
|
207 |
|
|
|
208 |
inception_resnet_v2.default_image_size = 299 |
|
|
209 |
|
|
|
210 |
|
|
|
211 |
def inception_resnet_v2_arg_scope(weight_decay = 0.00004, |
|
|
212 |
batch_norm_decay = 0.9997, |
|
|
213 |
batch_norm_epsilon = 0.001): |
|
|
214 |
"""Yields the scope with the default parameters for inception_resnet_v2. |
|
|
215 |
|
|
|
216 |
Args: |
|
|
217 |
weight_decay: the weight decay for weights variables. |
|
|
218 |
batch_norm_decay: decay for the moving average of batch_norm momentums. |
|
|
219 |
batch_norm_epsilon: small float added to variance to avoid dividing by zero. |
|
|
220 |
|
|
|
221 |
Returns: |
|
|
222 |
a arg_scope with the parameters needed for inception_resnet_v2. |
|
|
223 |
""" |
|
|
224 |
# Set weight_decay for weights in conv2d and fully_connected layers. |
|
|
225 |
|
|
|
226 |
with slim.arg_scope([slim.conv2d, slim.fully_connected], |
|
|
227 |
weights_regularizer = slim.l2_regularizer(weight_decay), |
|
|
228 |
biases_regularizer = slim.l2_regularizer(weight_decay)): |
|
|
229 |
batch_norm_params = { |
|
|
230 |
'decay': batch_norm_decay, |
|
|
231 |
'epsilon': batch_norm_epsilon |
|
|
232 |
} |
|
|
233 |
# Set activation_fn and parameters for batch_norm. |
|
|
234 |
with slim.arg_scope([slim.conv2d], activation_fn = tf.nn.relu, |
|
|
235 |
normalizer_fn = slim.batch_norm, |
|
|
236 |
normalizer_params = batch_norm_params) as scope: |
|
|
237 |
return scope |