--- a +++ b/inception_resnet_v2.py @@ -0,0 +1,237 @@ +# Copyright 2016 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +# The content is derived from https://github.com/tensorflow/models/blob/master/slim/nets/inception_resnet_v2.py +# ============================================================================== + +"""Contains the definition of the Inception Resnet V2 architecture. + +As described in http://arxiv.org/abs/1602.07261. + + Inception-v4, Inception-ResNet and the Impact of Residual Connections + on Learning + Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi +""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import tensorflow as tf + +slim = tf.contrib.slim + + +def block35(net, scale = 1.0, activation_fn = tf.nn.relu, scope = None, reuse = None): + """Builds the 35x35 resnet block.""" + with tf.variable_scope(scope, 'Block35', [net], reuse = reuse): + with tf.variable_scope('Branch_0'): + tower_conv = slim.conv2d(net, 32, 1, scope = 'Conv2d_1x1') + with tf.variable_scope('Branch_1'): + tower_conv1_0 = slim.conv2d(net, 32, 1, scope = 'Conv2d_0a_1x1') + tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope = 'Conv2d_0b_3x3') + with tf.variable_scope('Branch_2'): + tower_conv2_0 = slim.conv2d(net, 32, 1, scope = 'Conv2d_0a_1x1') + tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope = 'Conv2d_0b_3x3') + tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope = 'Conv2d_0c_3x3') + mixed = tf.concat(axis = 3, values = [tower_conv, tower_conv1_1, tower_conv2_2]) + up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn = None, + activation_fn = None, scope = 'Conv2d_1x1') + net += scale * up + if activation_fn: + net = activation_fn(net) + return net + + +def block17(net, scale = 1.0, activation_fn = tf.nn.relu, scope = None, reuse = None): + """Builds the 17x17 resnet block.""" + with tf.variable_scope(scope, 'Block17', [net], reuse = reuse): + with tf.variable_scope('Branch_0'): + tower_conv = slim.conv2d(net, 192, 1, scope = 'Conv2d_1x1') + with tf.variable_scope('Branch_1'): + tower_conv1_0 = slim.conv2d(net, 128, 1, scope = 'Conv2d_0a_1x1') + tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7], + scope = 'Conv2d_0b_1x7') + tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1], + scope = 'Conv2d_0c_7x1') + mixed = tf.concat(axis = 3, values = [tower_conv, tower_conv1_2]) + up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn = None, + activation_fn = None, scope = 'Conv2d_1x1') + net += scale * up + if activation_fn: + net = activation_fn(net) + return net + + +def block8(net, scale = 1.0, activation_fn = tf.nn.relu, scope = None, reuse = None): + """Builds the 8x8 resnet block.""" + with tf.variable_scope(scope, 'Block8', [net], reuse = reuse): + with tf.variable_scope('Branch_0'): + tower_conv = slim.conv2d(net, 192, 1, scope = 'Conv2d_1x1') + with tf.variable_scope('Branch_1'): + tower_conv1_0 = slim.conv2d(net, 192, 1, scope = 'Conv2d_0a_1x1') + tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3], + scope = 'Conv2d_0b_1x3') + tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1], + scope = 'Conv2d_0c_3x1') + mixed = tf.concat(axis = 3, values = [tower_conv, tower_conv1_2]) + up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn = None, + activation_fn = None, scope = 'Conv2d_1x1') + net += scale * up + if activation_fn: + net = activation_fn(net) + return net + + +def inception_resnet_v2(inputs, is_training = True, + reuse = None, + scope = 'InceptionResnetV2'): + """Creates the Inception Resnet V2 model. + + Args: + inputs: a 4-D tensor of size [batch_size, height, width, 3]. + num_classes: number of predicted classes. + is_training: whether is training or not. + dropout_keep_prob: float, the fraction to keep before final layer. + reuse: whether or not the network and its variables should be reused. To be + able to reuse 'scope' must be given. + scope: Optional variable_scope. + + Returns: + logits: the logits outputs of the model. + end_points: the set of end_points from the inception model. + """ + end_points = { } + + with tf.variable_scope(scope, 'InceptionResnetV2', [inputs], reuse = reuse): + with slim.arg_scope([slim.batch_norm, slim.dropout], + is_training = is_training): + with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], + stride = 1, padding = 'SAME'): + # 149 x 149 x 32 + net = slim.conv2d(inputs, 32, 3, stride = 2, padding = 'VALID', + scope = 'Conv2d_1a_3x3') + end_points['Conv2d_1a_3x3'] = net + # 147 x 147 x 32 + net = slim.conv2d(net, 32, 3, padding = 'VALID', + scope = 'Conv2d_2a_3x3') + end_points['Conv2d_2a_3x3'] = net + # 147 x 147 x 64 + net = slim.conv2d(net, 64, 3, scope = 'Conv2d_2b_3x3') + end_points['Conv2d_2b_3x3'] = net + # 73 x 73 x 64 + net = slim.max_pool2d(net, 3, stride = 2, padding = 'VALID', + scope = 'MaxPool_3a_3x3') + end_points['MaxPool_3a_3x3'] = net + # 73 x 73 x 80 + net = slim.conv2d(net, 80, 1, padding = 'VALID', + scope = 'Conv2d_3b_1x1') + end_points['Conv2d_3b_1x1'] = net + # 71 x 71 x 192 + net = slim.conv2d(net, 192, 3, padding = 'VALID', + scope = 'Conv2d_4a_3x3') + end_points['Conv2d_4a_3x3'] = net + # 35 x 35 x 192 + net = slim.max_pool2d(net, 3, stride = 2, padding = 'VALID', + scope = 'MaxPool_5a_3x3') + end_points['MaxPool_5a_3x3'] = net + + # 35 x 35 x 320 + with tf.variable_scope('Mixed_5b'): + with tf.variable_scope('Branch_0'): + tower_conv = slim.conv2d(net, 96, 1, scope = 'Conv2d_1x1') + with tf.variable_scope('Branch_1'): + tower_conv1_0 = slim.conv2d(net, 48, 1, scope = 'Conv2d_0a_1x1') + tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5, + scope = 'Conv2d_0b_5x5') + with tf.variable_scope('Branch_2'): + tower_conv2_0 = slim.conv2d(net, 64, 1, scope = 'Conv2d_0a_1x1') + tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3, + scope = 'Conv2d_0b_3x3') + tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3, + scope = 'Conv2d_0c_3x3') + with tf.variable_scope('Branch_3'): + tower_pool = slim.avg_pool2d(net, 3, stride = 1, padding = 'SAME', + scope = 'AvgPool_0a_3x3') + tower_pool_1 = slim.conv2d(tower_pool, 64, 1, + scope = 'Conv2d_0b_1x1') + net = tf.concat(axis = 3, values = [tower_conv, tower_conv1_1, + tower_conv2_2, tower_pool_1]) + + end_points['Mixed_5b'] = net + net = slim.repeat(net, 10, block35, scale = 0.17) + + # 17 x 17 x 1024 + with tf.variable_scope('Mixed_6a'): + with tf.variable_scope('Branch_0'): + tower_conv = slim.conv2d(net, 384, 3, stride = 2, padding = 'VALID', + scope = 'Conv2d_1a_3x3') + with tf.variable_scope('Branch_1'): + tower_conv1_0 = slim.conv2d(net, 256, 1, scope = 'Conv2d_0a_1x1') + tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3, + scope = 'Conv2d_0b_3x3') + tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3, + stride = 2, padding = 'VALID', + scope = 'Conv2d_1a_3x3') + with tf.variable_scope('Branch_2'): + tower_pool = slim.max_pool2d(net, 3, stride = 2, padding = 'VALID', + scope = 'MaxPool_1a_3x3') + net = tf.concat(axis = 3, values = [tower_conv, tower_conv1_2, tower_pool]) + + end_points['Mixed_6a'] = net + net = slim.repeat(net, 20, block17, scale = 0.10) + + end_points['BeforeAux'] = net + + # Auxiliary tower + with tf.variable_scope('AuxLogits'): + aux = slim.avg_pool2d(net, 5, stride = 1, padding = 'SAME', + scope = 'Conv2d_1a_3x3') + aux = slim.conv2d(aux, 128, 1, scope = 'Conv2d_1b_1x1') + aux = slim.conv2d(aux, 768, 5, + padding = 'SAME', scope = 'Conv2d_2a_5x5') + + end_points['AuxBeforeScoring'] = aux + + return aux, end_points + +inception_resnet_v2.default_image_size = 299 + + +def inception_resnet_v2_arg_scope(weight_decay = 0.00004, + batch_norm_decay = 0.9997, + batch_norm_epsilon = 0.001): + """Yields the scope with the default parameters for inception_resnet_v2. + + Args: + weight_decay: the weight decay for weights variables. + batch_norm_decay: decay for the moving average of batch_norm momentums. + batch_norm_epsilon: small float added to variance to avoid dividing by zero. + + Returns: + a arg_scope with the parameters needed for inception_resnet_v2. + """ + # Set weight_decay for weights in conv2d and fully_connected layers. + + with slim.arg_scope([slim.conv2d, slim.fully_connected], + weights_regularizer = slim.l2_regularizer(weight_decay), + biases_regularizer = slim.l2_regularizer(weight_decay)): + batch_norm_params = { + 'decay': batch_norm_decay, + 'epsilon': batch_norm_epsilon + } + # Set activation_fn and parameters for batch_norm. + with slim.arg_scope([slim.conv2d], activation_fn = tf.nn.relu, + normalizer_fn = slim.batch_norm, + normalizer_params = batch_norm_params) as scope: + return scope